
Exam LMA017

Mathematical sciences, Chalmers University of Technology

Datum: January 4th 2021, 08:30
Examiner: Axel Flinth

Allowed aids: Any.
Grade limits: 20 points for the grade 3.

30 points for the grade 4
40 points for the grade 5.

There are in total 50 points to collect.

Calculations and arguments should be presented in full. Only providing an answer will
normally not be rewarded with points. Solutions may be written in Swedish or English (or
German).

If you use any external tool or resource, you should reference it. See the Canvas
Page for more information. Not referencing properly may result in point deduction.

The exam consists of eight (8) problems. They are distributed over four (4) pages.

Good luck!

SOLUTIONS
No guarantee of correctness!

Problem 1 (6p)

Let g : R2 → R3 be defined through

g(x, y) =

 x2y
y sin(x)

x

 .
1. Calculate the derivative of g. (3p)

2. Evaluate g and g′ in 〈1, 0〉. (3p)

1

https://chalmers.instructure.com/courses/10111/pages/reference-rules
https://chalmers.instructure.com/courses/10111/pages/reference-rules


Solution. (a) The derivative is given by the matrix formed when writing the two partial deriva-
tives next to each other

g′(x, y, z) =
[
∂g
∂x

(x, y, z) ∂g
∂y

(x, y, z)
]
.

Thus

g′(x, y) =

 2xy x2

y cos(x) sin(x)
1 0

 ,
(b) We now simply need to insert x = 1 and y = 0. We get

g(1, 0) =

 12 · 0
0 · sin(1)

1

 =

0
0
1


g′(1, 0, 1) =

 2 · 1 · 0 12

0 cos(1) sin(1)
1 0

 =

0 1
0 sin(1)
1 0

 .

Problem 2 (7p)

Consider a triangle with corners 〈0, 0〉, 〈0, 1〉 and 〈1,−1〉. Calculate the center of mass of the
triangle

Solution. Let T be the triangle. We need to calculate the expressions

px =

∫
T
x dxdy∫
T

dxdy
py =

∫
T
y dxdy∫
T

dxdy
.

(note that when we speak about the center of mass of a geometrical object per se, ρ is assumed
constant, and WLOG 1).
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Let us first note that
∫
T
ρ(x, y) dxdy is equal to the area of the triangle, which can be calculated

with the help of the formula 1
2
base · height:∫

T

ρ(x, y) dxdy =
1

2
· 1 · 1 =

1

2
.

In order to evaluate the other integrals, we need to find a description of T as a simple domain.
To do this, the simplest thing to do is that for each x ∈ [0, 1], the y-coordinates of the points
range from −x to 1− 2x. Thus, for any function g∫

T

g dxdy =

∫ 1

0

∫ 1−2x

−x
g(x, y) dydx.

We now use this to calculate∫
T

x dxdy =

∫ 1

0

∫ 1−2x

−x
x dydx =

∫ 1

0

x(1− x) dx =

[
x2

2
− x3

3

]1
0

=
1

6∫
T

y dxdy =

∫ 1

0

∫ 1−2x

−x
y dydx =

∫ 1

0

[
y2

2

]1−2x
y=−x

dx =

∫ 1

0

(1− 4x+ 4x2)− x2

2
dx

=

[
x

2
− x2 +

x3

2

]1
x=0

= 0

The center of mass of the triangle is thus

px =
1
6
1
2

=
1

3
, py =

0
1
6

= 0.

Problem 3 (6p)

Calculate
∫∫∫

S
zdxdydz, where S is the part of the unit ball that lies above the xy-plane.

Solution. The easiest technique to solve this integral is probably to transform to spherical coor-
dinates 〈ρ sin(φ) cos(θ), ρ sin(ϕ) sin(θ), ρ cos(ϕ)〉. The unit ball is described via the inequalities

0 ≤ ρ ≤ 1, 0 ≤ ϕ ≤ π, 0 ≤ θ ≤ 2π.

Since we only want to integrate over the part of the ball which lies above the xy-plane, we need
to restrict the domain for ϕ to [0, π

2
]. The functional determinant of the spherical coordinates is

ρ2 sin(ϕ), and z = ρ cos(ϕ). Thus∫∫∫
S

zdxdydz =

∫ 1

0

∫ π/2

0

∫ 2π

0

ρ cos(ϕ) · ρ2 sin(ϕ) dθdϕdρ.
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It now only remains to evaluate the integral. (This can surely be done via a computer algebra
system)∫ 1

0

∫ π/2

0

∫ 2π

0

ρ3 cos(ϕ) sin(ϕ) dθdϕdρ = 2π

∫ 1

0

∫ π/2

0

ρ3 sin(2ϕ)

2
dϕdρ

= 2π

∫ 1

0

[
−ρ3 cos(2ϕ)

4

]ϕ=π/2
ϕ=0

dρ =
π

2

∫ 1

0

2ρ3 dρ =
π

4

Problem 4 (6p)

Let f : R2 → R be defined through

f(x, y) = cos
(π

2
x
)

cos
(π

2
y
)
.

Determine the global maximum and minimal values of f on the square [−1, 1]2.

Solution. [−1, 1]2 is a compact domain and f is continuous. Thus, f has maximal and minimal
values, and we can find them among the critical points (on the boundary and in the interior).

Let us begin with the boundary. The boundary is given by the points of the form 〈±1, t〉 and
〈s,±1〉 for |s| ≤ 1 and |t| ≤ 1. In all of these points, since cos

(
π
2

)
= cos

(
−π

2

)
= 0, f is equal to

0. The function is thus constant on the boundary, and therefore all points on the boundary are
candidates for the extrema.

We move on to search for critical points in the interior. We have

∇f(x, y) =
π

2

[
− sin

(
π
2
x
)

cos
(
π
2
y
)

− cos
(
π
2
x
)

sin
(
π
2
y
)] .

This is zero if and only if sin
(
π
2
x
)

= sin
(
π
2
y
)

= 0, since cos is larger than zero on (−π/2, π/2).
Thus, the only critical point in the interior is given by 〈0, 0〉.

We now compare the function values. As discussed, the function is constantly equal to 0 on
the boundary, and f(0, 0) = 1. Thus, the maximal value is 1, and the minimal value is 0.

Problem 5 (7p)

Milk is poured into a mug of coffee. The amount of coffee lies between 2.3 and 2.7 deciliters, and
the amount of milk is somewhere between 0.3 and 0.7 deciliters. Use the Schrankensatz to give
an estimate of the fraction of the liquid in the cup that is milk, with error bounds.
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Solution. Let c be the amount of coffee in the cup, and m the amount of milk. From the text,
we can infer that c = 2.5± 0.2 and m = 0.5± 0.2. The entity we want to estimate is the fraction
of milk, which is described by

f : [0,∞[2→ R, (c,m) 7→ m

c+m
.

The Schrankensatz says

|f(c,m)− f(2.5, 0.5)| ≤Mc |c− 2.5|+Mm |m− 0.5| ,

where

Mc = sup
|c−2.5|≤0.2
|m−0.5|≤0.2

∣∣∣∣∂f∂c (c,m)

∣∣∣∣
Mm = sup

|c−2.5|≤0.2
|m−0.5|≤0.2

∣∣∣∣ ∂f∂m(c,m)

∣∣∣∣ .
We estimate

Mc = sup
|c−2.5|≤0.2
|m−0.5|≤0.2

∣∣∣∣− m

(c+m)2

∣∣∣∣ ≤ 0.7

(2.3 + 0.3)2

Mm = sup
|c−2.5|≤0.2
|m−0.5|≤0.2

∣∣∣∣− c

(c+m)2

∣∣∣∣ ≤ 2.7

(2.3 + 0.3)2
.

This gives the final bound

Mc |c− 2.5|+Mm |m− 0.5| ≤ 0.2 · 0.7

(2.3 + 0.3)2
+ 0.2 · 2.7

(2.3 + 0.3)2
≤ 0.101.

Since f(2.5, 0.5) = 1
6
≈ 0.167, we obtain

f(c,m) ≈ 0.167± 0.101.

Problem 6 (6p)

Let w : R3 → R3 be the vector field

w(x, y, z) =

xy2 + z
yz2 + x
zx2 + y

 .
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Let further K be the cube [0, 1]3 = {|x, y, z | 0 ≤ x, y, z ≤ 1}, and S its surface. Calculate the
flow of w out ouf K, i.e. ∫∫

S

w · dS.

Solution. We can use Gauß’s theorem (the divergence theorem)∫∫
S

w · dS =

∫∫
K

divwdV.

We have

divw =
∂wx
∂x

+
∂wy
∂y

+
∂wz
∂z

= y2 + z2 + x2.

The integral that we need to evaluate is thus∫∫
K

(x2 + y2 + z2) dV.

We do not need to invest much work in determining the limits for this integral - they are equal
to 0 and 1 for each variable.∫ 1

0

∫ 1

0

∫ 1

0

(x2 + y2 + z2) dxdydz =

∫ 1

0

∫ 1

0

1

3
+ y2 + z2 dydz =

∫ 1

0

1

3
+

1

3
+ z2 dz

=
1

3
+

1

3
+

1

3
= 1.

Problem 7 (6p)

A ball is rolling on the graph of a twice differentiable function f : R2 → R. The 〈x, y〉-coordinates
of the ball follow a curve γ(t). At t = 0, these coordinates reside in the point γ(0) = 〈0, 0〉, and
the velocity of them is γ′(0) = 〈1, 2〉. We know that

∇f(0, 0) =

[
0
0

]
f ′′(0, 0) =

[
1 −2
−2 1

]
.

We let g denote the function which describes how the height of the ball depends on time, i.e.
g = f ◦ γ.

(a) What is the derivative of g in 0, i.e. g′(0)? (2p)

(b) What is the second derivative of g in 0, i.e. g′′(0)? (2p)
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(c) Which of the following graphs depicts g? (2p)

Only ruling out one graph with a good justification will be awarded one point.

Solution. (a) By the chain rule, we have

g′(θ) = f ′(γ(θ))γ′(theta) = ∇f(γ(θ)) · γ′(θ).
Evaluating this in 0, we have

g′(0) = ∇f(γ(0)) · γ′(0) = ∇f(0, 0) · γ′(0) = 0,

since ∇f(0, 0) = 0.

(b) We start by using the product rule for vector-valued functions to determine

g′′(θ) = (∇f ◦ γ)′(θ) · γ′(θ) +∇f(γ(θ)) · γ′′(θ).
We know apply the chain rule for a second time see that

(∇f ◦ γ)′(θ) = (∇f)′(γ(θ))γ′(θ) = f ′′(γ(θ))γ′(θ).

Thus

g′′(θ) = (f ′′(γ(θ))γ′(θ)) · γ′(θ) +∇f(γ(θ)) · γ′′(θ).
We now need to evaluate this in θ = 0. Since ∇f(γ(0)) = 0, the second term vanishes. The
expression is thus equal to

g′′(0) = (f ′′(0)γ′(0)) · γ′(0) =

([
1 −2
−2 1

] [
1
2

])
·
[
1
2

]
=

[
−3
0

]
·
[
1
2

]
= −3.

(c) g is a function that has a derivative equal to 0 in θ = 0. The rightmost graph is thus out
of question. To determine whether the left or the middle one is the right choice, we notice that
the second derivative is negative. Thus, the graph locally looks like a downward facing parabola,
and it must be the leftmost graph that describes the g.
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Problem 8 (6p)

Let v : R2 → R2 be the vector field

v(x, y) =

[
−y
x

]
(a) Determine the line integral of v along the unit circle. You can choose which direction the

circle is traversed. (2p)

(b) Does there exist a differentiable function f : R2 → R with the property that

f(p) = 1 for all p in the unit circle

so that w(p) = f(p)v(p) is conservative? (4p)

Solution. (a) We calculate the integral using the definition. A parametrization of the unit circle
is given by

γ(t) = 〈cos(t), sin(t)〉 0 ≤ t ≤ 2π.

Thus, the integral is given by∫ 2π

0

v(γ(t)) · γ′(t) dt =

∫ 2π

0

〈− sin(t), cos(t)〉 · 〈− sin(t), cos(t)〉 dt =

∫ 2π

0

sin2(t) + cos2(t)dt = 2π.

(b) No. Denote the unit circle with C. Towards a contradiction, assume that such a function
exists. Then we would have ∫

C

w · dr = 0,

since C is a closed curve and w by assumption is conservative. However, since f is equal to 1
everywhere on the unit circle, we have∫

C

w · dr =

∫
C

fv · dr =

∫
C

v · dr 6= 0,

by (a). This is a contradiction, and thus, such a function cannot exist.
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