
Solution suggestions

Exercise 1. (i) In ’(x, y)-notation’, f has the following appearance:

f(x, y) =
√
x2 + y2.

With this representation, it is easy to calculate the partial derivatives using standard differentiation
rules (more specifically, the chain rule). We obtain

∂f

∂x
(x, y) =

1

2
√
x2 + y2

· 2x =
x√

x2 + y2
,

∂f

∂y
(x, y) =

1

2
√
x2 + y2

· 2y =
y√

x2 + y2
.

We have here implicitly used that we calculate the derivative in a point different from the origin in
that the square root only is differentiable in ]0,∞[. Now, again since we are speaking about points
different from the origin, these two functions are continuous (the denominator is not equal to zero in
such points). Therefore, f is differentiable, and the derivative is given by

f ′(x, y) =
[
∂f
∂x (x, y) ∂f

∂y (x, y)
]

=
[

x√
x2+y2

y√
x2+y2

]
.

(ii) Here, the best idea is probably to actually resort to the limit defining Dvf(p). We have for v
arbitrary

Dvf(0) = lim
t→0

f(0 + tv)− f(0)

t
= lim

t→0

|tv| − |0|
t

= lim
t→0

|t|
t
|v|

This limit does not exist, since the fraction approaches different values depending on if we approach the
zero from the right or from the left. Hence, the directional derivatives do not exist, and the function is
surely not differentiable.

Note: Some authors define the directional limit through a one-sided limit:

∆vf(p) = lim
t→0+

f(p + tv)− f(p)

t

(the different notation is to differentiate from our definition). This has its motivation - it might in some
situations be beneficial to be able to capture the difference in response in f -value when we move in
v-direction rather than −v-direction! With this definition, the function at hand would have directional
derivatives

∆v(f(0)) = |v| .

However, the function is still not differentiable, since v 7→ v surely isn’t linear.
�

Exercise 2. (i)
(a)

f ′(x, y) =
[
ey xey

]
, ⇒ f ′(g(s, t)) = f ′(st, s+ t) =

[
es+t stes+t

]
g′(s, t) =

[
t s
1 1

]
f ′(g(s, t))g′(s, t) =

[
es+t stes+t

] [t s
1 1

]
=
[
tes+t + stes+t ses+t + stes+t

]
.
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(b)

f ′(x, y, z) =

[
y x 0
0 z y

]
⇒ f ′(g(x, y)) = f ′(x, y, x2 + y2) =

[
y x 0
0 x2 + y2 y

]
g′(x, y, z) =

 1 0
0 1

2x 2y


f ′(g(x, y))g′(x, y) =

[
y x 0
0 x2 + y2 y

] 1 0
0 1

2x 2y

 =

[
y x

2xy x2 + 3y2

]
.

(c) f ′(t) = 2t, so that f(g(t)) = 2g(t). The chain rule thus yields (f ◦ g)′(t) = 2g(t)g′(t).

(d) Let us begin by noticing that f ◦ g = f ◦ f ◦ f . This implies that

(f ◦ g)′ = f ′ ((f ◦ f)(x, y)) (f ◦ f)′(0, 0) = f ′ (f(f(0, 0))) f ′(f(0, 0))f ′(0, 0).

We now calculate

f ′(x, y) =

[
1 2y

2x 1

]
.

Since f(0, 0) =< 0, 0 >, we obtain

f ′ (f(f(0, 0))) f ′(f(0, 0))f ′(0, 0) = f ′(0, 0)f ′(0, 0)f ′(0, 0) =

[
1 2 · 0

2 · 0 1

]3
=

[
1 0
0 1

]

(ii) The functions m and Φ have the derivatives

m′(x, y) =
[
y x

]
, Φ′(t) =

[
f ′(t)
g′(t)

]
.

Since fg = m ◦ Φ, we obtain

(fg)′(t) = m′(Φ(t))Φ′(t) =
[
g(t) f(t)

] [f ′(t)
g′(t)

]
= g(t)f ′(t) + f(t)g′(t).

The generalization is similar. Here, we need use the map

µ : R2n → R, < v,u >7→ v · u

instead of m, where we interpret a vector in R2n as two vectors in Rn next to each other. We can then
calculate

∂µ

∂ui
=

∂

∂ui

n∑
k=1

ukvk = vi,
∂µ

∂vi
=

∂

∂ui

n∑
k=1

ukvk = ui

so that
µ′(< u,v >) =

[
∂µ
∂u1

. . . ∂µ∂un
∂µ
∂v1

. . . ∂µ∂vn

]
=
[
vT uT

]
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, so that (with Φ as above)

(f · g)′(t) = (µ ◦ Φ)′(t) = µ′(Φ(t))Φ′(t) =
[
g′(t)T f ′(t)T

] [f(t)
g(t)

]
= g′(t)T f(t) + f ′(t)T g(t) = g′(t) · f(t) + f ′(t) · g(t).

�

Exercise 3. As for the formula for R, we have

(c ◦ σ ◦ L)(a, b) = c(σ(a · x + b)) = (σ(a · x + b)− y)2.

c is not hard to differentiate, since it is a univariate function: c′(t) = 2(t− y).

We move on to the formula for L′(a, b). The more mundane to write everything in coordinates and
calculate the partial derivatives, as follows:

L(a, b) = a · x + b =

n∑
i=1

aixi + b,
∂L

∂aj
= xj ,

∂L

∂b
= 1,

so that

L′(a, b) =
[
x1 . . . xn 1

]
=
[
xT 1

]
.

We can also work directly with the definition of the derivative:

L(a + u, b+ v) = (a + u) · x + b+ v = a · x + b+ xTu + v = L(a, b) +
[
xT 1

] [u
v

]
+ 0.

This is exactly the equation used for defining the derivative, with L′(a, b) =
[
xT 1

]
and ε(u, v) = 0.

�

Exercise 4. If we let the weight of a single peanut be w and the total weight of a bag be T , the number
n of peanuts in the bag is given by

n(w, T ) =
T

w
.

Let (w0, T0) = (0.45, 500) be the ideal nut weight - bag weight. The numbers for an actual bag (w, T )
can then be anywhere in [0.4, 0.5]× [490, 510]. The Schrankensatz tells us

|n(w, T )− n(w0, T0)| ≤

(
max

(w̃,T̃ )∈[0.4,0.5]×[490,510]

∣∣∣∣ ∂n∂w (w̃, T̃ )

∣∣∣∣
)
|w − w0|

+

(
max

(w̃,T̃ )∈[0.4,0.5]×[490,510]

∣∣∣∣ ∂n∂T (w̃, T̃ )

∣∣∣∣
)
|T − T0|
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We calculate the maxima of the partial derivatives:

max
(w̃,T̃ )∈[0.4,0.5]×[490,510]

∣∣∣∣ ∂n∂w (w̃, T̃ )

∣∣∣∣ = max
(w̃,T̃ )∈[0.4,0.5]×[490,510]

∣∣∣∣−Tw2

∣∣∣∣ =
510

0.42

max
(w̃,T̃ )∈[0.4,0.5]×[490,510]

∣∣∣∣ ∂n∂T (w̃, T̃ )

∣∣∣∣ = max
(w̃,T̃ )∈[0.4,0.5]×[490,510]

∣∣∣∣ 1

w

∣∣∣∣ =
1

0.4

Thus,

|n(w, T )− n(w0, T0)| ≤
510

0.42
· 0.05 +

1

0.4
· 10 ≤ 184.4

Considering that n(w0, T0) = 11111
9 , we get

n(w, T ) = 11111
9 ± 184.4

�
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