
Examples of Problem Solving Exam Exercises LMA017

In all exercises, it is of high importance to justify your answers! Just giving the correct answer
will normally result in zero points.

Most of the exercises are in the ’red zone’ when it comes to difficulty that is acceptable on
an exam. Some of them are well above it – 4,13 and 14 are definitely in this category. Less than
a third of the exam will be problems of this type! More exact info can be retrieved from the
exercise exam, which will be posted later.

No guarantee of correctness!

Week 1

1. Functions of several variables, Visualization

The following plot depicts the gradient ∇f of a function f : R2 → R.

(a) Which one of following graphs shows ∂f
∂x

?
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(b) Which one of the following contour plots depicts f?

Solution. (a) ∂f
∂x

is the first component of ∇f(x, y). Looking at the quiver plot, we see that the
x-components of the arrow are negative in the left of the domain, then tend to be positive, and
then negative again. The only plot that behaves like this is the leftmost plot, whence that must
be the depiction of ∂f

∂x
.

(b) The gradient shows in which direction the function is growing the most. Looking at the
quiver plot, we hence must conclude that the function has a minimum in the upper left of the
domain, and a maximum in the lower right of the domain. It is only the leftmost plot that
shows a function of this form - notice that the middle one has more than one critical point, and
the right one has to maxima or minima, since the level lines near the two critical points have the
same color.

2. Limits and continuity

Consider the following function

f(x, y) =

{
0 if y = x3

1 else.

Determine the points in which f is continuous.

Solution. First, let < x0, y0 > be a point for which y0 6= x30. Then there exists a small neighbour-
hood U around < x0, y0 > so that y 6= x3 for all < x, y >∈ U . Thus, f(x, y) = 1 = f(x0, y0 for
all points in the neighbourhood. Consequently, for all ε > 0, we have εf(x, y)− f(x0, y0) = 0 < ε
for < x, y > in the neighbourhood U . This is the definition of f being continuous in < x0, y0 >.
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Now let < x0, y0 > be a point in which y0 = x30, so that f(x0, y0) = 0. For any h > 0, we will
then have y0 + h 6= x30, so that f(x0, y0 + h) = 1. Consequently

lim
h→0+

f(x0, y0 + h) = lim
h→0+

1 = 1 6= 0 = f(x0, y0).

Thus, if we approach the point < x0, y0 > from above, f(x, y) does not tend to f(x0, y0). This
proves that f is not continuous in such a point.

Thus, the function is continuous in the points where y 6= x3, and else not.
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Week 2

3. Derivatives I

A function f : R2 → R has the following property: There exists two non-parallell lines `1 and `2
on which f is constantly equal to 1. Let p be the intersection of the two lines.

`1

`2

p

(a) Let v1, v2 be the directional vectors of the lines. Show that Dv1f(p) = Dv2f(p) = 0.

(b) Assume that f is differentiable. Show that ∇f(p) = 0.

(c) Does f have to be differentiable? Show this, or give a counterexample. If you give a
counterexample, make sure to specify the lines `1 and `2.

Solution. (a) Due to the fact that f is equal to one on the lines, we have f(p + tvi) = 1 for all
t ∈ R and all i = 1, . . . , 2. The definition of the directional derivative therefore implies

lim
t→0

f(p + tvi)− f(p)

t
= lim

t→0

1− 1

t
= lim

t→0

0

t
= lim

t→0
0 = 0.

(b) We have the following relation between the gradient ∇f(p) and the directional derivatives
Dvif(p):

Dvif(p) = vi · ∇f(p) = vTi ∇f(p)

Thus, if we define a matrix A whose rows are equal to vT1 and vT2 , we have

A∇f(p) = 0.

Due to the fact that v1 and v2 are not parallell, the matrix A is invertible. Thus, the above
implies that

∇f(p) = A−10 = 0.

4



4. Derivatives II

Two hiking groups are moving through a landscape. The height of the landscape is described by
a differentiable function h. The trajectories of the two groups are described by

γ1(t) =< t, t2 >, and γ2 =< t, 3t >, respectively.

Time is measured in minutes. The two groups record how their heights are changing with time.
At the time t = 0 min, when the two groups meet in the point < 0, 0, h(0, 0) >, group 1 reports
that their height is rising with a rate 0.1 m/min and group 2 reports that their height is rising
with 0.4 m/min.

(a) Use the chain rule to write down a formula involving h(0, 0), ∇h(0, 0), γ1(0), and γ′1(0) that
expresses the rate of height change the first hiking group is experiencing at t = 0.

(b) What is the gradient of h in (0, 0)?

Solution. (a) The height that the first hiking group is at at time t is given by h ◦ γ1(t). The
chain rule implies

(h ◦ γ1)′(t) = h′(γ1(t))γ
′
1(t) = ∇h(γ1(t)) · γ′1(t).

Plugging in t = 0, we get

(h ◦ γ1)′(0) = ∇h(γ1(0)) · γ′1(0) = ∇h(0, 0) · γ′1(0).

(b) By the exact same argument as above, the rate of change the second hiking group is given
by ∇h(0, 0) · γ′2(0). Hence,

0.1 = ∇h(0, 0) · γ′1(0)

0.4 = ∇h(0, 0) · γ′2(0)

Let us calculate the derivatives of the two γ-maps:

γ′1(t) =

[
1
2t

]
=⇒ γ′1(0) =

[
1
0

]
γ′2(t) =

[
1
3

]
=⇒ γ′1(0) =

[
1
3

]
.

Consequently, if we write ∇h(0, 0) =< a, b >:

0.1 = ∇h(0, 0) · γ′1(0) = 1 · a+ 0 · b
0.4 = ∇h(0, 0) · γ′2(0) = 1 · a+ 3 · b.

This linear system of equations is easily solved – its unique solution is a = b = 0.1. Hence,

∇h(0, 0) =< 0.1, 0.1 > .
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5. The Schrankensatz

Two drones are moving through the air. Their positions relative to a base station are determined
by a gps. They are both equipped with altimeters, which determine their heights above sea level.
At a certain time, the measurement reads as follows

• Drone 1: Position < 200, 400 >, height 35.

• Drone 2: Position < −80, 130 >, height 50.

All readings are in meters. We can assume that the errors of the gps measurements of each
coordinate is not larger than 5 m, and that the height measurements are off by at most 1 meter.

Use the Schrankensatz to determine the (three-dimensional) distance between the drones,
with error bounds.

Solution. If the positions of the drones are denoted by < a1, a2, a3 > and < b1, b2, b3 >, the
distance between them is given by

D(a1, a2, a3, b1, b2, b3) = |< a1, a2, a3 > − < b1, b2, b3 >| = |< a1 − b1, a2 − b2, a3 − b3 >|
=
√

(a1 − b2)2 + (a2 − b2)2 + (a3 − b3)2.

If we denote the measured values with bars, c, and the actual values with tildes, c̃, we have

a1 = 200, ã2 ∈ [195, 205], a2 = 400, ã2 ∈ [395, 405], a3 = 35, ã3 ∈ [34, 36].

b1 = −80, b̃2 ∈ [−85,−75], b2 = 130, b̃2 ∈ [125, 135], b3 = 50, b̃3 ∈ [49, 51].

The Schrankensatz implies that

∣∣∣D(a,b)−D(ã, b̃)
∣∣∣ ≤ 3∑

i=1

Mai |ai − ãi|+
3∑
i=1

Mbi

∣∣∣bi − b̃i∣∣∣ ,
Where the Mai and Mbi-parameters are upper bounds for the partial derivatives over all possible
values. We calculate the partial derivatives:

∂D

∂ai
=

2(ai − bi)
2
√

(a1 − b2)2 + (a2 − b2)2 + (a3 − b3)2
∂D

∂ai
=

2(bi − ai)
2
√

(a1 − b2)2 + (a2 − b2)2 + (a3 − b3)2

Now we need to find bounds for the absolute values of these entities. We do this as follows:
for the numerators, we choose ai and bi as far away from each other as they can be, e.g. a1 =
205, b1 = −85. In the denominator, we instead need to choose them as close to each other as
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possible, e.g. a1 = 195 and b = −75 (in order to make the denominator as small as possible).
We get

Ma1 ,Mb1 ≤
|205− (−85)|√

(195− (−75))2 + (395− 135)2 + (36− 49)2
≈ 0.7732

Ma2 ,Mb2 ≤
|405− (125)|√

(195− (−75))2 + (395− 135)2 + (36− 49)2
≈ 0.7465

Ma3 ,Mb3 ≤
|34− 51|√

(195− (−75))2 + (395− 135)2 + (36− 49)2
≈ 0.0453

Using |a1 − ã1| , |a2 − ã2| ,
∣∣∣b1 − b̃1∣∣∣ , ∣∣∣b2 − b̃2∣∣∣ ≤ 5 and |a3 − ã3| ,

∣∣b3 − ã3∣∣ ≤ 1, we thus obtain

3∑
i=1

Mai |ai − ãi|+
3∑
i=1

Mbi

∣∣∣bi − b̃i∣∣∣ ≤ 15.29.

Since the measured value D(a,b) ≈ 382.13, we obtain

366.84 ≤ D(ã, b̃) ≤ 397.43.

Week 3

6. Optimization I

Consider the function

g : R2 → R, < x, y >7→ (x2 + y2)e−x
2−y2

(a) Determine and classify all stationary points of g.

(b) Does g have a global maximum? A global minimum?

Solution. (a) Let us simplify the calculation slightly by using the chain rule to our advantage. If
we define f(t) = te−t and h(x, y) = x2 + y2, we have g = f ◦ h, and consequently

g′(x, y) = f ′(h(x, y))h′(x, y) ⇒ ∇g(x, y) = ∇h(x, y)f ′(h(x, y))

We will need also the second derivative to classify the stationary points. We therefore apply the
chain rule and the product rule to get

g′′(x, y) = (∇h(x, y))′f ′(h(x, y)) +∇h(x, y)(f ′ ◦ h)′(x, y)

= h′′(x, y)f ′(h(x, y)) +∇h(x, y)f ′′(h(x, y))h′(x, y).
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In order to apply these formulas, we need the first and second derivatives of f and h. We have

f ′(t) = e−t − te−t, f ′′(t) = −2e−t + te−t

h′(x, y) =
[
2x 2y

]
,∇h(x, y) =

[
2x
2y

]
, h′′(x, y) =

[
2 0
0 2

]

Now let us find the critical points, i.e. the points for which ∇g = 0. According to the above
formula, we have ∇g(x, y) = f ′(h(x, y))∇h(x, y). Thus, in order for g to vanish, we need either
f ′(h(x, y)) = 0 or ∇h(x, y) = 0. The latter only happens in 〈x, y〉 = 〈0, 0〉. The former occurs
when

0 = f ′(h(x, y)) = e−h(x,y) − h(x, y)e−h(x,y) = e−(x
2+y2)(1− x2 − y2),

i.e., in points where x2 +y2 = 1, the unit circle. The critical points of the function are thus given
by the origin and all points on the unit circle.

In order to classify the points, we know evaluate the second derivative in the points. Let us
start with the origin. We have f ′(h(0, 0)) = f ′(0) = e−0 − 0 · e−0 = 1 and ∇h(0, 0) = 〈0, 0〉 so
that

g′′(0, 0) = h′′(0, 0)f ′(h(0, 0)) +∇h(0, 0)f ′′(h(0, 0))h′(x, y) =

[
2 0
0 2

]
This matrix has a positive determinant, and the pure second derivative with respect to x is 2 > 0.
The matrix is thus positive definite, which implies that the point is a local minimum.

We move on to the point on the unit circle. We have h(x, y) = x2 + y2 = 1 for such points,
so that f ′(h(x, y)) = f ′(1) = e−1 − e−1 = 0, and f ′′(h(x, y)) = f ′′(1) = −2e−1 + 1 · e−1 = −e−1.
Consequently

g′′(x, y) = h′′(x, y)f ′(1) +∇h(x, y)f ′′(1)h′(x, y) =

[
2 0
0 2

]
· 0− 2e−1

[
x
y

] [
x y

]
= −2e−1

[
x
y

] [
x y

]
= −2e−1

[
x2 xy
xy y2

]
This matrix has a zero determinant – this can either be seen through calculation, or the fact
that it has a one-dimensional range (so that it is not injective). Thus, our endevours have been
useless – we instead need to do something else.
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However, the fact that g = f ◦ h actually makes us realise that the points in the unit circle are
local maxima. Looking at the graph of the function f , we see that it has a (global) maximum in
t = 1. Therefore, for any < x̃, ỹ > (close to 〈x, y〉), we have

f(h(x̃, ỹ)) = f(x̃2 + ỹ2) ≤ f(1) = f(x, y),

which is the definition of a maximum.

(b) f has a global maximum in t = 1 – looking at f ′, it is easily seen that f is decreasing
on [1,∞[ and increasing on [0, 1]. Consequently, g(h(x, y)) ≤ f(1), and f(1) is attained on
the unit circle. Thus, g has the global maximum value e−1, attained in all points on the unit
circle. Furthermore, the local minimum on the origin is in fact a global minimum: g is clearly
nonnegative, so that

g(x, y) ≥ 0 = g(0, 0)

for all 〈x, y〉 ∈ R2.

7. Optimization II

Assume that we are given a fixed amount of batter to make an ice-cream cone. How should we
design the cone to fit as much icecream as possible in the cone?

Solution. The fixed amount of batter means that the surface area of the cone is constrained to
be equal to a constant value, say C, which is positive. Our task is to optimize the volume under
this constraint.

There are several ways to choose parameters which determines the cone. One way that is
especially appealing to this task is to use the length of the length of the generatrix r (the red
line in the figure below). If we ’roll out’ the surface of the cone, we then obtain a circle sector
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(since the all the points on the circle encompassing the base of the cone have the same distance
to the apex). The cone is then determined by the size of the angle of that circle. We will use
the fraction of the angle to 2π, α ∈ [0, 1], as the second parameter describing the cone.

In these parameters, the surface area is given by πr2α ( we have a fraction α of a whole disc
of radius r). The volume of the cone is given by π

3
hρ2, where ρ is the radius of the base of the

cone. We need to express ρ and h in r and α. Since the circumference of the base is both given
by 2πρ and α · 2πr (it’s a fraction alpha of the circumference of a circle of radius r, we have
ρ = αr. The pythagorean theorem furthermore implies that

h2 + ρ2 = r2 ⇒ h =
√
r2 − ρ2 = r

√
1− α2.

Thus, the optimization problem we in the end need to solve is

max
π

3
r
√

1− α2α2r2 subject to πr2α = C

To simplify the calculations, let’s remove the constants π and π/3 - the former can be accom-
plished by redefining C, and the latter by simply noting that the above expression is maximize
exactly when r

√
1− α2α2r2 - it’s just a multiplicative constant. Thus, we concentrate on

maxα2
√

1− α2r3 subject to r2α− C = 0, 0α ≤ 1, r ≥ 0

We use the conventional notation f(r, α) = α2
√

1− α2r3 and g(r, α) = r2α− C.

Let us first convince that this problem has a solution. Let us first note that the constraint
defines a curve in the plain, which clearly is a closed set. It is however not a bounded set - r
can tend to ∞ as long as α tends to 0 at the same time. We hence cannot use the standard
compactness argument. To fix this, let’s control what happens when r → ∞. Since α = C/r2

due to the constraint, we thus need to check what happens to

C2
√

1− C2

r4
r3

r4
=

√
1− C2

r4

r
.
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That function however clearly tends to 0 as r →∞. Thus, if R ≥ R0, f is smaller than the value
in, say, (1, 1/C2), and thus smaller than the largest value on the compact set r2α − C = 0, 0 ≤
α ≤ 1, R0 ≥ r ≥ 0, which exists – f is continuous.

Now that we know that the function has a largest value, we may use the method of Lagrange
multipliers to find it. Here we formally need to take extra care of the point boundary case α = 1,
but the formula for f shows that the maximum clearly does not occur there – f(r, 1) = 0. We
may thus concentrate on the Lagrange criterion ∇f = λ∇g, which reads

3r2α2
√

1− α2 = 2λαr(
2α
√

1− α2 − α3

√
1− α2

)
r3 = λr2

The constraint r2α = C > 0prohibits α and r from being zero - which also shows that the
gradient of the g function does not vanish on the set of feasible points. We may thus simply
divide by them in both equations to obtain

2λ = 2

(
2α
√

1− α2 − α3

√
1− α2

)
r = 3rα

√
1− α2

⇐⇒ 2

(
2− α2

1− α2

)
= 3

⇐⇒ 4(1− α2)− 2α2 = 3(1− α2)

α2 =
1

3
.

Since the function gets smaller as we send α to either 0 or 1, we conclude that this point must
be a maximum. The optimal design is thus given by α = 1√

3
.

8. Optimization III

Let g : R3 → R be a differentiable function.

(a) Show that g has a maximum on the unit sphere.

(b) Show that there must exist a point p on the sphere in which ∇g(p) is parallel to p.

Solution. (a) The unit sphere is a closed set - its boundary is equal to itself. It is clearly also
bounded. Thus, the unit sphere is compact. Since furthermore g is differentiable, it is also con-
tinuous. The existence of a maximum thus follows from the theorem of maximum and minimum
values on compact sets.

(b) The maximum on the unit sphere is a solution of the constrained optimization problem

max g(x, y, z) subject to x2 + y2 + z2− =: h(x, y, z) = 0.
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The gradient of the function h is ∇h(x, y, z) = 2 < x, y, z >, i.e. ∇h(p) = 2p. It thus never
vanishes on the unit sphere, and we may apply the Lagrange theorem, which states that in the
point p0 where the maximum occurs, we must have

∇g(p0) = λ∇h(p0) = 2λp0,

which is exactly is what to be shown - the gradient of g at p0 is parallell to p0.

9. Optimization IV

Let f : R2 → R be a function. Suppose that both functions

g(t) = f(t, 0) and h(t) = f(0, t)

have maximums in t = 0. Does f need to have a maximum in (0, 0)? Prove it or give a
counterexample.

Solution. The claim is false. To see this, consider the example f(x, y) = xy. This function does
not have a maximum in 〈0, 0〉 – it is easily shown via the second derivative test that the origin is
a saddle point. The two functions g and h are however the zero functions, which has a maximum
in t = 0.

It is in fact also possible to construct an example where g and h have strict local maxima
in 0, for instance f(x, y) = −x2 +−y2 + 4xy. The origin is again a critical point, but since the
Hessian of f [

−2 4
4 −2

]
has a negative determinant, it is again a saddle and not a maximum. The two functions g(t) =
h(t) = −t2 however have strict minima in t = 0.
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Week 4

10. Integrals and probability

We choose a point p =< x, y, z > uniformly at random in the unit cube [0, 1]3. What is the
probability that z is larger than x2 + y2?

Solution. Since the point is chosen uniformly at random, the vector has a probability density
ρ(x, y, z) = 1. If we define the set E = {〈x, y, z〉 | z ≥ x2 + y2}, we therefore have

P
(
z ≥ x2 + y2

)
= P (〈x, y, z〉 ∈ E) =

∫∫∫
E

1 dxdydz.

We now apply the theorem of Fubini - in the set E, the x values range from 0 to 1. For each x,
y ranges from 0 to 1, and for each pair 〈x, y〉, z ranges from x2 + y2 to 1. Therefore∫∫∫

E

1 dxdydz =

∫ 1

0

∫ 1

0

∫ 1

x2+y2
dzdydx

=

∫ 1

0

∫ 1

0

(1− x2 − y2)dydx =

∫ 1

0

[
(1− x2)y − y3

3

]y=1

y=0

dx

=

∫ 1

0

1− x2 − 1

3
dx =

[
2

3
x− x3

3

]x=1

x=0

=
1

3
.

11. Integrals

The unit circle is filled with a material whose density is varying according to

ρ(x, y) =
1

1 + 0.8 · (x2 + y2)− 0.1 · cos(x)y + 0.1 · y cos(y)

Show that the circle weighs more than

2π

0.8
· ln(2) mass units..

Solution. This problem was not properly designed The idea was to argue that since
y cos(x) and y sin(y) both are smaller than 1 in modulus on the unit disc, we have

ρ(x, y) =
1

1 + 0.8 · (x2 + y2)− 0.1 · cos(x)y + 0.1 · y cos(y)
≥ 1

1 + 0.8 · (x2 + y2)− 0.1− 0.1

=
1

0.8(1− x2 − y2)
.
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Consequently, if we denote the unit disc as C,∫∫
C

ρ(x, y) dxdy ≥
∫∫

C

1

0.8(1− x2 − y2)
dxdy

In order to solve the final integral, we change to polar coordinates∫∫
C

1

0.8(1− x2 − y2)
dxdy =

∫ 1

0

∫ 2π

0

r

0.8(1− r2)
dθdr =

2π

0.8

∫ 1

0

r

1− r2
dr =

2π

0.8

[
−1

2
ln(1− r2)

]
r=0

The final limit does not exist, so the integral does not exist. Hence, this task was flawed.

12. Variable substitution I

Determine the area of the domain in the plane which is bounded by the curves y = 2/x, y = 1/x,
y2 = x2 + 1 and y2 = x2 + 2. Tip: Use variable substitution!

Solution. Let φ be the map

φ : R2 → R2 〈x, y〉 7→
〈
xy, y2 − x2

〉
If we denote the domain whose area we are supposed to determine with D, and φ(x, y) =< s, t >,
we see that

〈x, y〉 ∈ D ⇔ φ(x, y) =< xy, y2 − x2 >∈ [1, 2]× [1, 2]

In other words, φ(D) = [1, 2]× [1, 2]. Thus, for any function f∫∫
φ(D)

f(s, t) dsdt =

∫∫
D

f(φ(x, y)) det(φ′(x, y)) dxdy

Let us calculate the functional determinant of φ:

det(φ′(x, y)) =

(
y x
−x y

)
= y2 + x2

Thus ∫∫
φ(D)

f(s, t) dsdt =

∫∫
D

f(φ(x, y))(x2 + y2) dxdy

Now, what we actually want to calculate is the integral of 1 over D. We thus need to find a
function f so that

f(s, t) = f(φ(x, y)) =
1

x2 + y2

14



What we need to do is to express x2 + y2 in terms of s and t. We have

t2 = (y2 − x2)2 = y4 − 2x2y2 + x4 = (y2 + x2)2 − 4(xy)2 = (y2 + x2)2 − 4s2,

so that

(x2 + y2) =
√

4s2 + t2.

Thus, if we choose f(s, t) = (4s2 + t2)−.5, we have f(s, t) = f(xy, y2 − x2) = 1
x2+y2

. Thus∫∫
D

1

x2 + y2
(x2 + y2) dxdy =

∫∫
φ(D)

1√
4s2 + t2

dsdt

=

∫ 2

1

∫ 2

1

1√
4s2 + t2

dsdt =

∫ 2

1

∫ 4

2

1

2
√
s̃2 + t2

ds̃dt

In the final step, we made the substiution s̃ = 2s.

The integrand makes it natural to go over to polar coordinates to solve the final integral. We
then need to determine limits for the angles and the radius. The figure below shows that the
θ-values in the square [2, 4]× [1, 2] range from α = arctan

(
1
4

)
and γ = arctan(1) = π

4
. For each

value of θ, r goes between two values. The way to determine these limits are different for θ < β
and θ ≥ β, where β = arctan

(
2
4

)
. For θ < β, the two limiting criteria are y = r sin(θ) = 1 and

x = r cos(θ) = 4. For θ ≥ β, they are instead x = r cos(θ) = 2 and y = r sin(θ) = 2. Thus, the
correct description of the rectangle in polar coordinates are

α ≤ θ ≤ β,
1

sin(θ)
≤ r ≤ 4

cos(θ)
or β ≤ θ ≤ α,

2

cos(θ)
≤ r ≤ 2

sin(θ)

15



Thus,∫ 2

1

∫ 4

2

1

2
√
s̃2 + t2

ds̃dt =

∫ β

α

∫ 4
cos(θ)

1
sin(θ)

r

2r
drdθ +

∫ γ

β

∫ 2
sin(θ)

2
cos(θ)

r

2r
drdθ

=
1

2

∫ β

α

(
4

cos(θ)
− 1

sin(θ)

)
dθ +

1

2

∫ γ

β

(
2

sin(θ)
− 2

cos(θ)

)
dθ

Notice that the Jacobian worked to our advantage, making the r-integration very simple. Now,
we ’only’ need to work out the θ-integrals. This is done by cleverly substituting: for instance∫

1

cos(θ)
dθ =

∫
cos(θ)

cos2(θ)
dθ =

∫
cos(θ)

1− sin2(θ)
dθ = [v = sin(θ)] =

∫
1

1− v2
dv

1

2

∫ ∫
1

1− v
+

1

1 + v
dv =

1

2
(ln(1 + v)− ln(1 + v)) + C =

1

2
ln

(
1 + sin(θ)

1− sin(θ)

)
+ C.

Working out also the sin-terms, and inserting the β and γ-values, we obtain that the area is
given by

ln

(
1 + sin(β)

1− sin(β)

)
− ln

(
1 + sin(α)

1− sin(α)

)
+

1

4

((
1 + cos(β)

1− cos(β)

)
− ln

(
1 + cos(α)

1− cos(α)

))
+

1

2

((
1− cos(γ)

1 + cos(γ)

)
− ln

(
1− cos(β)

1 + cos(β)

))
+

1

2

(
ln

(
1− sin(γ)

1 + cos(γ)

)
− ln

(
1− sin(β)

1 + cos(β)

))

Week 5

13. Variable substitution II

A positive function which is continuous everywhere on the unit ball except the origin is called
integrable if the limit

lim
ε→0+

∫∫∫
Cε

f dV <∞.

Here, Cε = {p | ε ≤ |p| ≤ 1}.
For which α is the function

f(x, y, z) =
1

(x2 + y2 + z2)α

integrable over the unit ball?

16



Solution. We use spherical coordinates to rewrite∫∫∫
Cε

f dV =

∫ 1

ε

∫ π

0

∫ 2π

0

ρ2 sin(ϕ)

(ρ2)α
dθdϕdρ = 4π

∫ 1

ε

ρ2−2αdρ.

Now let us consider two cases. If 2− 2α 6= −1, we have∫ 1

ε

ρ2−2α dr =

[
ρ3−2α

3− 2α

]1
ε

=
1

3− 2α
− lim

ε→0+

ε3−2α

3− 2α
.

The above limit exists if and only if 3− 2α > 0 – since only then ε3−2α → 0. Otherwise, it tends
to∞ (remember that the boundary case 3−2α = 0 is not considered here, since the calculations
above is not correct when 2− 2α = −1).

In the case that 2− 2α = −1, the integral turns into∫ 1

ε

ρ−1 dρ = [ln(ρ)]1ε = − ln(ε),

which tends to ∞ as ε→ 0+. Thus, also in this case, the limit does not exist.

We conclude that the function is integrable if and only if 3− 2α > 0.

14. Variable substitution III

Determine the integral of

f(x, y, z) = cos(x+ y + z)

over the unit ball {p | |p| ≤ 1}. Tip: Rotate the problem!

Solution. Let us introduce a new coordinate system in which the vector 〈1, 1, 1〉 points in the
same direction as the new z-axis, but has the same unit length as the original system. The vector
〈1, 1, 1〉 will then have the representation

√
3ez̃ in the new coordinate system – it points in the

z̃-direction, and has the length
√

12 + 12 + 12. We therefore have

f(x, y, z) = cos(〈1, 1, 1〉 · 〈x, y, z〉) = cos(
√

3ez̃ · 〈x̃, ỹ, z̃〉) = cos(
√

3z̃).

Introducing a new euclidean coordinate system with the same unit lengths as the original one
will not change the volume element. A formal argument is given by the fact that the rotation
transformation has the form φ(p) = Qp for an orthogonal Q. The functional determinant of
that transformation is |det(Q)| = 1, since that is a feature of orthogonal matrices.

Rotating also does not change the shape of the unit ball B. Hence, the integral we want to
determine is equal to ∫∫∫

B

cos(
√

3z) dV.

17



To solve this integral, we go over to spherical coordinates∫ 1

0

∫ π

0

∫ 2π

0

cos(
√

3 cos(ϕ))ρ2 sin(ϕ) dθdϕdρ = 2π

∫ 1

0

∫ π

0

cos(
√

3 cos(ϕ))ρ2 sin(ϕ) dϕdρ

= 2π

∫ 1

0

[
− sin(

√
3 cos(ϕ))√
3

ρ2

]ϕ=π
ϕ=0

dρ = 2π

∫ 1

0

2 sin(
√

3)√
3

ρ2 dρ =
4π sin(

√
3)

3
√

3
.

15. Curve integrals

Below, a quiver plot of a vector field is shown. The two points < 1, 0 > and < 0, 1 > are marked.
The vector field is zero on the line x+ y = 1, and defined everywhere in R2.

(a) Describe a curve γ2 between < 1, 0 > and < 0, 1 > for which∫
γ1

v · dr = 0.

(b) Sketch a curve γ2 between < 1, 0 > and < 0, 1 > for which∫
γ2

v · dr > 0.

(c) Can the vector field satisfy the differential equation

∂v2
∂x

=
∂v1
∂y

?

18



Solution. (a) We simply move along the straight line segment between < 1, 0 > and < 0, 1 >.
Since the vector field is zero along this line, v(γ(t)) · γ′(t) will then always be zero, so that the
line integral vanishes.

(b) See sketch. We move along a trajectory on which the derivative of γ points roughly in the
same direction as v at all times. This will cause v(γ(t)) · γ′(t) to be positive, which will make
the line integral along the curve positive.

(c) No. Since the vectorfield is defined everywhere, if the differential equation would be
satisfied, the field would be conservative (since the integrability criterion is sufficient on simply
connected domains). Line integrals of conservative vector field are however path independent,
which from (a) and (b) is clearly not the case.

Week 6 - 8

16. Flow integrals I

Let v : R3 → R3 a differentiable vector field. Assume that

v(p) · p < 0

for all p ∈ R3. Can it be that div(v) = 0 in all of R3? Give an example of such a vector field,
or prove that it cannot exist. Tip: Investigate the flow integral of v over the unit sphere.

Solution. The outward unit normal field of the unit sphere S2 has the form ν(p) = p. This
means that ∫

S2
v · dS =

∫
S2

v(p) · p dS < 0,

19



by the assumption of the problem. Now, if the divergence of the vector field is zero everywhere,
Gauß’s theorem would imply ∫

S2
v · dS =

∫
B

divv dV = 0,

where B is the unit ball. This is a contradiction. Hence, the divergence cannot vanish everywhere.

17. Flow integrals II

Let v : R3 → R3 and w : R3 → R3 be the vector fields

v(x, y, z) = (x2 + y2)

0
0
1

 , w(x, y, z) =

−yx2xy2

0

 .

1. Show that v = curlw.

2. Let K be the part of the graph of the function

g(x, y) = (1− x2 − y2)ex+y(1 + x2)(1 + 4y2)

which lies above the xy-plane (it is the surface shown in the figure). Calculate∫
K

v · dS
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Solution. (a) This can be solved through a straightforward calculation. A slight less calculation
heavy route is to use the formula ∇× (fv) = ∇f × v + f∇× v. We write

w = xy

−xy
0


The rotation of the vector field < −x, y, 0 > is clearly zero (the x-component of the vector field
does not depend on y or z, so both partial derivatives of it that are present in the curl formula
vanish). Furthermore, ∇(xy) =< y, x, 0 >. Thus

∇w =

yx
0

×
−xy

0

 = (x2 + y2)

[
0 0
1

]

The last step is most easily seen via a straight calculation, which we in the interest of brevity
not report here.

(b) We use the Stokes theorem∫∫
K

v · dS =

∫∫
K

curlw · dS =

∫
∂K

w · ds.

Here, ∂K is the boundary curve of the surface, i.e. the unit circle in the xy-plane, which is
parametrized by γ(θ) =< cos(θ), sin(θ), 0 >, θ = 0 ≤ 2π. Since the orientation of K is not given
by the task, we choose it so that it goes along with the application of the Stokes theorem. We
now calculate∫

∂K

w · ds =

∫ 2π

0

− sin(θ) cos2(θ)
cos(θ) sin2(θ)

0

 ·
− sin(θ)

cos(θ)
0

 dθ =

∫ 2π

0

2 sin2(θ) cos2(θ)dθ

=
1

2

∫ 2π

0

sin2(2θ)dθ =
1

4

∫ 2π

0

1− cos(4θ) dθ =
1

8
.
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