Lecture 3: Bayes theorem and discrete distributions

MVE055 / MSG810 Mathematical statistics and discrete mathematics)

Moritz Schauer

Last updated September 7, 2020, 2020

GU & Chalmers University of Technology

3 group assignment

- Skip list. Deadline Oct 7. On Canvas.
- Statistical research problem. Deadline Oct 16.
- Win Stone-Paper-Scissors with Markov chains. Deadline Oct.
 Suggested programming languange: Julia

Conditional distribution

If we know some event B occurs, the probability of A given the new information B can be calculated as follows:

Conditional probability

Assume that P(B) > 0. The conditional probability of A given B is defined as

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}.$$
 (0.1)

Multiplication rule for probabilities

For events A and B it holds

$$P(A \cap B) = P(B \mid A)P(A) = P(A \mid B)P(B).$$

The multiplication rule is useful to calculate probabilities of multiple events affecting each other.

Bayes formula

Bayes formula

For events A and B

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

Often it is useful to rewrite the denominator P(B)

$$\mathsf{P}(B) = \mathsf{P}(B \mid A)\mathsf{P}(A) + \mathsf{P}(B \mid A^c)\mathsf{P}(A^c)$$

3

Independent events

Two events A and B are independent if knowing whether B occured does not change the probability of A

$$\mathsf{P}(A\mid B)=\mathsf{P}(A).$$

Independent events

Two events A and B are independent if $P(A \cap B) = P(A)P(B)$.

4

Example with the bugs

Drawing a random bug out of the aquarium, with (g)reen and (r)ed bugs on (l)and and (w)ater.

Frequency table and probability table

Random variables

Random variables

A random variable is a numeric quantity whose value depends on the outcome of a random event.

A random variable X is a real valued function that takes elements from Ω as argument.

We denote random variables with capital letters, often $X,\,Y$ or Z.

Discrete random variables

Discrete random variables

A discrete random variables only takes a finite or countable number of values.

Integer valued random variables are automatically discrete. For now we only consider integer valued random variables.

Probability mass function

Probability mass function

For a integer valued random variable X we define the probability mass function f(k) (or $f_X(k)$) by f(k) = P(X = k).

Probability mass function

Flip two coins... count the number of heads. Call it X.

$$f(0)=\frac{1}{4}, f(1)=\frac{1}{2}$$
 and $f(2)=\frac{1}{4}$

Probability mass function

Not all functions are probability mass functions. Because they describe probability distributions, some conditions must hold.

f(k) is a probability mass function if and only if

- $f(k) \ge 0$ for all k.
- $\sum_{k=-\infty}^{\infty} f(k) = 1$.

Distribution function

Assume \boldsymbol{X} is a discrete random variable. Its distribution function is given by

$$F(x) = \mathsf{P}(X \le x) = \sum_{k \le x} f_X(k),$$

Flip two coins... count the number of heads. Call it X.

$$f(0) = \frac{1}{4}, f(1) = \frac{1}{2} \text{ and } f(2) = \frac{1}{4}$$

$$F(0) = \frac{1}{4}, \quad F(1) = \frac{1}{4} + \frac{1}{2}, \quad F(1) = 1$$

Flip two coins... count the number of heads. $f(0)=\frac{1}{4}, f(1)=\frac{1}{2}$ and $f(2)=\frac{1}{4}$

What is P(X > 0)?

$$P(X > 0) = f(1) + f(2) = \frac{3}{4}$$

Rule

$$P(m \le X \le n) = \sum_{k=m}^{n} f(k)$$

for any integers m and n.

What is the probability to throw k times heads in a row with a fair coin?

$$f(0) = \frac{1}{2}, \quad f(1) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}, \quad f(2) = \frac{1}{8}, \quad f(k) = \left(\frac{1}{2}\right)^{k+1}$$

$$P(X > 0) = f(1) + f(2) + f(3) + \dots = 1 - P(X = 0) = 1 - f(0)$$

For F(x) it holds

- \bullet F(x) is increasing
- $F(x) \to 1$ for $x \to \infty$.
- $F(x) \to 0$ for $x \to -\infty$.

Also

- $P(a < X \le b) = F(b) F(a)$.
- P(X > a) = 1 F(a).
- For discrete f(m) = F(m) F(m-1).

Expected value

We are often interested in the "average" outcome of a random variable.

Expected value

The expected value of a random variable is defined as

$$\mathsf{E}(X) = \begin{cases} \sum\limits_{k=-\infty}^{\infty} kf(k) & \text{if } X \text{ is discrete,} \\ \sum\limits_{n=-\infty}^{\infty} xf(x)\mathrm{d}x & \text{if } X \text{ is continuous.} \end{cases}$$

Recall: the average using fractions

Data set: grades of 24 students

Table: grade $\begin{vmatrix} x_1=7 & x_2=6 & x_3=5 \\ \text{fraction of students} & p_1=4/24 & p_2=10/24 & p_3=10/24 \\ \textit{Average} \text{ One can write the average in different forms} \end{vmatrix}$

Average =
$$\frac{5 + 5 + 6 + \dots + 5 + 7 + 6 + 7}{24}$$

$$= \frac{7 \cdot 4 + 6 \cdot 10 + 5 \cdot 10}{24} = 7 \cdot \frac{4}{24} + 6 \cdot \frac{10}{24} + 5 \cdot \frac{10}{24} = \sum_{i=1}^{3} x_i \cdot p_i$$

Expected value

The expected value of a discrete random variable X can also be written as

$$\mu = E(X) = \sum_{i=1}^{k} x_i \cdot \underbrace{P(X = x_i)}_{f(x_i)}$$
$$= x_1 \cdot P(X = x_1) + x_2 P(X = x_2) + \dots + x_k \cdot P(X = x_k)$$

Here x_i are the possible outcomes and $P(X=x_i)$ are the probabilities of each outcome.

Expected value

Flip two coins... count the number of heads.

$$f(0) = \frac{1}{4}, f(1) = \frac{1}{2} \text{ and } f(2) = \frac{1}{4}$$

$$E[X] = 0 \cdot \frac{1}{4} + 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} = 1$$

Rules for computing expected values

For the expected value,

- E(a) = a.
- $\mathsf{E}(aX) = a\mathsf{E}(X)$.
- $\mathsf{E}(aX+b) = a\mathsf{E}(X) + b.$
- E(X + Y) = E(X) + E(Y).

Here X and Y are two random variables and a and b are constants.

Transformations

If we transform the random variables by a function h we have:

Theorem

$$\mathsf{E}(h(X)) = \sum_{k=-\infty}^{\infty} h(k)f(k)$$

Common distributions

Bernoulli distribution

The Bernoulli distribution describes a random experiment that can either succeed (with probability p) or fail (with probability 1-p.) Suppose we make a random experiment which succeeds with probability p and set

$$X = \begin{cases} 1, & \text{if the experiment succeeds} \\ 0, & \text{in case of failure.} \end{cases}$$

We have f(1)=p and f(0)=1-p. Sometimes useful to write as $f(k)=p^k(1-p)^{1-k}$ for $k\in\{0,1\}$.

Bernoulli distribution

A random variable X is Bernoulli distributed if it has probability mass function $f(k)=p^k(1-p)^{1-k}$, where k=0,1. We write $X\sim \mathrm{Ber}(p)$.

The binomial distribution

The binomial distribution describes the probability of having exactly k successes in n independent Bernoulli trials with probability of success p.

If X is Binomial with parameters n and p we write:

$$X \sim \text{Bin}(n, p)$$

The binomial distribution

The binomial distribution

The binomial distribution describes the probability of having exactly k successes in n independent Bernoulli trials with probability of success p.

If X is Binomial with parameters n and p we write:

$$X \sim \text{Bin}(n, p)$$

Binomial distribution

A random variable \boldsymbol{X} is Binomial distributed with parameters $\boldsymbol{n}, \boldsymbol{p}$ if

$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \qquad \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Sum of binomial distributed random variables

Sum of binomial distributed random variables.

If $X_1 \sim \text{Bin}(n,p)$ and $X_2 \sim \text{Bin}(m,p)$ are independent, then $X_1 + X_2 \sim \text{Bin}(m+n,p)$.

Geometric distribution

The experiment consists of a series of independent Bernoulli trials with probability of success equal to p.

The random variable X denotes the number of trials needed to get the first success.

p is called the parameter of X.

The geometric distribution

The geometric distribution describes the probability distribution of the number of failures k before the first success, for a single event succeeding with probability p.

The geometric distribution

Geometric distribution

A random variable \boldsymbol{X} is geometrically distributed with parameters \boldsymbol{p} if

$$P(X = k) = (1 - p)^{k-1}p, \quad k = 1, 2, ...$$

We write $X \sim \text{Geom}(p)$.