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3 group assignment

• Skip list. Deadline Oct 7. On Canvas.
• Statistical research problem. Deadline Oct 16.
• Win Stone-Paper-Scissors with Markov chains. Deadline Oct.

25. Suggested programming languange: Julia
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Conditional distribution

If we know some event B occurs, the probability of A given the
new information B can be calculated as follows:
Conditional probability

Assume that P(B) > 0. The conditional probability of A given B
is defined as

P(A | B) =
P(A ∩B)

P(B)
. (0.1)

Multiplication rule for probabilities
For events A and B it holds

P(A ∩B) = P(B | A)P(A) = P(A | B)P(B).

The multiplication rule is useful to calculate probabilities of
multiple events affecting each other.
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Bayes formula

Bayes formula
For events A and B

P(A | B) =
P(B | A)P(A)

P(B)

Often it is useful to rewrite the denominator P(B)

P(B) = P(B | A)P(A) + P(B | Ac)P(Ac)
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Independent events

Two events A and B are independent if knowing whether B
occured does not change the probability of A

P(A | B) = P(A).

Independent events

Two events A and B are independent if P(A ∩B) = P(A)P(B).
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Example with the bugs

Drawing a random bug out of the aquarium, with (g)reen and (r)ed
bugs on (l)and and (w)ater.

R G

L 1/6 1/4 5/12
W 1/6 5/12 7/12

1/3 2/3 1
Frequency table and probability table
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Random variables

Random variables
A random variable is a numeric quantity whose value depends on
the outcome of a random event.

A random variable X is a real valued function that takes elements
from Ω as argument.

We denote random variables with capital letters, often X, Y or
Z.
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Discrete random variables

Discrete random variables
A discrete random variables only takes a finite or countable
number of values.

Integer valued random variables are automatically discrete. For now
we only consider integer valued random variables.
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Probability mass function

Probability mass function
For a integer valued random variable X we define the probability
mass function f(k) (or fX(k)) by f(k) = P(X = k).
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Probability mass function

Flip two coins... count the number of heads. Call it X.

f(0) = 1
4 , f(1) = 1

2 and f(2) = 1
4
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Probability mass function

Not all functions are probability mass functions. Because they
describe probability distributions, some conditions must hold.

f(k) is a probability mass function if and only if

• f(k) ≥ 0 for all k.

•
∑∞

k=−∞ f(k) = 1.
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Distribution function

Distribution function
Assume X is a discrete random variable. Its distribution function
is given by

F (x) = P(X ≤ x) =
∑
k≤x

fX(k),

Flip two coins... count the number of heads.Call it X.
f(0) = 1

4 , f(1) = 1
2 and f(2) = 1

4

F (0) =
1

4
, F (1) =

1

4
+

1

2
, F (1) = 1
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Flip two coins... count the number of heads. f(0) = 1
4 , f(1) = 1

2
and f(2) = 1

4

What is P (X > 0)?

P (X > 0) = f(1) + f(2) =
3

4

Rule

P(m ≤ X ≤ n) =

n∑
k=m

f(k)

for any integers m and n.
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Distribution function

What is the probability to throw k times heads in a row with a fair
coin?

f(0) =
1

2
, f(1) =

1

2
· 1

2
=

1

4
, f(2) =

1

8
, f(k) =

(
1

2

)k+1

P (X > 0) = f(1) + f(2) + f(3) + ... = 1− P (X = 0) = 1− f(0)
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Distribution function

For F (x) it holds

• F (x) is increasing

• F (x)→ 1 for x→∞.

• F (x)→ 0 for x→ −∞.
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Distribution function

Also

• P(a < X ≤ b) = F (b)− F (a).

• P(X > a) = 1− F (a).

• For discrete f(m) = F (m)− F (m− 1).
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Expected value

We are often interested in the “average” outcome of a random
variable.

Expected value
The expected value of a random variable is defined as

E(X) =


∞∑

k=−∞
kf(k) if X is discrete,

∞∫
−∞

xf(x)dx if X is continuous.
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Recall: the average using fractions

Data set: grades of 24 students

5, 5, 6, 5, 6, 6, 6, 5, 5, 7, 6, 7, 5, 5, 5, 6, 6, 6, 5, 6, 5, 7, 6, 7

Table:
grade x1 = 7 x2 = 6 x3 = 5
fraction of students p1 = 4/24 p2 = 10/24 p3 = 10/24

Average One can write the average in different forms

Average =
5 + 5 + 6 + · · ·+ 5 + 7 + 6 + 7

24

=
7 · 4 + 6 · 10 + 5 · 10

24
= 7 · 4

24
+ 6 · 10

24
+ 5 · 10

24
=

3∑
i=1

xi · pi
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Expected value

The expected value of a discrete random variable X can also be
written as

µ = E(X) =

k∑
i=1

xi · P(X = xi)︸ ︷︷ ︸
f(xi)

= x1 · P(X = x1) + x2 P (X = x2) + · · ·+ xk · P(X = xk)

Here xi are the possible outcomes and P (X = xi) are the
probabilities of each outcome.
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Expected value

Flip two coins... count the number of heads.

f(0) = 1
4 , f(1) = 1

2 and f(2) = 1
4

E[X] = 0 · 14 + 1 · 12 + 2 · 14 = 1
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Rules for computing expected values

For the expected value,

• E(a) = a.

• E(aX) = aE(X).

• E(aX + b) = aE(X) + b.

• E(X + Y ) = E(X) + E(Y ).

Here X and Y are two random variables and a and b are
constants.
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Transformations

If we transform the random variables by a function h we
have:

Theorem

E(h(X)) =

∞∑
k=−∞

h(k)f(k)
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Common distributions



Bernoulli distribution

The Bernoulli distribution describes a random experiment that can
either succeed (with probability p) or fail (with probability 1− p.)
Suppose we make a random experiment which succeeds with
probability p and set

X =

{
1, if the experiment succeeds
0, in case of failure.

We have f(1) = p and f(0) = 1− p. Sometimes useful to write as
f(k) = pk(1− p)1−k for k ∈ {0, 1}.

Bernoulli distribution
A random variable X is Bernoulli distributed if it has probability
mass function f(k) = pk(1− p)1−k, where k = 0, 1. We write
X ∼ Ber(p).
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The binomial distribution

The binomial distribution describes the probability of having exactly
k successes in n independent Bernoulli trials with probability of
success p.

If X is Binomial with parameters n and p we write:

X ∼ Bin(n, p)
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The binomial distribution

n = 10
0 1 2 3 4 5 6 7 8 9 10
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n = 50
0 3 6 9 13 17 21 25 29 33 37 41 45 49

0.00

0.05

0.10

0.15

0 3 6 9 13 17 21 25 29 33 37 41 45 49
0.00

0.02

0.04

0.06

0.08

0.10

p = 0.1 p = 0.5

24



The binomial distribution

The binomial distribution describes the probability of having exactly
k successes in n independent Bernoulli trials with probability of
success p.

If X is Binomial with parameters n and p we write:

X ∼ Bin(n, p)

Binomial distribution
A random variable X is Binomial distributed with parameters n, p
if

P(X = k) =

(
n

k

)
pk(1− p)n−k

(
n

k

)
=

n!

k!(n− k)!
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Sum of binomial distributed random variables

Sum of binomial distributed random variables.

If X1 ∼ Bin(n, p) and X2 ∼ Bin(m, p) are independent, then
X1 +X2 ∼ Bin(m+ n, p).
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Geometric distribution

The experiment consists of a series of independent Bernoulli trials
with probability of success equal to p.

The random variable X denotes the number of trials needed to get
the first success.

p is called the parameter of X.
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The geometric distribution

The geometric distribution describes the probability distribution of
the number of failures k before the first success, for a single event
succeeding with probability p.

p = 0.5 p = 0.2
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0.15

0.20
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The geometric distribution

Geometric distribution
A random variable X is geometrically distributed with parameters
p if

P(X = k) = (1− p)k−1p, k = 1, 2, . . .

We write X ∼ Geom(p).
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