Lecture 5: More distributions

MVE055 / MSG810 Mathematical statistics and discrete mathematics)

Moritz Schauer Last updated September 9, 2020, 2020

GU & Chalmers University of Technology

We have seen

- Bernoulli Bernoulli(p): $X \in \{0, 1\}$
- Binomial Bin(n, p): $X \in \{0, 1\}$
- Geometric $\operatorname{Geom}(p)$: $X \in \{1, 2, 3, 4, \dots\}$
- $\bullet \ \operatorname{Normal} \operatorname{N}(\mu,\sigma^2) \colon X \in (-\infty,\infty)$

Discrete distributions today

- Poisson distribution $Poisson(\mu)$: model the number of events that occur in a time interval, in a region or in some volume.
- Negative binomial distribution nBin(r, p): The number of trials X in a sequence of independent Bernoulli(p) trials before r successes occur
- Hypergeometric distribution $\operatorname{Hyp}(N,n,r)$: Draw sample of n objects without replacement out of N. The random variable X is the number of marked objects.

Poisson distribution

The Poisson distribution is often used to model the number of events that occur in a time interval, in a region or in some volume.

(Named after Simeon Denis Poisson, 1781-1840.)

Some examples where this distribution fits well are

- The number of particles emitted per minute (hour, day) of a radioactive material.
- Call connections routed via a cell tower (GSM base station).

Poisson distribution

$$X \sim \text{Poisson}(\mu)$$

A random variable X has Poisson distribution with parameter μ if

$$P(X = k) = \frac{e^{-\mu} \mu^k}{k!}, \quad k \ge 0.$$

Sum of Poisson distributed random variables.

If $X_1 \sim \operatorname{Poisson}(\mu_1)$ and $X_2 \sim \operatorname{Poisson}(\mu_2)$ are independent, then $X_1 + X_2 \sim \operatorname{Poisson}(\mu_1 + \mu_2)$.

Poisson distribution

Number of chewing gums on a tile is approximately Poisson.

Example

Let X be the number of typos on a printed page with a mean of 3 typos per page. Assume the the typos occur independently of each other. 1. What is the probability that a randomly selected page has at least one typo on it?

$$P(X \ge 1) = 1 - P(X = 0) = 1 - f(0) = 1 - e^{-3}$$

2. What is the probability that three randomly selected pages have more than eight typos on it?

In this case $\lambda=9$ since we have in average 9 typos on three printed pages.

$$P(X > 8) = 1 - P(X \le 8) = 1 - 0.456$$
 by table II page 692

7

Poisson distribution as limit of a Binomial distribution

The Poisson distribution appears as limit of the Binomial distribution if n becomes large and p goes to 0:

Theorem

Let $n \to \infty$, $p \to 0$, and also $np \to \mu$. Then for fix $k \ge 0$

$$\binom{n}{k} p^k (1-p)^{n-k} \to \frac{\mu^k e^{-\mu}}{k!} \tag{0.1}$$

Connection to the previous example:

 There is a large number n of atoms in the material and the probability that an atom decays in a unit of time p is very small.

Negative binomial distribution

The number of trials X in a sequence of independent Bernoulli(p) trials before r successes occur has the negative binomial distribution.

Negative binomial distribution

$$X \sim \mathrm{nBin}(r, p)$$

The random variable X has a negative binomial distribution with parameter r and p if

$$P(X = k) = {k-1 \choose r-1} p^r (1-p)^{k-r}, \quad k = r, r+1...$$

Motivation: Probability of r successes in k trials: $(1-p)^{k-r}p^r$. The last attempt succeeds. The binomial coefficient gives the number of ways we assign the remaining r-1 successes to the remaining k-1 trials.

Hypergeometric distribution

- ullet Suppose we have N objects of which r are "marked".
- ullet Draw sample of n objects without replacement. The random variable X is the number of marked objects. Then X has hypergeometric distribution with parameters N,n,r.

Hypergeometric distribution

$$X \sim \text{Hyp}(N, n, r)$$

The random variable X has hypergeometric distribution with parameters $N,\ n$ and r if

$$P(X = k) = \frac{\binom{r}{k} \binom{N-r}{n-k}}{\binom{N}{n}} \quad \max(0, n+r-N) \le k \le \min(n, r)$$

If n=1 then $\operatorname{Hyp}(N,1,r)=\operatorname{Ber}(r/N)$. If N and r are large compared to n we have $\operatorname{Hyp}(N,n,r)\approx\operatorname{Bin}(n,r/N)$.

Continuous distributions today (all positive)

- Exponential distribution $\mathrm{Exp}(\lambda)$: Time between calls/visitors/people knocking on your door. (Poisson: How many ticks. Exponential: time between ticks.)
- Gamma distribution $\Gamma(\alpha, \beta)$: Flexible distribution for positive random variables.
- χ^2 -distribution $\chi^2(n)$: Distribution for sum of squares of n independent N(0,1) random variables.

Exponential distribution

$$X \sim \text{Exp}(\lambda)$$

The density function of an exponential distribution with rate λ or is given by

$$f(x) = \lambda e^{-\lambda x}, \quad x \ge 0$$

or equivalently $f(x) = \frac{1}{\beta} e^{-x/\beta}$ where $\beta = \frac{1}{\lambda}$ is the scale.

$$\mathsf{E}[X] = \beta \text{ and } \mathrm{Var}(X) = \beta^2$$

The cumulative distribution function is given by

$$F(x) = 1 - e^{-\lambda x}.$$

Exponential distribution

Assume objects arrive after exponentially distributed interarrival times.

 λ - how many arrivals per time unit.

 β - expected waiting time

Gamma distribution

$$X \sim \text{Gamma}(\alpha, \beta)$$

A random variable X with density function

$$f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta}, \quad x > 0$$

for $\beta>0$ and $\alpha>0$ has a Gamma distribution with parameters shape α and scale β , or .

$$\mathsf{E}[X] = \alpha \beta$$
 and $\mathrm{Var}(X) = \alpha \beta^2$.

If X follows a Gamma distribution with parameters α and β , then the m.g.f is given by $m_X(t) = (1 - \beta t)^{-\alpha}$.

χ^2 -distribution

$$X \sim \chi^2(n)$$

The Gamma distribution with parameters $\beta=2$ and $\alpha=\frac{n}{2}$ is called χ^2 -distribution with n degrees of freedom.

$$\mathsf{E}[X] = n \text{ and } \mathrm{Var}(X) = 2n.$$

Sum of squares

If Z_1,\ldots,Z_n have standard normal distributions and are independent, then $Z_1^2+\cdots+Z_n^2$ follow a χ^2 -distribution with n degrees of freedom.