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What was the mean and the variance of E ∼ Bin(n, p)?
E[X] = np. Var(X) = np(1− p).

Normal approximation of Binomial distribution

If X ∼ Bin(n, p), X is approximately normally distributed with
mean np and variance np(1− p),

X
approx.∼ N(np, np(1− p)),

if both np > 5 and n(1− p) > 5.
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Normal approximation
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Bivariate distributions

Definition

Informal: A two-dimensional or bivariate random variable (X,Y )
produces a pair of random numbers.

For discrete random variables we have the probability mass
function

fX,Y (i, j) = P(X = i, Y = j) = P(X = i and Y = j).

Here fX,Y (i, j) ≥ 0 and
∑

i,j fX,Y (i, j) = 1.
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Example

Let X and Y be the number of girls, respectively boys in a
randomly chosen Swedish family. The joint density function
fXY (x, y) is given in the table below.

Y 0 1 2 3 4
X

0 0.38 0.16 0.04 0.01 0.01
1 0.17 0.08 0.02
2 0.05 0.02 0.01
3 0.02 0.01
4 0.02∑4

x=0

∑4
y=0 fX,Y (x, y) = 1

P (X = 0 and Y = 1) = fX,Y (0, 1) = 0.16
P (X = 2) = fXY (2, 0) + fX,Y (2, 1) + fXY (2, 2) = 0.08
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Expected value

Eh(X,Y ) =
∑
all j

h(i, j)fX,Y (i, j)

and called marginal densities / marginal p.m.f.’s.

For example:

E[X + Y ] =
∑
all j

(i+ j)fX,Y (i, j)

with h(i, j) = i+ j.
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Expected number of children

X and Y be the number of girls, respectively boys in a randomly
chosen Swedish family.

E[X + Y ] is the expected number of boys + girls = children. So
h(i, j) = i+ j.

Y 0 1 2 3 4
X

0 0.38 0.16 0.04 0.01 0.01
1 0.17 0.08 0.02
2 0.05 0.02 0.01
3 0.02 0.01
4 0.02

E[X + Y ] = (0 + 0) · 0.38 + (1 + 0) · 0.17 + ....
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Marginal distributions

Given a discrete random variable (X,Y ) we the probability mass
functions for X and Y are given by

fX(i) =
∑
all j

fX,Y (i, j)

fY (j) =
∑
all i

fX,Y (i, j).

and called marginal densities / marginal p.m.f.’s.
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Y 0 1 2 3 4 fX
X

0 0.38 0.16 0.04 0.01 0.01 0.60
1 0.17 0.08 0.02 0.27
2 0.05 0.02 0.01 0.08
3 0.02 0.01 0.03
4 0.02 0.02

fY 0.64 0.27 0.07 0.01 0.01 1
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Continuous bivariate random variables

For bivariate continuous random variables we have a probability
density function fX,Y (x, y) with properties

1. fX,Y (x, y) ≥ 0,

2.
∫ ∫

fX,Y (x, y)dxdy = 1, and

3. P(a ≤ X ≤ b and c ≤ Y ≤ d) =
∫ b
a

∫ d
c fX,Y (x, y)dxdy.
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Marginal distributions

For a bivariate continuous random variable (X,Y ), the probability
density functions for X and Y are given by

fX(x) =

∫
fX,Y (x, y)dy

fY (y) =

∫
fX,Y (x, y)dx
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Expected value

For a two-dimensional random variable (X,Y ), the expected
values of X and Y are given by

E(X) =


∑
all i

∑
all j

ifX,Y (i, j), for X discrete,∫ ∫
xfX,Y (x, y)dxdy, for X continuos,

and

E(Y ) =


∑
all i

∑
all j

jfX,Y (i, j), for Y discrete,∫ ∫
yfX,Y (x, y)dxdy, for Y continuous.
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Conditional distribution

The conditional distribution of X given Y = y is defined by its
density

fX|Y=y(x) =
fX,Y (x, y)

fY (y)
,

provided that fY (y) > 0.

Independent random variables
Two random variables X and Y are called independent if their
bivariate pdf can be written as product of the marginal
distributions:

fX,Y (u, v) = fX(u)fY (v).
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Covariance

Covariance
Covariance between random variables X and Y is defined as
Cov(X,Y ) = E[(X − µX)(Y − µY )], where µX = E(X) and
µY = E(Y ).

• According to the definition,

Cov(X,Y ) =


∑
all i

∑
all j

(i− µX)(j − µY )fX,Y (i, i), discrete∫ ∫
(x− µX)(y − µY )fX,Y (x, y)dxdy, cont.

• Note that Cov(X,X) = V(X).

• Cov(X,Y ) can be calculated as Cov(X,Y ) = E(XY )− E(X)E(Y ).

• If X and Y are independent: Cov(X,Y ) = 0, E(XY ) = E(X)E(Y ).
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Rules for covariance

For two random variables X and Y , and two numbers a and b we
have

V(aX + bY ) = a2V(X) + b2V(Y ) + 2ab Cov(X,Y ).

Examples:

V(2X) = V(X +X) = V(X) + V(X) + 2 Cov(X,X) = 4Var(X)

V(X + Y ) = pV (X) + V(Y ) when X and Y are independent

(“Fun” thing to do: look up the law of cosines.)
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Correlation and independence

Correlation
The correlation coefficient is defines as

ρ(X,Y ) =
Cov(X,Y )√
V(X)V(Y )

.

• A measure of linear relationship (samvariation) of X and Y .

• It holds −1 ≤ ρ ≤ 1.

• X and Y are called uncorrelated if ρ(X,Y ) = 0.

17



We have the following relationship between dependence and
correlation:

• If X and Y are independent, they are also uncorrelated.

• If X and Y are uncorrelated, they do not need to be
independent.

These relationships are natural because two random variables are independent if there is no co-variation

at all, while they are not correlated if there is no linear co-variation.
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Correlation and causality

• Correlation does not say anything about causality!∗

• Sometimes correlation can be explained by a third variable
which was not measured.

• Days with high ice cream sales tend to have more drowning
accidents. Time to ban ice cream? In this example, an
important variable which perhaps was not measured is the
sunshine. Such variables are sometimes called confounding
variables.
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Causality

• If we want to know/predict what will change if we perform an
action we need insight into causality.

• Will the number of drowning accidents change if we ban ice?

• There are many causal statements in the news!

• “Do not skip breakfast if you want to reduce the risk of
coronary heart disease”

• We must be careful with causal effects...

• Candidate for a confounding variable: stress.

• We need to know how the data is collected to answer causal
questions! We will come back to this later.
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XKCD’s take
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Thinking statistics

Spurious correlation

http://www.tylervigen.com/spurious-correlations
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Thinking statistics: Global warming

Two millennia of mean surface temperatures according to different
reconstructions from climate proxies with the instrumental
temperature record overlaid in red.

Stefan Rahmstorf: Paleoclimate: The End of the Holocene.

http://www.realclimate.org/index.php/archives/2013/09/paleoclimate-the-end-of-the-holocene/.

Web. 3 Feb. 2019.
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