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Hypothesis tests



Hypothesis tests

An important problem in statistics is to test whether a theory or a
research hypothesis is true.

Examples of such problems include:

• Does a new drug have any effect? Mean effect > 0

• Do smokers die sooner than non-smokers? Mean life time
difference < 0

• Does the measuring device have a systematic error? Mean
measurement error 6= 0
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Hypothesis tests

Answers the statistical analysis could give are

1. that the research hypothesis is supported by the data (and
possibly a quantification of the degree of support)

2. that the data doesn’t support the hypothesis.
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Example

The length of a certain lumber from a national home building store
is supposed to be 2.5 m.

A builder wants to check whether the lumber cut by the lumber
mill has a mean length different smaller than 2.5 m.

A statistical formulation of this problem is that we want to test the
null hypothesis

H0 : mean length = 2.5m

against the alternative/research hypothesis

H1 : mean length < 2.5m

H1 is actionable knowledge. If H1 is true she needs to write an
angry letter.

3



Example

• You want to test how a new employee uses laboratory
equipment and therefore ask her to measure the chlorine
content in a water sample n = 5 times.

• Results of the measurement are x̄ = 59.62 and s2 = 4.6920.

• We know the true content 60, and we can assume that the
measurements are samples of a random variable X ∼ N(µ, σ2).

• The question now is whether we can claim that the new
employee has a systematic error in her measurements, µ 6= 60.
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Setup

A statistical formulation of this problem is that we want to test the
null hypothesis

H0 : µ = 60

against the alternative hypothesis or research hypothesis

H1 : µ 6= 60.

If the test we perform finds that there is a systematic error, H0 is
rejected in favour of H1. It is also said that µ is significantly
different from 60.

Is H1 actionable knowledge?

Choosing the alternative H1

Choose H1 such if someone would tell you it is true, you can do
something useful with that knowledge!
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Decisions

The outcome of a hypothesis test can be:

• Reject H0 (accept H0.)

• Action!

• Do not reject H0

• Could be lack of data, or H0 being correct. The question of
H0 or H1 is truly left open. Meh. Should still report it though.
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Decision errors

Decision
fail to reject H0 reject H0

H0 true X Type 1 Error
Truth

H1 true Type 2 Error X

• A Type 1 Error is rejecting the null hypothesis when H0 is true.
We want to avoid that, control the probability for this error.

• A Type 2 Error is failing to reject the null hypothesis when H1

is true.
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Burden of proof

If we again think of a hypothesis test as a criminal trial then it
makes sense to frame the verdict in terms of the null and
alternative hypotheses:

H0 : Defendant is innocent
H1 : Defendant is guilty

Which type of error is being committed in the following
circumstances?

• Declaring the defendant innocent when they are actually guilty

Type 2 error

• Declaring the defendant guilty when they are actually innocent

Type 1 error

Which error do you think is the worse error to make? 9



Statistical reasoning

Classical logic: If the null hypothesis is correct, then these data can
not occur.
These data have occurred.
Therefore, the null hypothesis is false.

Tweak the language, so that it becomes probabilistic... Statistical
reasoning:

If the null hypothesis is correct, then these data are highly
unlikely.
These data have occurred.
Therefore, the null hypothesis is unlikely.

Definition
In statistical hypothesis testing, a result has statistical significance
when it is very unlikely to have occurred given the null hypothesis.

The significance level α is the (tolerated) probability of making a
type I error:

P(reject H0 | H0 is true )
(at most)

= α
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About failure to reject H0

If you want to take a decision in the case the test fails to reject H0,
you should compute the type II error probability first. This is
typically difficult.

Therefore we should avoid far reaching decisions if our tests fail to
reject H0.
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Tests from confidence intervals

Data (samples from a distribution with unknown parameter
µ).

Hypothesis about parameter. Here H0 : µ = µ0 and
H1 : µ 6= µ0.

Significance level α, e.g α = 5%.

Decision rule: Compute a (1− α)(= 95%)-confidence interval
[A,B] for the parameter µ. If the µ0 /∈ [A,B], reject H0.

Type 1 error: This rule has type 1 error of 5 %, so this is a valid
test for level α = 5 %.
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Tests with test statistics

Data (samples with unknown population parameter µ).

Hypothesis about parameter. Here H0 : µ = µ0 and
H1 : µ

6=
>
<
µ0.

Significance level α, e.g α = 5%.

Test statistic T : Typically, T comes from an estimator for our
parameter with known distribution under H0.

T =
X̄ − µ0

σ/
√
n

(example)

Decision rule: Reject H0 if the p-value is less than the significance
level α.
or: Reject H0 if the Tobs is in the critical region/rejection region
(see next slide).

Type I error: The type I error for this test is ≤ α. 13



Critical region
The critical region Cα of a test are those values of the test
statistic T for which H0 can be rejected while obeying significance
level α. Typically represented by one or two critical values.

We compute rejection region for the data. We reject H0 if Tobs is
in the rejection region.
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Example: Critical values for mean of normal population

We want to use a quantity T that we know the distribution of
under H0, so that we can calculate the p-value.

In case of the normal distribution with known variance

(T =)Z =
X̄ − µ0

σ/
√
n

we know that Z under H0 is N(0, 1)-distributed and

Reject H0 at level α if |Z| > zα/2.
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x

Rejection region for α = 0.05.
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x

Rejection region for α = 0.05 (on the x-axis below the yellow
area).
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p-value
The p-value of the test is defined as the probability under the null
hypothesis that we get a value T which is at least as “extreme” as
the observed value Tobs.
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Example: p-value for normal distribution

We want to use a quantity T that we know the distribution of
under H0, so that we can calculate the p-value.

In case of the normal distribution with known variance

T =
X̄ − µ0

σ/
√
n

we know that T under H0 is N(0, 1)-distributed and

p = P(|T | ≥ |Tobs|) = 2 · P(T ≥ |Tobs|) = 2(1− Φ(|Tobs|)).

We compute p for the data. We reject H0 if p < α

We compute rejection region for the data. We reject H0 if Tobs is
in the rejection region.
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Yellow area: p value.
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How many observations are needed?

A test detects a deviation of µ− µ0 more easily if:

• If the significance level α is not very small.

• The number of observations n is large.

• The population variance relatively σ2 is small.
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