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Linear regression



What is linear regression

Regression is a technique used for estimating the relationship
between variables.

Often we want to predict a variable Y (the dependent variable) in
terms of another variable X (the independent variable).



Example

We want to investigate how the specific heat capacity of a
substance (the ability of the substance to store heat energy)
depends on temperature.

For each of the five temperatures, two heat capacity measurements
are made with the following results:

Temperature (°C) 30 40 50 60 70

Heat capacity 0.70 0.74 0.78 0.80 0.82
0.72 0.73 0.75 0.78 0.1
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Model description

We have measured a response variable Y for fixed values of an
explanatory variable 2 that can be controlled without errors.

We use a linear model for (Y;,z;),i=1,...,n:

Y, = 6o+ Brz;i +&; (1.1)

e ¢, are independent N(0, 02) random variables describing
measurement errors.

e [y is the intercept parameter.

e (31 is the slope parameter.



Model description

Another way of writing the model is

Y; ~ N(Bo + Brwi, 0%).

The expected value of Y is determined by the linear relationship
with z, and the variance of measurement error o2 describes the
variation of the individual observations around the expected value
Bo + Brx. Assumption: Y; are independent..



Task

Given a sample (visualized by a scatterplot)
(}/lvx1>7 (YQ,.’I,'Q), cee (Yna .’En)

we want to estimate the line with parameters 8y and 51 as well as
o2, the variation of the Y;-values from the regression line 8y + iz
at x;.

With the estimated parameters, we can predict Y for a given value
of .



Least squares estimator

Bo and (31 are estimated by the method of least-squares which is
done by minimizing

n

SSE=) €& =) (y:— fo— fiz:)”
=1

i=1
Let by and by be estimates for 8y and /31 respectively. Then,

bl _ i=1 =1 =1

and



Least squares estimator

2

An estimator for the variance parameter o2 is s? = %

where
n

Qo= (yi — Bo— Przi)?

=il

(5o and B; your estimates).



Example

Let X denote the number of lines of executable SAS code, and let
Y denote the execution time in seconds. The following is a

summary information:

10 10
n=10 > z;=16.75 Y y =170
=il =il

10 10

10
> af=2864 > y?=2898 Y iy = 285.625
=1 =1 =1

Estimate the line of regression.



Example

_10(285.625) — (16.75)(170)

- = 1.498
b 10(28.64) — (16.75)2
170 16.75
=~ 1.498— " = 14.491
b =75 B0

Estimated model:

Y = 1.498z; + 14.491 4 ¢;
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Different way of computing the estimate

The LS-estimators for Sy and (1 are 3} = Syy/Sea and
B =y — BT where

n
Spx = Z(% —z)? = Zw? — nz?
' i=1

=1
n n
Syy = Z(yz -9’ = Zyzz —ng?
i=1 ;
n
Sy = Z(w —I) szyl — nTyY
i=1
An estimator for the variance parameter o2 is s> = QO where
n 52
X
Qo= (i = B§ — Biw)’ = Syy — B Sux = Sy — g~
i=1 e
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Estimators for the example

We estimate parameters of the regression line in the example. We have
Z = 50,7 = 0.763 and

10

Spa = »_ a7 — 102° = 27000 — 10 - 50* = 2000
g=il

10
Syy = Y _y; —10§° = 5.8367 — 10 - 0.763% = 0.01501
i=1

10
Sey =Y miy; — 1027 = 386.8 — 10 - 50 - 0.763 = 5.3
i=1

and therefor the estimate

B = S4y/Sax = 5.3/2000 = 0.00265
Bt =7 — Biz = 0.6305
2

1 S
o = — (Syy - S’“) =0.00012, s=1/0.00012 = 0.011

T
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The estimated regression line is 5y + S«

0.9
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Estimator for (3;
We have E(Y) = By + 17 and V(Y) = %2 Therefor

2 2

E(B1) = B V(Br) =

So we see that [} is an unbiased estimator.

o _ 9
Sz Z?:l(xi - i)Z
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Estimator for (;
With p3-(z0) = B + Bizo also
E(uy (20)) = Bo + Brwo
with
1 (x() = $)2:|

Vi (o)) = o |1+ L0

With o = 0 we see that 3 is unbiased.
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Distribution of the estimators

Theorem

For normally distributed ¢; it holds that Y, 37, 8; and
- (z0) B3 + Bixo are also normally distributed.

Because the estimator is a sum of Y;, by the CLT this also holds
approximately if the distribution of the ¢; deviates from the normal
distribution.

Theorem

If £; is normally distributed it holds that

(n —2)s?

2 NXQ(n_2)

a

further s? is independent of Y, 35, B and i (o).
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Confidence interval and test

Let 6 one of By, 81 or py (xo) = Bo + Bixo.

We know that these estimates are normally distributed and have
determined the variance of the estimates.

If SE(6*) denotes the standard error of the estimator, the
statistic o g
T=—o" " ~tn—2
SR =2

is often used for tests and a confidence interval is,

Iy = (0" £t 2(n —2) SE(0%))
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Example

Consider the previous example and suppose we want to see if there
is a relation between X and Y with a significance level a = 5%.
There is a relation between X and Y if and only if 51 # 0, which is
our alternative hypothesis. Let Hy : f1 = 0. We have a two tailed
test.

by = 1498, Spp = (n 0y 2 = (X @0)°) /n = 0.584, Sy =8
and S, = 0.875.

Therefore SSE = 8 — 1.498(0.875) = 6.69 and
s> = SSE /8 = 0.84

The test statistic is
b -0 1498
V/5?/Sxx  /0.84/0.584

to.025 = 2.306. Hence, we do not reject the hypothesis.

18



Example

A 95% C.1. on [y in our previous example is given by

14.491 + 2.306/0.84(28.64) /5.84
(14.491 — 4.68,14.491 + 4.68)
(9.81,19.181)

We are 95% sure that the true regression line crosses the y -axis
between the points y = 9.81 and y = 19.81.

19



Confidence interval

e Confidence interval for Sy:

. 1 2

n Spx

e Confidence interval for (3y:

. s
1oy = (B % tapaln - 9= )

e Confidence interval for py (zo) = Bo + P1xo:

* g 1 _ )2
Ty (@o) = (50 + Bizo £ ta2(n —2)sy/ = + (:EOSQC))

n
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Prediction interval

e Sometimes you want to know where a future observation will
be for a certain value of x, for this use a prediction interval:

e The difference between a prediction interval Iy (,,) and a
confidence interval 1, ;) is that I ,,,,,,, (5, indicates where
the expected value (the line!) is likely, while Iy, indicates

where a future observation is likely.

e Since observations scatter around the regression line, the
prediction interval must be wider than the confidence interval,
and it can be shown that

_ 7)2
Y*(zo) ~ N (ﬁo + Bizo, o2 (1 + % + (3305@)) .

The prediction interval is

Iy(xo) = ’750 +51$02|Ita/2(n—2)3\/1+ - + (OSW)} o
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Model validation




Model validation

A very important part of a regression analysis is the validation of
the model. This means that we must ensure that it is appropriate
to use a simple regression model. The most common method for
this is the calculation of residuals.

ei =y — By — Bizi

For the regression to be valid the residuals

e must be distributed approximately normally with expected
value 0,

e do not reveal any special structure as a function of x.

e Have about the same variation for all different values of 2. For
example, the variance for large values of x should not increase.

Check this visually by drawing the residuals as a function of x and
using normal distribution plots.
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Example

gl

Figure 8.12: Four examples showing when the methods in this chapter are insuf-
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Example
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Figure 8.12: Four examples showing when the methods in this chapter are insuf-
ficient to apply to the data. First panel: linearity fails. Second panel: there are
outliers, most especially one point that is very far away from the line. Third panel:
the variability of the errors is related to the value of 2. Fourth panel: a time series
data set is shown, where successive observations are highly correlated.
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