MVE045 W2-RÖ1 gränsvärden

ADAMS Problem 1.2:1

1. Find: (a) $\lim_{x\to -1} f(x)$, (b) $\lim_{x\to 0} f(x)$, and (c) $\lim_{x\to 1} f(x)$, for the function f whose graph is shown in Figure 1.13.

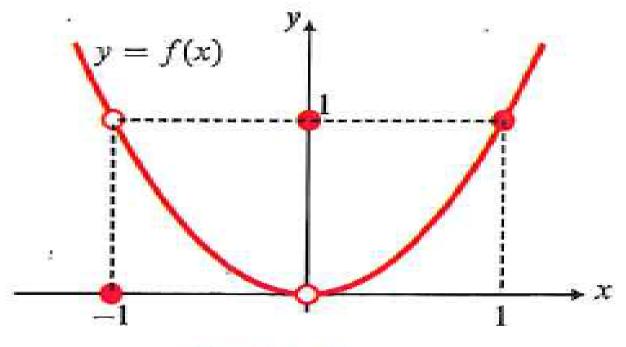


Figure 1.13

ADAMS Problem 1.2: 7, 17, 25, 21 Evaluate the limit or explain why it does not exist

	Type of limit	Exists (yes/no)	Limit value
7. $\lim_{x\to 4} (x^2 - 4x + 1)$	ý	ý	Ş
17. $\lim_{x \to 9} \frac{\sqrt{x} - 3}{x - 9}$?	Ş	?
21. $\lim_{x\to 0} \frac{ x-2 }{x-2}$?	?	Ş
25. $\lim_{t \to 0} \frac{t}{\sqrt{4+t} - \sqrt{4-t}}$?	?	?

ADAMS Problem 1.2: 49, 59 In Exercises 49-60 find the indicated one-sided limit or explain why it does not exist

49.
$$\lim_{x \to 2-} \sqrt{2-x}$$

59.
$$\lim_{x \to 2^-} \frac{x^2 - 4}{|x + 2|}$$

56.
$$\lim_{x\to 0+} \sqrt{x^2-x^4}$$
 vad händer här?

ADAMS Problem 1.2:65

65. Suppose $\lim_{x\to 4} f(x) = 2$ and $\lim_{x\to 4} g(x) = -3$. Find:

(a)
$$\lim_{x \to 4} \left(g(x) + 3 \right)$$

(b) $\lim_{x \to 4} x f(x)$

ADAMS Problem 1.3:1,3,5 Find the limits in Exercises 1-10

1.
$$\lim_{x \to \infty} \frac{x}{2x - 3}$$

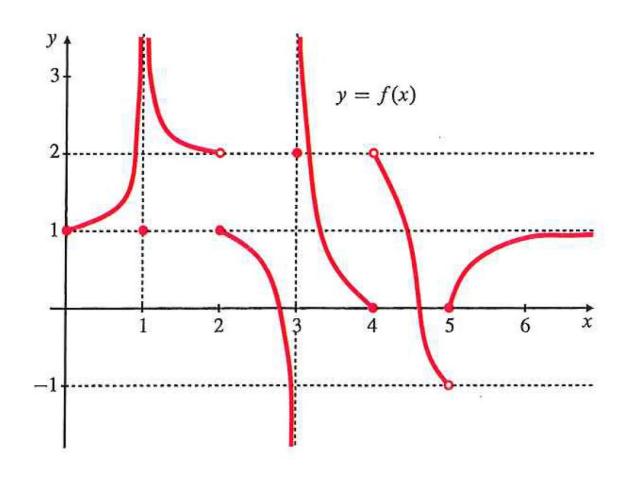
3.
$$\lim_{x \to \infty} \frac{3x^3 - 5x^2 + 7}{8 + 2x - 5x^3}$$

5.
$$\lim_{x \to -\infty} \frac{x^2 + 3}{x^3 + 2}$$

ADAMS Problem 1.3:27,29

In Exercises 11-32 evaluate the indicated limit. If it does not exist, is the limit $+\infty$, $-\infty$, or neither?

1.
$$\lim_{x \to \infty} \frac{x\sqrt{x+1}(1-\sqrt{2x+3})}{7-6x+4x^2}$$


19.
$$\lim_{x \to -\infty} \left(\sqrt{x^2 + 2x} - \sqrt{x^2 - 2x} \right)$$

ADAMS Problem 1.3:33

33. What are the horizontal asymptotes of $y = \frac{1}{\sqrt{x^2 - 2x} - x}$? What are its vertical asymptotes?

ADAMS Problem 1.3: 35-45

The function whose graph is shown in the figure has domain $[0, \infty)$. Find the limits of f indicated below:

35.
$$\lim_{x \to 0+} f(x)$$

37.
$$\lim_{x \to 2+} f(x)$$

39.
$$\lim_{x \to 3-} f(x)$$

41.
$$\lim_{x \to 4+} f(x)$$

43.
$$\lim_{x \to 5-} f(x)$$

45.
$$\lim_{x\to\infty} f(x)$$

36.
$$\lim_{x \to 1} f(x)$$

38.
$$\lim_{x \to 2^-} f(x)$$

40.
$$\lim_{x \to 3+} f(x)$$

42.
$$\lim_{x \to 4-} f(x)$$

44.
$$\lim_{x \to 5+} f(x)$$