MVE045 W2-RÖ1
 kontinuitet

ADAMS Problem 1.4:1,3

EXERCISES 1.4

Exercises $1-3$ refer to the function g defined on $[-2,2]$, whose graph is shown in Figure 1.33.

Figure 1.33

1. State whether g is (a) continuous, (b) left continuous, (c) right continuous, and (d) discontinuous at each of the points $-2,-1,0,1$, and 2 .
2. Does g have an absolute maximum value on $[-2,2]$? an absolute minimum value?

ADAMS Problem 1.4: 5

5. Can the function f graphed in the figure be redefined at the single point $x=3$ so that it becomes continuous there?

ADAMS Problem 1.4: 7

State where in its domain the given function is continuous, where it is left or right continuous, and where it just discontinuous

$$
\begin{aligned}
& \text { 7. } f(x)= \begin{cases}x & \text { if } x<0 \\
x^{2} & \text { if } x \geq 0\end{cases} \\
& \text { 10. } f(x)= \begin{cases}x^{2} & \text { if } x \leq 1 \\
0.987 & \text { if } x>1\end{cases}
\end{aligned}
$$

ADAMS Problem 1.4: 19, 3

 related to $\mathrm{min} / \mathrm{max}$ theorem19. Does the function x^{2} have a maximum value on the open interval $-1<x<1$? a minimum value? Explain.
19'. A similar question but for the closed interval $-1 \leq x \leq 1$?

20. Does g (in the figure) have an absolute maximum value on [-2,2]? an absolute minimum value?

ADAMS Problem 1.4: 15

How should the function be defined at the given point to be continuous there? Give a formula for the continuous extension to that point.
15. $\frac{t^{2}-5 t+6}{t^{2}-t-6}$ at 3

Answer in the form $f(t)=\left\{\begin{array}{cc}\text { expression in } t & \text { condition on } t \\ \text { another expression in } t & \text { another condition on } t\end{array}\right.$

ADAMS Problem 1.4: 23

 min/max23. A software company estimates that if it assigns x programmers to work on the project, it can develop a new product in T days, where

$$
T=100-30 x+3 x^{2} .
$$

How many programmers should the company assign in order to complete the development as quickly as possible?

ADAMS Problem 1.4: 29, 30, 31

 intermediate value theorem application29. Show that $f(x)=x^{3}+x-1$ has a zero between $x=0$ and $x=1$.
30. Show that the equation $x^{3}-15 x+1=0$ has three solutions in the interval $[-4,4]$.

An excellent exam question! How would you solve such a problem? Hint: you can always try to evaluate the expression in some values for x.
!31. Show that the function $F(x)=(x-a)^{2}(x-b)^{2}+x$ has the value $(a+b) / 2$ at some point x.

Another excellent exam question! How would you solve such a problem? Hint: intermediate value theorem, of course. Try evaluating the function as some points.

ADAMS Problem 1.4: 23

 min/max23. A software company estimates that if it assigns x programmers to work on the project, it can develop a new product in T days, where

$$
T=100-30 x+3 x^{2} .
$$

How many programmers should the company assign in order to complete the development as quickly as possible?

ADAMS Problem 1.5: 3,4
absolute value practice (and a bit more that you will appreciate in the math courses that will follow)

In Exercises 3-6, in what interval must x be confined if $f(x)$ must be within the given distance ϵ of the number L ?

$$
\begin{array}{ll}
\text { 3. } f(x)=2 x-1, & L=3, \quad \epsilon=0.02 \\
\text { 4. } f(x)=x^{2}, & L=4, \quad \epsilon=0.1 \\
\hline \text { 5. } f(x)=\sqrt{x}, & L=1, \quad \epsilon=0.1 \\
\text { 6. } f(x)=1 / x, & L=-2, \quad \epsilon=0.01
\end{array}
$$

ADAMS Problem 1.5: 7,8
absolute value practice (and a bit more that you will appreciate in the math courses that will follow)

In Exercises 7-10, find a number $\delta>0$ such that if $|x-a|<\delta$, then $|f(x)-L|$ will be less than the given number ϵ.

$$
\begin{array}{rlrl}
\text { 7. } f(x)=3 x+1, & a=2, & & L=7, \\
\text { 8. } & \epsilon=0.03 \\
\text { 9. } f(x)=\sqrt{2 x+3}, & a=3, & & L=3, \\
& & \epsilon=0.01 \\
\text { 10. } f(x)=1 /(x+1), & a=2=0, & & L=8, \\
& & \epsilon=0.2 \\
& & \epsilon=0.05
\end{array}
$$

