# MVE045 W3-RÖ1 (relevanta problem)

kedjeregeln, implicit derivata

## ADAMS 2.1

In Exercises 1–12, find an equation of the straight line tangent to the given curve at the point indicated.

1. 
$$y = 3x - 1$$
 at  $(1, 2)$  2.  $y = x/2$  at  $(a, a/2)$ 

2. 
$$y = x/2$$
 at  $(a, a/2)$ 

3. 
$$y = 2x^2 - 5$$
 at  $(2,3)$ 

3. 
$$y = 2x^2 - 5$$
 at  $(2,3)$  4.  $y = 6 - x - x^2$  at  $x = -2$ 

5. 
$$y = x^3 + 8$$
 at  $x = -2$ 

5. 
$$y = x^3 + 8$$
 at  $x = -2$  6.  $y = \frac{1}{x^2 + 1}$  at  $(0, 1)$ 

- **20.** Find all points on the curve  $y = x^3 3x$  where the tangent line is parallel to the x-axis.
- **24.** For what value of the constant k do the curves  $y = kx^2$  and  $y = k(x-2)^2$  intersect at right angles? *Hint*: Where do the curves intersect? What are their slopes there?

## ADAMS 2.2

In Exercises 11–24, (a) calculate the derivative of the given function directly from the definition of derivative, and (b) express the result of (a) using differentials.

11. 
$$y = x^2 - 3x$$

**12.** 
$$f(x) = 1 + 4x - 5x^2$$

13. 
$$f(x) = x^3$$

**14.** 
$$s = \frac{1}{3+4t}$$

Calculate the derivatives of the functions in Exercises 34–39 using the General Power Rule. Where is each derivative valid?

**34.** 
$$f(x) = x^{-17}$$

**35.** 
$$g(t) = t^{22}$$

**36.** 
$$y = x^{1/3}$$

37. 
$$y = x^{-1/3}$$

# ADAMS 2.4 kedjeregel med polynomer och rationella funktioner

### THEOREM

### The Chain Rule

If f(u) is differentiable at u = g(x), and g(x) is differentiable at x, then the composite function  $f \circ g(x) = f(g(x))$  is differentiable at x, and

$$(f \circ g)'(x) = f'(g(x))g'(x).$$

Find the derivatives of the functions in Exercises 1–16.

1. 
$$y = (2x + 3)^6$$

**2.** 
$$y = \left(1 - \frac{x}{3}\right)^{99}$$

3. 
$$f(x) = (4 - x^2)^{10}$$

**4.** 
$$y = \sqrt{1 - 3x^2}$$

**5.** 
$$F(t) = \left(2 + \frac{3}{t}\right)^{-10}$$

**6.** 
$$(1+x^{2/3})^{3/2}$$

**9.** 
$$y = |1 - x^2|$$

# ADAMS 2.8 medelvärdesatsen

### THEOREM



#### The Mean-Value Theorem

Suppose that the function f is continuous on the closed, finite interval [a, b] and that it is differentiable on the open interval (a, b). Then there exists a point c in the open interval (a, b) such that

$$\frac{f(b) - f(a)}{b - a} = f'(c).$$

This says that the slope of the chord line joining the points (a, f(a)) and (b, f(b)) is equal to the slope of the tangent line to the curve y = f(x) at the point (c, f(c)), so the two lines are parallel.

There is a point C on the Figure 2.28 curve where the tangent (green) is parallel to the chord AB (blue)



In Exercises 1–3, illustrate the Mean-Value Theorem by finding any points in the open interval (a, b) where the tangent line to y = f(x) is parallel to the chord line joining (a, f(a)) and (b, f(b)).

**1.** 
$$f(x) = x^2$$
 on  $[a, b]$ 

**1.** 
$$f(x) = x^2$$
 on  $[a, b]$  **2.**  $f(x) = \frac{1}{x}$  on  $[1, 2]$ 

3. 
$$f(x) = x^3 - 3x + 1$$
 on  $[-2, 2]$