
Model-Based Evaluation:
From Dependability to Security

David M. Nicol, Fellow, IEEE, William H. Sanders, Fellow, IEEE, and Kishor S. Trivedi, Fellow, IEEE

Abstract—The development of techniques for quantitative, model-based evaluation of computer system dependability has a long and

rich history. A wide array of model-based evaluation techniques is now available, ranging from combinatorial methods, which are useful

for quick, rough-cut analyses, to state-based methods, such as Markov reward models, and detailed, discrete-event simulation. The

use of quantitative techniques for security evaluation is much less common, and has typically taken the form of formal analysis of small

parts of an overall design, or experimental red team-based approaches. Alone, neither of these approaches is fully satisfactory, and we

argue that there is much to be gained through the development of a sound model-based methodology for quantifying the security one

can expect from a particular design. In this work, we survey existing model-based techniques for evaluating system dependability, and

summarize how they are now being extended to evaluate system security. We find that many techniques from dependability evaluation

can be applied in the security domain, but that significant challenges remain, largely due to fundamental differences between the

accidental nature of the faults commonly assumed in dependability evaluation, and the intentional, human nature of cyber attacks.

Index Terms—Dependability evaluation, security evaluation, performability evaluation, stochastic modeling.

�

1 INTRODUCTION

COMPUTER system and network security is an issue of
increasing practical concern and research attention. As

a research discipline, computer security is a venerable one
with its own culture, assumptions, and language. The
increased emphasis on system security has brought new
researchers from different backgrounds to the field, bring-
ing different perspectives and different skillsets. All of this
is for the good since new viewpoints can lead to new
insights.

Most of the older work in computer security focused on
details in complex protocols or details in complex systems,
for the simple reason that the root causes of security gaps
are often found in the failures associated with such details.
Later work expanded the attention to system-level security,
that is, to the study of how systems can be designed to be
secure in the sense that they perform their intended
function in spite of possible malicious attacks. New work
is examining intrusion tolerance (e.g., [1], [2], [3], [4]), which
is a means of designing systems to continue to perform their
intended function in spite of partially successful attacks.

No system-level methodology currently exists that can
quantify the amount of security provided by a particular
system-level approach. So far, most attempts at validation
of security have been qualitative, focusing more on the
process used to build a system that should be secure. Since
it is impossible in practice to build a perfectly secure
system, it is important to be able to quantitatively validate

the efficacy of systems intended to be secure. Efforts aimed
at quantitative validation of security have usually been
based on formal methods (e.g., [5]), or have been informal
using “red teams” to try to compromise a system (e.g., [6]).
Both approaches, while being valuable in identifying
system vulnerabilities, have their limitations, especially
when they are applied to large systems. Only recently, due
to efforts led by researchers accustomed to quantifying
other system measures, have attempts been made to
quantify measures associated with system security.

This paper surveys concepts and methodologies for the
evaluation of system dependability [7], [8], [9] and
summarizes how these are now being extended to evaluate
system security. These techniques differ from most other
treatments of system security in that they frequently use
stochastic modeling. Stochastic assumptions are needed to
describe systems that have yet to be built and for systems
whose specific vulnerabilities remain unknown. In such
cases, it is appropriate to make stochastic assumptions
about the introduction and discovery of vulnerabilities,
about attacker behavior, about system behavior (in terms of
the effects the exploited vulnerabilities have on it, and in
terms of the system’s responses to attacks), and about
transient periods of vulnerability, and to solve (or simulate)
the model for stochastic measures. Stochastic models are
also very useful for sensitivity analysis.

In this survey, we find that there is much in classical
dependability analysis that can be transferred to security
analysis. However, we also find that there are attributes of
security that cannot be integrated naturally into a depend-
ability framework. In addition, we point out that the root
causes of system failure in the context of classical depend-
ability are fundamentally different from the root causes of
security violations in ways that impact the usefulness of the
models we develop to describe those failures. We conclude
the paper with ideas for future work in the area.

48 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 1, JANUARY-MARCH 2004

. D.M. Nicol and W.H. Sanders are with the Coordinated Science Lab and
Department of Electrical and Computer Engineering, University of Illinois,
Urbana, IL, 61801. E-mail: nicol@crhc.uiuc.edu and whs@uiuc.edu.

. K.S. Trivedi is with the Electrical and Computer Engineering Department,
Duke University, Durham, NC 27708. E-mail: kst@ee.duke.edu.

Manuscript received 21 June 2004; revised 24 Aug. 2004; accepted 25 Aug.
2004.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-0094-0604.

1545-5971/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

2 MEASURES OF DEPENDABILITY AND SECURITY

Engineers have long used models to evaluate system
designs. The models employed typically focus on the
questions that are most pressing to an engineer (e.g., Will
the bridge collapse? Are structural reinforcements needed
to meet stress tolerances? Will the computer system provide
a specified response time? Is the flight control system able
to tolerate three simultaneous equipment failures?). Today,
we are faced with pressing questions about computer
system and network security, which is defined informally as
the resilience of a computer system or network to malicious
attacks. Our thesis is that modeling can help one design and
evaluate systems or networks that are intended to be secure,
just as modeling has helped us provide and evaluate other
system properties. Furthermore, we see interesting simila-
rities between computer system failures due to intentional
attacks and system failures due to accidental component
failures; we thus see value in exploring how evaluation
techniques developed to quantify system dependability
might be extended to quantify system security.

However, we also see that security brings new issues to be
considered, most notably related to causes of component and
system failure. Dependability analysis to date usually
assumes that failures are caused by random events in
hardware or rare events in software, and that this random-
ness can be quantified (even if correlated) in a way that
permits the determination of system-level properties. Secur-
ity analysis must assume that failures are caused by human
intent, resulting in security failures that are definitely
correlated, that depend in subtle ways on system state, and
that attackers learn over time. While such events might
appear to be random, as perceived by an outside observer,
they tend to depend on each other in subtle ways that make
them difficult to represent accurately using classical stochas-
ticmodels. To highlight these differences,we review classical
dependability measures, pointing out challenges that arise
when they are applied to systems that fail due to malicious
attacks.

Reliability is the probability that a system performs a
specified service throughout a specified interval of time.
Reliability analysis therefore depends on stochastic models
of the frequency, duration, and intensity of faults in
hardware and software. While one can certainly assume
some probabilistic structure when modeling cyber attacks,
the problem of developing and validating good stochastic
models is very much an open issue. However, it is one we
must solve if we are to use classical reliability analysis to
predict reliability in the face of security breaches. Having
said that, it may be possible to use a conjectured
probabilistic specification of the occurrence of cyber attacks
to support sensitivity analysis of a system’s reliability or
availability. Indeed, several initial attempts have been made
to quantify system security using ideas developed to
quantify the effect of accidental failures (see, for example,
[10], [11], [12], [13], [14]).

Availability is a quantification of the alternation
between proper and improper service, and is often
expressed as the fraction of time that a system can be
used for its intended purpose during a specified interval
of time or in steady state. Challenges similar to those

described above in the context of reliability analysis apply
when evaluating a system’s availability under malicious
attack. Furthermore, as we consider the impact of security
on availability, we see that a system’s availability may be
affected in several ways by a cyber attack; for example, it
may be affected by the attack’s own impact on the system
and by the efforts to diagnose the attack and restore
system service following the attack. Therefore, availability
analysis of a system under malicious attack needs to
specify explicitly how (and how long) a system remains
unavailable following a successful attack.

Safety is the probability that a system does not fail in a
manner that causes catastrophic damage during a specified
period of time. Since system safety depends on the effect of
a system failure rather than on the cause of the failure, one
can easily imagine quantifying system safety in the context
of cyber attack. While the safety of data from accidental
erasure has certainly been a consideration in safety analysis
of information systems, when we add security considera-
tions, we will also need to consider the security of sensitive
data in the event of a security breach as a component of
safety. For example, the exposure of very sensitive data
(e.g., private keys) might enable an attacker to cause
catastrophic damage.

Performability [15] quantifies system performance in the
presence of failures (either component or system). Perform-
ability analysis is often carried out by specifying a set of
structural states for a system, each state corresponding to a
configuration that results in a particular system perfor-
mance, and specifying how the system changes state (often
in the form of transition rates). Once these states and
transitions have been identified, one then quantifies the
amount of performance obtained in each state by specifying
the rate at which reward is obtained in each state, and the
amount (impulse) of reward that is obtained when a
particular state transition is taken.

Using that mathematical structure, it is possible to
specify performability measures in terms of the amount of
reward accumulated during a specified interval of time
(where the start or length of the interval can tend to
infinity), or the rate of accumulation of reward at a
specified instant of time or in steady state. (More details
can be found in the next section.) Note that this method
of specifying reward is general enough to support a wide
variety of dependability and performability measures [16],
[8], [17]. For example, if the rate at which reward is
earned in an operational state is 1, while the reward rate
earned in a nonoperational state is 0, the expected reward
accumulated over a specified interval of time is just the
expected amount of time the system was available over
that epoch; in other words, it is the system’s expected
interval availability. If, instead, we define the rate reward
for each state as the rate at which work is accomplished
in that state and define state in the model in a manner
that captures changes in the rate at which work can be
done that are due to component failures, then the reward
accumulated during an interval specifies a measure of the
quality of service provided to a user.

The ease with which measures can be specified in the
framework described above is quite useful for the analysis
of security breaches. For example, consider a denial-of-

NICOL ET AL.: MODEL-BASED EVALUATION: FROM DEPENDABILITY TO SECURITY 49

service cyber attack. The impact of that type of cyber attack
and the system’s attempts to cope with it can be reflected in
the reward accumulated while spending time in states that
reflect the attack. Another application of performability
concepts in the security context follows from the fact that
security measures may make a system harder to use. For
example, security measures can slow the inherent rate at
which work may be accomplished. Performability measures
and analysis techniques thus provide a framework for
considering the impact cyber attacks have on overall system
performance. However, performability analysis faces the
same principal challenge faced by reliability and availability
analyses, namely, the development of meaningful stochastic
descriptions of events that occur during a cyber attack.

System security includes attributes in addition to those
we have described above in the context of dependability. In
particular, data confidentiality means that a system does not
allow protected data to be read in an unauthorized fashion,
while data integrity means that a system does not allow
protected data to be modified in an unauthorized fashion. A
breakdown in confidentiality or integrity need not imply a
failure of reliability or availability, at least not in their usual
senses. It may qualify as a safety issue and could,
depending on the structure of the associated measure, be
expressed as a performability measure.

However, confidentiality and integrity are arguably
different measures from those normally considered by
dependability analysis, insofar as they are not concerned
with system behavior so much as certain system properties.
Likewise, nonrepudiation is a system property that prevents
future false denial of involvement by either party in a
transaction. Authentication is a related property, by which
the claimed identity of a party to a transaction can be
independently verified. There are no obvious connections of
authentication or nonrepudiation to classical dependability
measures.

Another important property in the security domain is
survivability. As defined in [18], survivability is the cap-
ability of a system to fulfill its mission, in a timely manner,
in the presence of attacks, failures, or accidents. Since
survivability measures quantify the ability of a system to
perform an intended function, modeling approaches that
are applicable to availability and performability evaluation
can be adapted for survivability evaluation. Recent work in
quantifying survivability is found in [19], [20], [21], among
other places.

Models for security analysis must describe how and
when security breaches occur; they must describe the
impact on the system when they do, as well as the
mechanisms, effects, and costs of system recovery, system
maintenance, and defenses. Stated as such, those are
identical to the requirements of dependability models.
However, there need to be significant differences in the
nature and details of security models. This is most
pointedly seen when we consider the introduction of
security failures. A leading source of security vulnerability
is misconfiguration. Failures due to misconfiguration can of
course happen in other contexts, but a distinguishing
feature in the security context is that some external agent

must deliberately exercise the vulnerability in order for the
failure to occur.

Latent software faults (e.g., buffer overflow problems)
are another cause of security failure. Any given fault has
specific idiosyncratic behaviors and requirements for
accessing and exploiting it. Like misconfiguration, a
security penetration made possible by a latent software
fault does not occur accidently, but is actively induced by
an attacker. Furthermore, a security penetration may
require an attacker to exercise several vulnerabilities
before compromising a prized asset (such as root access).
This coupling of system vulnerabilities and attackers’
exploitation of them distinguishes security failures from
the types of failures traditionally considered by depend-
ability analysis. The key issue is that of how to
characterize attacker behavior.

3 MODEL REPRESENTATION/ANALYSIS

TECHNIQUES

Research in dependability analysis has led to a variety of
models, each focusing on particular levels of abstraction
and/or system characteristics. As we extend that type of
analysis into the security domain, we again find utility in
diverse model types. We now review important classes of
model representation and report on how they are being
extended.

3.1 Combinatorial Methods

In contrast with state-space models, combinatorial models
do not enumerate all possible system states to obtain a
solution. Instead, simpler approaches are used to compute
system dependability measures. Despite several extensions
that have been made to combinatorial models, they do not
easily capture certain features, such as stochastic depen-
dence and imperfect fault coverage. We present a brief
overview of combinatorial models.

3.1.1 Reliability Block Diagrams (RBD)

An RBD is a graphical structure with two types of nodes:
blocks representing system components and dummy nodes
for connections between the components. Edges and
dummy nodes model the operational dependency of a
system on its components. At any instant of time, if there
exists a path in the system from the start dummy node to
the end dummy node, then the system is considered
operational; otherwise, the system is considered failed. A
failed component blocks all the paths on which it appears.
RBDs thus map the operational dependency of a system on
its components and not the actual physical structure of the
system.

Series-Parallel RBDs are useful not only because they are
very intuitive, but also because they can be solved in linear
time [22]. Such RBDs are quite frequently used in reliability
and availability modeling [8], [9], and many software
packages exist that support construction and solution of
RBD models (e.g., [23], [22]). We have yet to see an
application of RBDs in security modeling. For such an
application to be possible, one would need to create a
compositional theory of security. At a glance, it seems that
such a theory ought to have different semantics; in

50 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 1, JANUARY-MARCH 2004

particular, an architecture needs to isolate an insecure
component, not just provide a replicate in parallel.

3.1.2 Fault Trees (FTs)

A fault tree is an acyclic graph with internal nodes that are
logic gates (e.g., AND, OR, k-of-n) and external nodes
(leaves or basic events) that represent system components.
The edges represent the flow of failure information in terms
of Boolean entities (TRUE and FALSE or 0s and 1s).
Typically, if a component has failed, a TRUE is transmitted;
otherwise, a FALSE is transmitted. The edge connections
determine the operational dependency of the system on the
components. At any instant of time, the logic value at the
root node determines whether or not the system is
operational. If shared (repeated) nodes (nodes that share a
common input) are not allowed, then the acyclic structure is
a rooted tree.

Fault trees without shared nodes are equivalent to series-
parallel RBDs [9], but when shared nodes (or repeated
events) are allowed, fault trees are more powerful [24].
Many solution algorithms exist for fault trees with repeated
events, including those based on sums of disjoint products
(see [25]) and binary decision diagrams (e.g., [26], [27]).
Fault trees have been extensively used in reliability and
availability modeling (e.g., [28], [29], [30], [31]), safety
modeling (see [32]), and modeling of software fault
tolerance (e.g., [33]).

Fault trees have been extended to include various types
of gates, such as priority AND gates, sequence dependency
gates, exclusive OR gates, and inhibitor gates [34]. There
have been extensions to include imperfect coverage [35],
multistate systems [36], and phased mission systems [37]. A
large number of software packages that support the
construction and solution of fault trees are available (e.g.,
[38], [39], [22]). The main difficulty of using combinatorial
methods in practice is the common assumption that all basic
events must be statistically independent.

3.1.3 Attack Trees

Attack trees are closely related to fault trees, in that they
consider a security breach as a system failure, and describe
sets of events that can lead to system failure in a
combinatorial way. An attack tree thus models all possible
attacks against a system, just as a fault tree models all
failures. They provide a formal, methodical way to describe
the security of systems and subsystems based on various
types of attacks (originally described in [40]) using graphics
that are somewhat different from those that have become
standard for fault trees). In an attack tree, the attacks to a
system are represented in a tree structure, with the goal as
the root node and the different ways to achieve that goal as
leaf nodes. The security of a large system can be modeled
with a set of attack trees, where the root of each tree

represents an attack that can significantly damage the

system’s operation.
Structures and Semantics. In an attack tree, each nonleaf

node represents an attack goal (or subgoal), and leaf nodes

are atomic attacks. There are two kinds of nonleaf nodes:

AND nodes and OR nodes. An AND node represents an

attack goal for which a set of subgoals must be achieved in

order for the attack to succeed. These attack subgoals are

represented by the AND node’s children. An OR node

represents an attack goal that can be achieved in several

ways, which are represented by the OR node’s children.
Attack trees can be represented graphically or textually.

A representation of an AND node is shown in Fig. 1. The

figure shows a goal G0 that can be achieved if the attacker

achieves each of G1 through Gn.
A representation of an OR node is shown in Fig. 2. It

shows a goal G0 that can be achieved if the attacker achieves

any one of G1 through Gn.
Assigning Node Values. Once the attack tree has been

created, different values can be assigned to the leaf nodes.

These values can be:

1. Boolean (e.g., possible versus impossible): A possible
node represents a feasible attack scenario; an
impossible value means the attack cannot be carried
out in the current situation. Some other Boolean
values include easy versus not easy, expensive
versus not expensive, intrusive versus nonintrusive,
legal versus illegal, and special equipment required
versus no special equipment required.

2. Continuous: Sometimes it is not enough to use
Boolean values to describe the attacks. For example,
we may want to know the probability that an attack
goal can be achieved. We can do so by assigning
continuous values to each leaf node. These values
may include the cost in dollars to attack/defend, the
effort spent to achieve/repulse, the probability that
the attack will succeed/fail, and the likelihood that
the attacker will try the attack.

Evaluating Attack Trees. After assigning values to each

leaf node, it is possible to propagate the node value up to

the root of the tree. A node’s value is a function of its

children’s values. Depending on whether a node is an AND

node or an OR node and the nature of the assigned values,

the calculation rules may differ. For example, if the

possible/impossible values are under consideration, the

AND node’s value is the Boolean and of all values of its

children, while the OR node’s value is the Boolean or of all

values of its children. When cost value is considered, the

value of the AND node is the sum of the values of its

children, and the value of the OR node is the minimum of

the values of its children.

NICOL ET AL.: MODEL-BASED EVALUATION: FROM DEPENDABILITY TO SECURITY 51

Fig. 1. AND node.
Fig. 2. OR node.

The attack tree can be used to evaluate different aspects
of the system security, depending on the kind of value that
is assigned to the leaf nodes. If a possible/impossible value
is assigned, one can enumerate all sets of possible atomic
attacks that achieve the attack goal; if a probability value is
assigned, one can use an attack tree to evaluate the
probability that the attack goal can be achieved. If a cost
value is assigned, an attack tree can be used to evaluate the
minimum cost needed to reach an attack goal.

Since atomic attacks can have multiple attributes, each
leaf node can have several different value types. Therefore,
an attack tree can be used to combine these values and help
users learn more about a system’s vulnerabilities. For
example, if one assigns a possible/impossible value as well
as a cost-in-dollars value to each node, one can use the
attack tree to find the lowest-possible-cost attack sets for the
system; if a probability value as well as a special equipment
value is assigned, one can obtain the most-probable attack
sets with no special equipment required.

Although fault trees are used primarily in dependability
analysis and attack trees are used primarily in the security
context, they share much in common. They have the same
tree structures; they both contain AND nodes and OR
nodes, which are the two most commonly used node types
in both trees; and they have similar calculation rules to
propagate node values up to the root. Therefore, many
techniques used in fault tree analysis can be applied to
analyze attack trees. For example, the SDP, BDD, or
factoring methods used to compute system reliability can
also be used in attack trees to obtain the probability that the
attack goal will be reached; the minimum cut-set and
minimum path sets analysis from fault trees can be used to
find all sets of atomic attacks that achieve the goal; and
similar concepts and computations of importance measures
in fault tree analysis can be applied to attack trees to
evaluate the impact of certain atomic attacks on the overall
system security.

Attack trees thus provide a systematic way to describe
the security vulnerabilities, thus making it possible to assess
risks and make security decisions. They capture knowledge
and expertise in a reusable form; once the attack tree for a
certain security feature has been built, it can be included as
part of a larger attack tree for a system that uses the security
feature.

3.2 Model Checking

Another important type of dependability and security
analysis is based on a reachability analysis of the model
state space, an activity sometimes known as model checking.
The general approach has a long history in hardware
verification. The idea is to analyze the state space implied
by some formal expression of the system. Certain states
reflect deleterious conditions; model-checking algorithms
explore the entire state space, report states of interest as
they are uncovered, and for each one give an example
sequence of state transitions that reaches it.

An early paper [41] described how to model the behavior
of certain types of public key protocols in terms of the
action of the protocol plus participant and intruder knowl-
edge, specify precisely the meaning of “security fault,” and
search the implicit state-space for such faults. Limitations

on protocols that could be so analyzed have been relaxed
(e.g., [42], [43], [44]).

Model-checking is also being used to analyze computer
programs for security flaws [45]. The fundamental data
structure is the program’s control flow graph, and the
fundamental concept being analyzed is a set of program
properties of an execution path, as it evolves in accordance
with the control flow graph. Chen et al. [46] report success
in analyzing large-sized well-known software packages
(Apache HTTPD, BIND, Postfix, OpenSSH, Samba, Send-
mail) for a set of particular security flaws. Actions a
program execution might take to exercise a flaw are
described with finite state automata; the model-checking
involves analyzing the control-flow graph to determine
whether the program satisfies the transitions described by
any fault automata.

Model-checking approaches are also finding application
in modeling attacks on systems (e.g., [47], [12]), where the
network state includes a description of hosts and their
vulnerabilities and a description of connectivity. In that
approach, an attacker’s state includes capabilities and
access gained so far in the course of an attack. A state
transition occurs when there is a match between a capability
in the attacker’s state and a vulnerability in the network
state, resulting (usually) in increased access somewhere in
the network. States that represent an attacker’s access to
network assets (e.g., gaining root access on a host, or an
ability to retrieve critical information from a database)
reflect successful exploits. For every asset, one can ask
whether it can be compromised (a precise definition of
which depends on the model) and, in principle, determine
the number of paths to states in which the asset is first
compromised.

The difficulty, of course, is the size of the state space.
Advances in state representation have led to an ability to
represent very large state spaces; for example, [48] indicates
that extremely large state-transition-rate diagrams can be
represented compactly using symbolic data structures such
as Binary Decision Diagrams (BDDs) and Multiterminal
Decision Diagrams (MDDs) (e.g., [26], [49]). These techni-
ques have been shown to be able to represent state-
transition-rate diagrams with 1020 or more states. Sheyner
et al. [12] report a model build-time of two hours on a
model that has 229 bits of state. From the point of view of
tractable formal models, 229 bits is remarkable; however,
this serves only to blunt the onset of the curse of
dimensionality. With respect to the need to represent the
complexities of real systems, it is still very small. A nascent
effort at finessing the state space issue by sampling paths
through the state space is reported in [50], in which a model
with 1,700 bits of state is analyzed. The fundamental idea is
to use importance sampling to guide the path sampling
strategy, in order to estimate inherent system security
metrics such as the number of unique exploits that
compromise a given asset.

3.3 State-Based Stochastic Methods

Combinatorial methods are quite limited in the stochastic
behavior that they can express. While attack-tree analysis
has become a staple in the diet of system security analysts,
the classical formulation does not capture the dependence

52 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 1, JANUARY-MARCH 2004

of security vulnerabilities on sequencing of events; to be
successful, a buffer overflow attack that gains root access
must precede the attack rm -r *.

State-space methods are much more comprehensive.
They allow explicit modeling of complex relationships (e.g.,
[51]), and their transition structure encodes important
sequencing information. Historically, state-space methods
have been explored in the context of mathematical models
that specify probabilistic assumptions about time durations
and transition behavior. We now review those models and
comment on how they are being applied in the security
context.

3.3.1 Markov Reward Models [17], [8], [52]

Let fXðtÞ; t � 0g be a homogeneous finite state continuous
time Markov chain (CTMC) with state space S and
infinitesimal generatormatrixQ ¼ ½qij�. LetPiðtÞ ¼ PfXðtÞ ¼
igdenote theunconditional probability that theCTMCwill be
in state i at time t, and the row vector PðtÞ ¼ ½P1ðtÞ; P2ðtÞ;
. . . ; PnðtÞ� represent the transient state probability vector of
the CTMC. The transient behavior of the CTMC can be
described by the Kolmogorov differential equation:

dPðtÞ
dt

¼ PðtÞQ; given Pð0Þ; ð1Þ

where Pð0Þ represents the initial probability vector (at time
t ¼ 0). The steady-state probability vector � ¼ limt!1 PðtÞ
satisfies:

�Q ¼ 0;
X
i2S

�i ¼ 1: ð2Þ

In addition to transient state probabilities, cumulative
probabilities are sometimes of interest. Define LðtÞ ¼R t
0 PðuÞdu; then, LiðtÞ denotes the expected total time the
CTMC spends in state i during the interval ½0; tÞ. LðtÞ
satisfies the differential equation:

dLðtÞ
dt

¼ LðtÞQþPð0Þ; Lð0Þ ¼ 0: ð3Þ

With these definitions, most interesting dependability
measures can be defined.

CTMCs with absorbing states deserve additional atten-
tion. Here, the measures of interest are based on the time a
CTMC spends in nonabsorbing states before an absorbing
state is ultimately reached. To compute this measure, the
state space S ¼ A [T is partitioned into the set A of
absorbing states and the set T of nonabsorbing (transient)
states. Let QT be the submatrix of Q corresponding to the
transitions between transient states. Then, the time spent in
transient states before absorption can be calculated by
LT ð1Þ ¼ limt!1 LT ðtÞ restricted to the states of the set T .
The mean time to absorption (MTTA) can be written as
MTTA ¼

P
i2T Lið1Þ.

Assigning rewards to states or to transitions between
states of a CTMC defines a Markov reward model (MRM).
Rewards are referred to as rate rewards in the former case,
and as impulse rewards in the latter case. If we consider rate
rewards only, let the reward rate ri be assigned to state i.
Then, the random variable ZðtÞ ¼ rXðtÞ refers to the

instantaneous reward rate of the MRM at time t. The

accumulated reward over the interval ½0; tÞ is given by

Y ðtÞ ¼
Z t

0

ZðuÞdu ¼
Z t

0

rXðuÞdu: ð4Þ

Based on the definitions of XðtÞ, ZðtÞ, and Y ðtÞ, which

are nonindependent random variables, various measures

can be defined. The most general is the distribution of the

accumulated reward over time ½0; tÞ, that is, PfY ðtÞ � yg,
which is difficult to compute for unrestricted models and

reward structures (see [52], [53] for a survey of methods to

compute the distribution of reward accumulated over a

finite interval).
The problem is considerably simplified if we restrict

ourselves to the expectations and other moments of random

variables. In that case, the expected instantaneous reward

rate can be computed from

E½ZðtÞ� ¼
X
i2S

riPiðtÞ ð5Þ

and the expected reward rate in steady state (when the

underlying CTMC is ergodic) is

E½Z� ¼
X
i2S

ri�i: ð6Þ

To compute the expected accumulated reward over ð0; tÞ,
we use

E½Y ðtÞ� ¼
X
i2S

riLiðtÞ: ð7Þ

For models with absorbing states, the limit as t ! 1 of the

expected accumulated reward is called the expected accumu-

lated reward until absorption, which is

E½Y ð1Þ� ¼
X
i2T

riLið1Þ: ð8Þ

Note that the reward rate assignments (or reward

structure) clearly depend on which attribute we are

interested in with respect to a system’s dependability and

security. Markov and Markov reward models have been

extensively used for dependability analysis of hardware

systems (see, for example, [8], [9], [22]), real-time system

performance in the presence of failures [54], [55], architec-

ture-based analysis software systems (e.g., [56]), combined

analysis of hardware-software reliability (e.g., [57], [58]),

system performance analysis (e.g., [17]), and performability

analysis (e.g., [8], [52], [59], [60], [61], [53]). Many sources for

solution algorithms are available (e.g., [62], [63]), and many

software packages exist (e.g., [62], [22], [64], [65], [66]).

Several models constructed from and validated against

measurement data have also been published [67], [68].
For complex systems with large numbers of components,

the number of system states can grow prohibitively large.

This is called the largeness problem for MRM models. Thus,

significant work is being done to reduce the size of the

Markov chain required for realistic system models. There

are two general approaches for dealing with the size

problem: largeness avoidance and largeness tolerance [22].

NICOL ET AL.: MODEL-BASED EVALUATION: FROM DEPENDABILITY TO SECURITY 53

3.3.2 Largeness Avoidance Techniques

When largeness avoidance is employed, the size of a model
is reduced and, therefore, a large model is not generated.
State truncation methods [69], [70], hierarchical model
solution [22], fixed point iteration [71], [72], and hybrid
models that judiciously combine different model types [22]
are examples of largeness avoidance.

State lumping (e.g., [73], [74]) has also been used
extensively as an avoidance approach. Lumping reduces
the size of a CTMC by considering the quotient of the
CTMC with respect to an equivalence relation (i.e., replaces
a set of states with a single lumped state) that preserves the
Markov property and supports the desired performance
measures defined on the CTMC. By solving the smaller
CTMC, it is possible to compute exact results for the larger
CTMC and, therefore, measures of interest for the original
model.

A state-level lumping technique is a lumping technique
that exploits the lumping properties at the CTMC level. The
main advantage of state-level lumping techniques is that
they generate the optimal (i.e., smallest possible) lumped
CTMC. However, since they can perform efficiently only on
a sparse matrix representation of a CTMC, they have
prohibitive space requirements for very large CTMCs;
therefore, they are usually used along with other CTMC
solution techniques. Buchholz [75] gives a state-level
lumping algorithm with OðmnÞ time complexity and Oðmþ
nÞ space complexity for computing the optimal (i.e.,
coarsest) lumping of a CTMC represented as a sparse
matrix, where n is the number of states andm is the number
of transitions of the CTMC.

Several authors have also addressed the problem of
computing bisimilarity [76], which is, in some ways, similar
to the problem of state-level CTMC lumping. Kanellakis
and Smolka gave a partition refinement algorithm with time
complexity OðmnÞ [77]. They conjectured that an algorithm
exists that reduces the time complexity to Oðm lognÞ. A few
years later, Paige and Tarjan designed such an algorithm
[78]. An implementation of Paige and Tarjan’s algorithm
can be found in [79]. Oðm lognÞ complexity has been
claimed without formal proof by Bernardo and Gorrieri
[80] for CTMCs and by Huynh and Tian [81] for discrete-
time Markov chains (DTMCs). Derisavi et al. [82] recently
provided an Oðm lognÞ lumping algorithm, along with a
rigorous proof. The approach they take is based on Tarjan
and Paige, and uses new data structures to obtain the
bound.

In contrast, model-level lumping techniques identify
appropriate lumping properties by operating on a higher-
level formalism (see the following section for a description
of one such formalism) and directly constructing a lumped
CTMC, rather than by constructing the unlumped CTMC
and then operating on it. The lumping equivalence relation
is established by the modeling formalism itself in some
model-level lumping techniques. That holds for stochastic
well-formed nets (SWNs) [83] and replicate/join operators
in stochastic activity network-based composed models
(SANs) [84], in which the lumping results from equivalence
of the replicas of a particular submodel. Extending the work
of [84], Obal developed [85] a graph composition formalism

and used symmetry detection, a type of model-level
lumping technique. The technique automatically identifies
and exploits all the structural symmetries due to the
interaction between submodels of a state-sharing composed
model, that is, a model consisting of submodels that share a
subset of their state variables. Restricted versions of a
symmetry detection technique similar to the one described
in [84] have also been used for process algebras in [86], [87].
Unlike state-level lumping, model-level lumping techni-
ques do not always find the optimal lumping because they
do not operate at the CTMC level.

Other lumping techniques, which we call compositional
lumping techniques, can be applied to composed models
provided that the specific high-level formalism satisfies a
particular set of assumptions. In these techniques, each of
the individual interacting submodels is lumped separately
from the others using a state-level lumping algorithm, and
is then replaced in the overall model by its lumped version.
For example, based on the fact that lumping is a congruence
with respect to parallel composition in a number of process
algebra formalisms and stochastic automata networks,
compositional lumping can be used in those formalisms to
generate lumped state spaces (e.g., [88], [89], [90], [91], [92],
[93]). Most of the work on compositional lumping applies
only to state-level lumping inside the submodels. In some
cases, in addition to lumpability in each of the submodels,
the structural symmetry of the interaction among the
submodels may also be exploited to achieve even smaller
CTMCs. In other words, for some composed models, a
compositional lumping algorithm that applies the state-
level and model-level lumping techniques at the same time
could give an extra opportunity to shrink the CTMC.
Therefore, a fairly general algorithm that integrates the two
techniques for a compositional formalism is desirable.

Another largeness avoidance technique is called aggrega-
tion.1 In this approach, as in lumping, a set of conditions for
partitioning the set of states of a CTMC is given such that a
smaller CTMC is constructed by replacing the set of states
in each block of the partition with a single state. The
aggregation differs from lumping in that the solution of the
aggregated CTMC gives approximate results (with or
without bounds) on the original CTMC, as opposed to the
exact results that would be obtained from the lumped
CTMC. Moreover, some aggregation techniques are only
applicable to CTMCs that satisfy a strict set of conditions.
However, aggregation conditions could result in a coarser
partition and, therefore, a smaller CTMC, compared to the
lumping conditions. An aggregation technique for steady-
state analysis of a general CTMC has been proposed in [94],
[95]. It gives the best known bounds on the result but is
computationally costly, and the bounds are tight only if the
matrix satisfies some strict constraints. Bobbio and Trivedi
[96], [97] extended Courtois’s technique to the domain of
transient analysis of CTMCs. Daly et al. [98] give a more
general aggregation technique that can solve for both
steady-state and transient measures of general CTMCs. It
introduces a new partial order on the set of states of a
CTMC that is a generalization of the concept of lumping.

54 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 1, JANUARY-MARCH 2004

1. Note that different authors use the terms lumping and aggregation
differently.

3.3.3 Largeness Tolerance Techniques

Even a lumped CTMC can be extremely large and, hence,
largeness tolerance techniques are needed to provide practical
modeling support for large CTMCs. In those techniques,
one starts with a concise high-level representation of the
system being modeled (usually a variant of stochastic Petri
net or stochastic process algebra; see a following section).
Then, new algorithms are designed to manipulate the large
underlying CTMCs, and special data structures and/or
representations are utilized to reduce the space require-
ments of the state space, the generator matrix, and the
iteration vectors. Those techniques are usually, but not
always, associated with compositional modeling.

Binary [26] and multivalued decision diagram [99] (BDD
and MDD) data structures have been successfully applied
to efficiently explore and represent large unlumped state
spaces. The key idea is to encode states as paths in a
directed acyclic graph. Techniques that generate state
spaces using decision diagrams are referred to as symbolic
state-space exploration and representation techniques (e.g.,
[49], [100]).

MDD data structures have been used in [48] to explore
large state spaces of models built using an action synchro-
nization (also known as action-sharing) high-level composi-
tional formalism in which submodels interact by
synchronized firing of a subset of their actions. Saturation,
a state-space exploration technique that was introduced in
[101], improved the running time of the algorithm given in
[48] by up to a few orders of magnitude, thus enabling the
exploration of even larger state spaces. In [48], [101], it was
assumed that the state spaces of individual submodels were
known a priori, i.e., the state spaces of the submodels
computed by exploring the submodels in isolation are finite
and result in the same state spaces they would have if they
had been explored in interaction with the rest of the model.
This assumption was relaxed later in [102]. Those state-
space exploration techniques are applicable to action-
synchronization composed models that conform to a set
of particular structural restrictions called the logical product
form property [48].

One approach in space-efficient representation of gen-
erator matrices is to follow a divide-and-conquer strategy
and represent the matrix with a set of relatively small
component matrices that are appropriately combined. The
earliest attempt using that approach was made by Plateau
[103] and Plateau and Atif [104], who proposed a technique
in which the generator matrix of a CTMC generated from a
specific compositional high-level formalism need not be
explicitly stored. Instead, the matrix is implicitly repre-
sented as a mathematical expression consisting of Kronecker
operators and a number of relatively small matrices derived
from the structure of submodels. Later, the “Kronecker
representation” technique was extended to more general
formalisms, and a number of its shortcomings were
resolved [105], [106], [107], [108], [109], [110]. The approach
is applicable only to action-synchronization models that
satisfy certain structural constraints.

A parallel effort was undertaken by Ciardo and Miner
[111], who proposed thematrix diagram (MD) data structure
to store the generator matrix of action-synchronization

composed models. An MD is structurally similar to an
MDD and, along with an MDD, represents the set of states
and transitions of a very large CTMC. Efficient algorithms to
manipulate MDDs and MDs have been given in [111]. In
[111], the algorithm that generates the MD data structure is
time-efficient, butworks only for composedmodels that hold
the logical product form property. Later, Miner [112]
developed canonical MDs (CMDs), a proper subset of
MDs, and presented an algorithm to store virtually any
matrix in the form of a CMD. In particular, he used the
algorithm to generate the CMD representation of the
generator matrix of models based on the generalized
stochastic Petri net (GSPN) formalism, which is a fairly
general Markov modeling formalism. Since the algorithm
added matrix elements to the CMD data structure one by
one, and without exploiting any structural information, its
running time was prohibitive. As mentioned above, both
CMDs andMDs can represent virtually any generatormatrix
regardless of the modeling formalism from which it was
generated. The challenge is then to develop algorithms that
build (C)MD representations of generator matrices of other
formalisms in a time-efficient manner.

In contrast, the disk-based approach first introduced in
[113] performs steady-state solution by storing the gen-
erator matrix of the CTMC in the disk instead of the
memory while using a variant of block Gauss-Seidel as the
iterative solution algorithm. To increase the utilization of
the CPU, the algorithm implementation concurrently
fetches parts of the matrix from the disk and performs
computation on other in-memory parts of the matrix. By
using disk instead of memory to store the matrix, the
technique enables the solution of CTMCs that are one or
two orders of magnitude larger than what would be
possible if using only memory.

Likewise, the “on-the-fly” technique of [114] completely
avoids the storage of the generator matrix by (re)generating
the elements of the matrix as they are needed in an iterative
solution algorithm (steady state or transient solution). The
elements are computed on-the-fly from the model, which is
given in a high-level formalism. Repetitive calculations of
the elements incur a substantial computational overhead.

The path-based approach is yet another largeness
tolerance technique for performing transient analysis of
CTMCs while avoiding the storage of the CTMC and
possibly the iteration vector. In this approach, a limited
number of paths (i.e., sequences of transitions) of the CTMC
that make a major contribution toward the measures of
interest are enumerated. Then, the reward is computed only
for those paths. The first notable work based on that
approach was given by de Souza e Silva and Gail [115], and
they later improved it in [116]. Later, Qureshi and Sanders
improved the numerical stability and computational com-
plexity of [116] in [117]. Most recently, Lam et al. [118] use
Kronecker operators to represent both the CTMC and the
iteration vector to compute approximate results for tran-
sient analysis of an action-synchronization composed
model.

3.3.4 Other Challenges

When there is a large difference between failure and repair
rates or failure and job arrival rates in the model, it leads to

NICOL ET AL.: MODEL-BASED EVALUATION: FROM DEPENDABILITY TO SECURITY 55

the stiffness problem for MRM models. Stiffness can be
reduced by separating the performance and availability
models, but the stiffness within the availability model
remains. Stiffness may be avoided by using aggregation
[96], [97] that yields approximate solutions. To tolerate
stiffness, special stable stiff solvers may be used (e.g., [119],
[120], [121], [122]).

Largeness and stiffness problems may also be caused by
combining the performance and availability models in a
single monolithic performability model. Solving an overall
model of system behavior can potentially yield more
accurate results than solving two smaller, less stiff models
that only lead to approximate solutions. However, we
should note that numerical difficulties arising from large-
ness and stiffness may very well negate this gain [52], [60].

A major objection to the use of homogeneous Markov
models in the evaluation of performance and dependability
behavior of systems is the assumption that the sojourn
(holding) time in any state is exponentially distributed.

The exponential distribution has many useful properties
that lead to analytic tractability, but it does not always
realistically represent the observed distribution functions.
One way to deal with nonexponential distributions is the
phase-type approximation, which consists of modeling a
distribution with a set of states and transitions between
those states such that the holding time in each state is
exponentially distributed [8], [123]. The simplest examples
of phase approximation are the hyperexponential distribu-
tion with a coefficient of variation larger than 1, and
hypoexponential distribution with a coefficient of variation
less than 1. Although the method of phase-type approxima-
tion enables us to use MRMs, its major drawback is that it
usually results in a large state space.

If transition rates in a CTMC are allowed to be time-
dependent, where time is measured from the beginning of
system operation, the model becomes a nonhomogeneous
CTMC. Such models are used in software reliability
modeling (e.g., [124], [125]) and in hardware reliability
models of nonrepairable systems (e.g., [126]).

Due to the assumptions that holding times in the state
are exponentially distributed and that past behavior of the
process is completely summarized by the current state of
the process, any observation instant in a homogeneous
CTMC acts as a regeneration point for the process. The first
assumption can be relaxed by allowing the holding time to
have any distribution, thus resulting in a semi-Markov
process (SMP), where the epoch of each state transition is a
regeneration point [127]. This assumption can be relaxed by
assuming that not all state transitions are regeneration
points, thereby resulting in a Markov regenerative process
(MRGP) [128].

3.3.5 Higher-Level Model Representations

CTMCs are rarely used directly to specify a system’s model
in a typical modeling process. Many high-level modeling
formalisms have been created to fill the gap between CTMC
specification and system design specification. Examples of
those formalisms include variants of stochastic Petri nets
(e.g., [129], [64], [130], [131]), variants of stochastic process
algebras [132], [90], [80], [133], and interactive Markov
chains (IMC) [93]. To illustrate the usefulness of these

model types, we describe stochastic Petri nets and exten-
sions in more detail, and illustrate their use in the context of
security.

Stochastic Petri nets (SPNs) and extensions have been
developed as extensions to untimed Petri nets (originally
introduced by C.A. Petri in 1962) with timed transitions for
which the firing time distributions are assumed to be
exponential. SPNs have been extensively used in the area of
dependability evaluation (e.g., [8], [134]) due to the small
size of their descriptions and their visual/conceptual
clarity. They allow the designer to focus more on the
system being modeled rather than on error-prone and
tedious manual creation of a lower-level MRM.

To specify an SPN, one has to define a set of places P , a
set of transitions T , and a set A of arcs between transitions
and places: A � ðP � T Þ [ðT � P Þ. Each place can contain
zero or more tokens. Graphically, places are depicted as
circles, transitions as bars, tokens as dots in circles, and arcs
as arrows.

The distribution of tokens over the places is called a
marking and corresponds to the notion of state in a Markov
chain. All places from which arcs go to a particular
transition are called the input places of that transition. All
places to which arcs go from a particular transition are
called the output places of the transition. A transition is said
to be enabled when all of its input places contain at least one
token. If a transition is enabled it may fire. Upon firing, a
transition removes one token from each of its input places
and puts one token in each of its output places, possibly
causing a change of marking, i.e., a change of state.

The firing of transitions is assumed to take an exponen-
tially distributed amount of time. Given the initial marking
of an SPN, all the markings as well as the transition rates
can be derived, under the condition that the number of
tokens in every place is bounded. Thus, a Markov chain is
obtained.

Classically, SPNs and extensions are solved via an
underlying MRM that can be automatically derived, there-
by making it possible to use the wide variety of available
techniques for MRMs.

In the last two decades, many extensions to the basic
SPN model have been proposed to enhance its modeling
power and flexibility of use. They include arcs with
multiplicity, a shorthand notation for multiple arcs between
a place and a transition, immediate or instantaneous
transitions that fire in zero time, and inhibitor arcs from
places to transitions that prevent a transition from firing as
long as there are tokens in the place. The most popular
model of this type is called generalized stochastic Petri nets
(GSPNs) [129]. More flexible firing rules have also been
proposed, most notably the introduction of gates in
stochastic activity networks (SANs) [130], [131] and guards
or enabling functions in stochastic reward nets (SRNs) [64].
The extended stochastic Petri net (ESPN), in which general
firing time distributions are allowed, has a semi-Markov
process [135] as the underlying process, when certain
restrictions are met.

Deterministic stochastic Petri nets (DSPNs) allow the
definition of immediate, exponential, and deterministic
transitions [136]. The stochastic process underlying a DSPN

56 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 1, JANUARY-MARCH 2004

is a Markov regenerative process. Markov regenerative
stochastic Petri nets (MRSPNs) generalize DSPNs and still
have MRGP as an underlying stochastic process [137].
Concurrent generalized Petri nets (CGPNs) allow simulta-
neous enabling of any number of immediate, exponentially
timed, and generally distributed timed transitions, pro-
vided that all generally distributed transitions are enabled
at the same instant. The stochastic process underlying a
CGPN is also an MRGP [138]. Fluid stochastic Petri nets
allow for continuous state variables [139], [140].

3.4 Applications to Security Modeling

As described earlier, state-based techniques have been
extensively developed and used in classical dependability
contexts. They are now also beginning to be used in security
analysis. For example, Ortalo et al. [141] have proposed
modeling of known system vulnerabilities using “privilege
graphs,” followed by a combination of the privilege graphs
with simple assumptions about attacker behavior to obtain
“attack-state graphs.” The latter can be analyzed using the
Markovian reward models described above to obtain
probabilistic measures of security. An interesting definition
of reward used here is the “effort” needed to make a
transition (which usually represents some sort of system
compromise).

The types of Markovian models described above ascribe
distributional properties to high-level system and attacker
behaviors. Accepting this, we have still the issue of
quantifying the scale of these stochastically modeled
activities, particularly those related to attacks. Early
groundbreaking work in this regard was done by Little-
wood et al. [142]. Their work was exploratory in nature and
identified “effort” made by an attacker as an appropriate
measure of the security of the system. Effectively, the model
consisted of only two states, viz. “working” and “security
failed state.” The latter state was assumed to be an
absorbing state. With respect to the above discussion, the
relevant security measure turns out to be “mean effort to
(security) failure.” Jonsson and Olovsson [143] attempted to
build a quantitative Markov model of attacker behavior
using data from several experiments they conducted over a
two-year period. They postulated that the process repre-
senting an attacker may be broken into multiple phases,
each of which has an exponential time distribution. The
overall attacker behavior therefore requires nonexponential
characterization.

More recently, Singh et al. [13] have used stochastic
activity networks to validate an intrusion-tolerant system,
emphasizing the effects of intrusions on the system
behavior and the ability of the intrusion-tolerant mechan-
isms to handle those effects, while using very simple
assumptions about the discovery and exploitation of
vulnerabilities by the attackers to achieve those intrusions.
Gupta et al. [14] have used a similar approach to evaluate
the security and performance of several intrusion-tolerant
server architectures. Madan et al. [10] have used a semi-
Markov model to evaluate the security properties of an
intrusion-tolerant system. Depending on the particular
attack scenario, various states may be associated with
failure of availability, integrity, and confidentiality. The
security may then be quantified in terms of the mean

time to security failure and in terms of the absorption
probabilities.

Furthermore, Dacier et al. [144] have proposed a two-
stage technique that starts by converting a privilege graph
into an SPN by treating each atomic attack as a transition in
a stochastic Petri net. In the second stage, the markings of
this SPN generate a continuous-time Markov chain. Making
simple assumptions about the attacker, the chain may be
analyzed using the Markov reward techniques to obtain
probabilistic measures of security in terms of the mean time
to reach “security failed” states and other related measures.
In [145], Wang et al. use stochastic reward nets to model
both attacker and system behavior for an intrusion-tolerant
architecture named SITAR [4]. Likewise, probabilistic
methods have been used to model the DPASA [21]
architecture. In the DPASA project, system validators
combined structured requirement specification, probabilis-
tic modeling, experimental evaluation, logical arguments,
and formal methods to build an overall survivability
argument for the architecture. Fig. 3 shows an example of
an “argument graph” that links together arguments that
make use of these methods.

A promising application of stochastic state-based meth-
ods in the security context is to quantify direct, high-level
measures of the service that one can expect from a computer
system or network in spite of cyber attacks that may occur.
In order to do so, one needs a notion of time in the system
model and a probabilistic notion of system and attacker
behavior. High-level service measures can be defined to
quantify system performance under cyber attack, so that
1) systems can be represented as state-level models in a way
that captures either known or unknown vulnerabilities,
2) attacker behavior can be modeled in such frameworks,
and 3) measurement can be used to quantify parameters
describing known vulnerabilities.

A model for probabilistic validation of security with
respect to high-level system properties (e.g., availability,
privacy, and integrity) should have several components. It
should contain representations of attackers, the system,
and the assets, resources, and privileges associated with
the system. It should represent attacker decision-making
and all temporal aspects of his, and the system’s,
behavior, and the application (or applications) that
provide services of interest [146].

NICOL ET AL.: MODEL-BASED EVALUATION: FROM DEPENDABILITY TO SECURITY 57

Fig. 3. DPASA argument graph structure.

Model specification of behaviors needs to focus on the
appropriate stochastic measures and their relationship to
services, and determine how they are reflected in the model.
Such a model ought to capture relevant attacker behavior, the
workload demanded of the system, the intended application
(which defines the service that must be provided in spite of
cyber attacks that may occur), a model of security and
survivability mechanisms employed, and a model of the
resources/privileges that are needed by the application to
provide its services. Fig. 4 shows the relationship of these
parts of the model to one another. The arcs connecting
submodels in the figure represent possible interactions
between submodels that can change their state. For
example, the attacker may be able to change the state of a
resource or amount of privilege granted to him (as
represented by the directed arc from the attacker to the
Resource/Privilege State submodel), or the attacker may
change his state (and, hence, change his behavior) by using
knowledge he has gained by observing the state of the
system (represented by the directed arcs from the system
submodels to the attacker). This general framework [146] is
one we are using to develop models of specific applications
on specific architectures.

Development of measurement techniques is just as
important as the development of models to quantify
security. Measurements should be developed for two
purposes in this regard: 1) to guide construction of and
provide input parameter values for models, and 2) to
validate the correctness of models. In particular, with
regard to the first objective, the appropriate level of
detail/abstraction depends on the input parameter values
(obtained from measurement data) available for each
model. The type and accuracy of input parameter values
available will depend on the stage of development of the
system that is being validated. For existing systems, one
could use methods similar to Jonsson’s as a starting point to
obtain values that quantify the behavior of an attacker. A
recent study that placed significant emphasis on the
development of an attacker effect model is [21]. The attacker
model developed there is quite detailed, but tailored to the
system being studied. It is not clear if it will be possible to
build attacker models that are more generic, but still have
the detail needed for meaningful representation.

Concerning the Resource/Privilege State model, one
could use a security scanner like Nessus [147] combined
with a network exploration and security auditing tool like
nmap [148] to obtain model parameter values. Likewise,
tools like COPS [149], Tiger [150], or Ferret [151] could be
used to quantify host security vulnerabilities. The advan-
tage of these tools is that the list of vulnerabilities is

updated as new vulnerabilities are discovered. The applica-
tion, security and survivability mechanism, and workload
models are more case-specific, and require further study to
determine appropriate input parameters and their values. It
appears that the best route forward is from specific to
general. We and others are currently building models of this
type for specific system designs, and investigating how to
obtain parameter values for them. It is our hope that these
experiences will guide us in constructing more general
models and approaches for parameter value estimation.

The second objective, model validation, is a more
difficult issue, both for classical dependability models and
for security models whose goal is quantification. We are not
aware of any “silver bullet,” other than the hard and
meticulous work and significant time required to collect
data on attackers and systems that are intended to be
secure. Once that has been done, one can compare the
insights gained from the data collected to those obtained
from quantitative models. Note, however, that the value of
most quantitative security models, like most classical
dependability models, will be in gaining insight and
making decisions about how best to make a system
secure/dependable, rather than making a precise statement
about a specific system’s absolute dependability or security.

3.5 Simulation

As just argued, the state space of a system model may be
too large to be analyzed in its entirety. Nevertheless, in
principle, we can construct statistical estimators of all the
system measures computed by the quantitative techniques
we have described. Rather than generate and analyze the
entire state space, we generate and analyze randomly
chosen paths through the state space; typically, we sample
many paths independently of each other (in a strict
probabilistic sense of “independent”). This focus on
evaluating a system by individual trajectories of the system
is commonly known as simulation.

3.5.1 Statistical Issues

A major issue when using simulation to estimate system
measures is that of how to do so in a way that ensures the
statistical quality of the estimates. The first concern is that
the estimator be unbiased, which is a technical term that
means that the mean value of the estimator (itself a random
variable) is the same as the mean value of the random
system measure being estimated. Proof that an estimator is
unbiased is powerful insofar as it implies (by the law of
large numbers) that the arithmetic average of many
independent unbiased estimates converges to the mean of
the random samples, which is the same as the mean of the
system measure being estimated.

A more subtle statistical issue is the variance exhibited
by the estimator. To illustrate this issue, imagine a system
measure whose mean is a small probability, say 1e� 5.
Further imagine that one way of estimating this probability
creates estimates that fall almost entirely in the range
0:95e� 5 to 1:05e� 5, and another generates estimates that
fall almost entirely in the range 1e� 7 to 1e� 3. The first
method of estimation is clearly better because its values are
almost always closer to the true mean than the values of the
second method are. The practical impact of using a low

58 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 1, JANUARY-MARCH 2004

Fig. 4. Probabilistic security model structure.

variance estimator is that, for a given level of accuracy,
lower variance implies that fewer samples are needed to
achieve that accuracy.

The issues of bias and variance are particularly sig-
nificant when the measure of interest is a small probability
and, therefore, are significant in the context of depend-
ability and security. So-called variance reduction techniques
[152] have been developed in reliability and performance
analysis, but are characterized by the need to exploit a
model’s structure in order to be provably effective. Work is
needed to explore how variance reduction technology can
be applied to models focused on the idiosyncrasies of
security issues.

The technique of simulating a system independently
many times is necessary when one is interested in
transient measures; the measures of interest can be
repeatedly sampled at the given instants of interest. This
same technique is used to estimate asymptotic measures.
For example, consider the estimation of a queue’s
asymptotic average length. Using independent replica-
tions one runs N statistically independent simulations,
and generates N independent samples of the average
queue length. Each sample is the queue length averaged
over an interval of simulation time ½s; T �, where the
system is deemed to be in “steady state” by time s, and T
is the simulation termination time. Standard statistical
methods can be used to compute confidence intervals
around a sample mean. However, replications per se are
sometimes not needed to estimate asymptotic measures.
One can instead push the model along a single sample
path, but for a period of simulation time long enough to
force the system into steady state, and then use samples
taken across time, rather than samples taken across
replications. Applied to the example above, one runs
the simulation to time T 0. The method of batch means
[153] partitions the interval ½s; T 0� into successive epochs
of duration �, and measures average queue length over
each. For many types of models, when � is large, the
measurements are nearly independent, so confidence
intervals can be constructed. Depending on 1) how long
the simulation must be run until reaching steady state
(i.e., time s), 2) the length of simulation time needed for a
“good” sample (T � s), and 3) the size of the epoch
needed to give near-statistical independence to successive
estimates (i.e., �), the computational cost of doing a long
run can be smaller than the computational cost of N
independent replications. If we take the total length of
simulation time traversed as an indicator of computa-
tional work, the cost of N independent replications is
N � ðsþ ðT � sÞÞ, while the cost of a long run is
sþN ��. A little algebra shows that independent
replications cost more when ðN � 1Þs > Nð�� ðT � sÞÞ.

The point of selecting a large � is to try to heuristically
create statistical independence between successive samples
in a long run. It is possible to bring more rigor to this
intuition, using the notion of regeneration points [154]. The
idea is that certain systems sometimes enter states from
which they probabilistically start over in the sense that the
future behavior is independent of the past. The simplest
example of such a regeneration point is the beginning of an

idle period for an M/G/1 queue; the Poisson arrivals imply
that there is no probabilistic memory of the time since the
last arrival, and the fact that the queue is empty implies that
there are no complications owing to interrupted service
times. At such an instant, the future behavior of the queue is
in a probabilistic sense completely independent of anything
that has happened in the past. The implication is that
epochs separated by regeneration points can, for the
purposes of sampling measures, serve as independent
replications of system behavior. Just as discovery of
sampling schemes that lead to variance reduction depends
very much on the particulars of the model, so likewise does
identification of regeneration points. To make this technol-
ogy work in the context of security analysis, we must
identify or construct models in which regeneration points
can be readily identified.

The challenges of using stochastic simulation models on
system models in a security context partition along the lines
of attributes of interest. Those attributes described by
numbers, e.g., availability or performability, can be treated
using known quantitative techniques; however, optimiza-
tions such as variance reduction require domain-specific
insight that has yet to be generally developed in this
context. New attributes more closely tied to security (e.g.,
confidentiality, nonrepudiation, and authentication) are
fundamentally different in that they are system properties,
not system measures. If classical stochastic simulation
output analysis is to be used to help evaluate these
attributes, then numeric measures of some sort will have
to be developed to quantify these properties.

3.5.2 Simulation Model Representation

Model formalisms are often developed to expose under-
lying structure common to different models. The beauty of a
stochastic Petri net formalism is that one may use it equally
well to describe a communication synchronization protocol
and a machine maintenance and repair schedule since the
underlying mathematics and analysis algorithms remain
the same. The flip side of the coin, however, is that such
formalisms have built-in constraints whose effects limit
how a model can be expressed. Some models just do not fit
the formalisms. A common use of simulation is to express
systems using formalisms that are not as mathematically
tractable as Markov chains or SPNs, but which allow
greater freedom of expression and “look” more like the
systems they represent. Simulation languages have been
developed to this end (for a comprehensive overview of
simulation languages, see [155]); general-purpose program-
ming languages are also used, e.g., [156], [157]. Generality
of expression is extremely important if we are to capture the
complicated unexpected interactions that trigger security
failures.

On the other hand, certain types of simulation models
demand less detail, rather than more. A good example of
this is Internet worm propagation, for which differential
equations have been used [158], [159], [160], [161], [162]. The
need for such high-level abstractions is computational;
worms propagate over the entire Internet, and it is
computationally infeasible to model individually infected
hosts, sending individual probes and infection packets.

NICOL ET AL.: MODEL-BASED EVALUATION: FROM DEPENDABILITY TO SECURITY 59

3.5.3 Simulation and Security Analysis Today

By far, the most common use of simulation today in a
security context is the use of normal network simulation
tools to model a system and then model traffic representing
attacks. Such models are useful for quantifying diverse
system measures in the midst of attacks and counter-
measures, e.g., see [163], [164], [165]. Equally common,
though, is the use of simulation as a means of education and
discovery. For example, there is an effort underway at the
Naval Postgraduate School [166], [167] to build a simulator
designed to get students engaged in the process of system
configuration and cyber attack defenses, in addition to
playing the role of cyber attackers. The interest here is less
on the specifics of quantifying system behavior, and more
on providing enough realism for students to learn about
security issues. Similar efforts are underway elsewhere
[168], [169].

Simulation is also being used to help government
agencies practice appropriate responses to cyber attacks
on their information technology infrastructure. Two notable
examples are a cyber attack exercise conducted in Seattle in
conjunction with the May 2003 TOPOFF dirty-bomb
exercise [170] and the October Livewire cyber war exercise
[171]. In the Livewire exercise, simulated attacks on a
simulated network caused disruption of simulated services.
Exercise players then worked through their responses (e.g.,
who to call, appropriate network reconfiguration, and so
forth) to degraded capability. Again, the users looked to the
simulation to provide a “realistic” simulated network
behavior, not to quantify system metrics precisely (although
capturing the general trend of system metrics under cyber
attack is critical to the whole approach).

Despite the seeming divergence of this style of simula-
tion from very mathematical quantitative analyses, there is
potential for closer linkage. Loose requirements on the
accuracy of quantitative measures open the possibility for
other types of models and analyses to play an important
role as fast approximations, albeit hidden from the user. We
can look forward to work that incorporates diverse
modeling methodologies in such applications of simulation.

4 CHALLENGES AND CONCLUSIONS

In the previous sections, we have reviewed measures that
are pertinent to dependability and security evaluation,
surveyed existing techniques for dependability evaluation,
and given examples of how those techniques are currently
being applied to the evaluation of certain security proper-
ties. While these applications suggest that there is merit to
using stochastic techniques to evaluate security properties,
they also suggest that significant new work is necessary to
create a sound, model-based framework for quantifying
system security.

That goal is clearly important since history suggests that
it will be difficult, if not impossible, to build systems that
can be shown to be perfectly secure. Hence, in order to have
confidence that a given design will perform its intended
function, we must be able to quantify its security. At the
highest level, we believe that this work falls into two
categories: 1) modeling attacker behavior and 2) creating a

single, comprehensive methodology for evaluating whether
a design meets one or more high-level requirements related
to security. We outline the issues and challenges related to
each of these needs in the following.

The first challenge is related to appropriate modeling of
the behavior of cyber attackers. Just as appropriate fault
models are critical to dependability evaluation, appropriate
attacker models are critical to quantitative security evalua-
tion. Determining the appropriate level of detail/abstrac-
tion in an attacker model is very important and depends on
the scope and purpose of the model. Different attacker
models will be needed for different purposes and different
attack classes. For a given model, the level of detail/
abstraction that is appropriate will depend on many factors.
For example, the system submodels should represent the
parts of a system that are important, relative to the types of
attacks considered and the expression of a particular
security measure. In particular, they must be detailed
enough to support the expression of those parts of state
that an attacker may change and those parts that may
change his behavior.

Depending on the nature of the attack, the attacker
model may either represent details of the attack or intrusion
itself (corresponding to explicit representation of a fault in a
dependability model) or represent the effect of the intrusion
(corresponding to the representation of the error in a
dependability model). We believe that by representing
attacker behavior in terms of effects, rather than attacks/
intrusions, we can cover a large class of attacks/intrusions
(including unknown (“zero day”) attacks) in a model.

Development of a comprehensive methodology for
system-level security quantification is also a significant
challenge. As described earlier in the paper, stochastic
evaluation techniques originally intended for use in
dependability evaluation have been successfully used to
evaluate certain security attributes, including availability
and survivability. However, other attributes, such as
confidentiality and nonrepudiation, are more difficult to
evaluate using standard, stochastic, techniques.

These measures may be better validated via so-called
“formal” methods. The different natures of these multiple
security measures suggest that the individual application of
any of the techniques we have described is insufficient to
validate large systems that are intended to be secure. While
each of those techniques has the ability to evaluate certain
kinds of security measures, such abilities may have
limitations when one is attempting to use a single approach
to validate the system with respect to a fairly high-level
security requirement.

What is needed is an integrated validation framework
that permits the use of multiple evaluation techniques in
an organized manner. Starting with a system and a high-
level set of security requirements, the framework should
provide a top-down approach to methodically break the
problem of validating the system with respect to its
security requirements into manageable tasks, and provide
steps that deal with each of those tasks. Each step would
use one or more individual evaluation techniques. A
symbiotic relationship should be established among the
various techniques such that they complement and
supplement each other to build the overall argument.

60 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 1, JANUARY-MARCH 2004

Such an approach would make it possible to handle the
validation of very large-scale systems, producing sys-
tematic and well-documented arguments about their
security. Such integrated approaches to evaluation have
been applied in the safety community, resulting in so-
called “safety cases,” suggesting that a similar approach
might be useable for security quantification.

In summary, stochastic evaluation techniques inspired
by dependability evaluation methods have the potential to
be used, with appropriate extension, for security evaluation.
Several studies that take this approach have already been
made, indicating the promise of this approach. However,
there are still significant obstacles to the creation of a
comprehensive, integrated approach to the evaluation of
multiple security properties, as outlined above. There are
ample opportunities for further research.

ACKNOWLEDGMENTS

The authors would like to thank their past and current
research sponsors for supporting this work, and their
colleagues and students, both past and present, who also
contributed to the research described herein. They would
particularly like to thank Mr. Salem Derisavi, Mr. Yun Liu,
Dr. Bharat Madan, and Mr. Dazhi Wang in this regard.
They would also like to thank Ms. Jenny Applequist for her
editorial assistance. Their sponsors include the US National
Science Foundation (CCR-0209144, EIA-99-75019, INT-
0233490, CCR-0311616, CNS-0406351), AFOSR MURI
(F49620-1-0327), the Defense Advanced Research Projects
Agency, Motorola, and Pioneer Hi-Bred. Their work was
also supported under Award No. 2000-DT-CX-K001 from
the Office for Domestic Preparedness, US Department of
Homeland Security. Points of view in this document are
those of the author(s) and do not necessarily represent the
official position of the US Department of Homeland
Security, or any of the other sponsors. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not
necessarily reflect the views of the US National Science
Foundation.

REFERENCES

[1] Y. Deswarte, L. Blain, and J.C. Fabre, “Intrusion Tolerance in
Distributed Computing Systems,” Proc. IEEE Symp. Research in
Security and Privacy, pp. 110-121, May 1991.

[2] B. Dutertre, V. Crettaz, and V. Stavridou, “Intrusion-Tolerant
Enclaves,” Proc. IEEE Int’l Symp. Security and Privacy, pp. 216-224,
May 2002.

[3] M. Cukier, J. Lyons, P. Pandey, H.V. Ramasamy, W.H.
Sanders, P. Pal, F. Webber, R. Schantz, J. Loyall, R. Watro,
M. Atighetchi, and J. Gossett, “Intrusion Tolerance Approaches
in ITUA,” Supplement of the Proc. 2001 Int’l Conf. Dependable
Systems and Networks, pp. B-64-B-65, July 2001.

[4] F. Wang, F. Gong, C. Sargor, K. Go�sseva-Popstojanova, K.S.
Trivedi, and F. Jou, “SITAR: A Scalable Intrusion Tolerance
Architecture for Distributed Services,” Proc. IEEE Second SMC
Information Assurance Workshop, pp. 38-45, June 2001.

[5] C. Landwehr, “Formal Models for Computer Security,” Computer
Surveys, vol. 13, no. 3, pp. 247-278, Sept. 1981.

[6] J. Lowry, “An Initial Foray into Understanding Adversary
Planning and Courses of Action,” Proc. DARPA Information
Survivability Conf. and Exposition II (DISCEX ’01), pp. 123-133, 2001.

[7] A. Avizienis, J. Laprie, and B. Randell, “Fundamental Concepts of
Dependability,” LAAS-CNRS, Technical Report N01145,Apr. 2001.

[8] K.S. Trivedi, Probability and Statistics with Reliability, Queuing, and
Computer Science Applications, second ed. New York: John Wiley
and Sons, 2001.

[9] M.L. Shooman, Probabilistic Reliability: An Engineering Approach,
second ed. Malabar, Fla.: R.E. Krieger Publishing Co., 1990.

[10] B. Madan, K. Go�sseva-Popstojanova, K. Vaidyanathan, and K.
Trivedi, “Modeling and Quantification of Security Attributes of
Software Systems,” Proc. Int’l Conf. Dependable Systems and
Networks, pp. 505-514, 2002.

[11] S. Jha, O. Sheyner, and J. Wing, “Minimization and Reliability
Analysis of Attack Graphs,” Technical Report CMU-CS-2-109,
Carnegie Mellon Univ., May 2002.

[12] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. Wing,
“Automated Generation and Analysis of Attack Graphs,” Proc.
2002 IEEE Symp. Security and Privacy, pp. 273-284, May 2002.

[13] S. Singh, M. Cukier, and W.H. Sanders, “Probabilistic Validation
of an Intrusion-Tolerant Replication System,” Proc. Int’l Conf.
Dependable Systems and Networks, pp. 616-624, June 2003.

[14] V. Gupta, V.V. Lam, H.V. Ramasamy, W.H. Sanders, and S. Singh,
“Dependability and Performance Evaluation of Intrusion-Tolerant
Server Architectures,” Dependable Computing: Proc. First Latin-Am.
Symp. (LADC 2003), pp. 81-101, 2003.

[15] J.F. Meyer, “On Evaluating the Performability of Degradable
Computing Systems,” IEEE Trans. Computers, vol. 29, no. 8,
pp. 720-731, Aug. 1980.

[16] W.H. Sanders and J.F. Meyer, “A Unified Approach for Specifying
Measures of Performance, Dependability, and Performability,”
Dependable Computing for Critical Applications, Vol. 4 of Dependable
Computing and Fault-Tolerant Systems, A. Avizienis, H. Kopetz, and
J. Laprie, eds., Springer-Verlag, pp. 215-237, 1991.

[17] G. Bolch, S. Greiner, H. de Meer, and K.S. Trivedi, Queueing
Networks and Markov Chains. New York: John Wiley & Sons, 1998.

[18] R.J. Ellison, D.A. Fisher, R.C. Linger, H.F. Lipson, T. Longstaff,
and N.R. Mead, “Survivable Network Systems: An Emerging
Discipline,” Technical Report CMU/SEI-97-TR-013, CMU Soft-
ware Engineering Institute, Nov. 1997.

[19] Y. Liu and K.S. Trivedi, “A General Framework for Network
Survivability Quantification,” Proc. 12th GI/ITG Conf. Measuring,
Modelling and Evaluation of Computer and Comm. Systems (MMB)
together with Third Polish-German Teletraffic Symp. (PGTS), 2004.

[20] Y. Liu, V.B. Mendiratta, and K.S. Trivedi, “Survivability Analysis
of Telephone Access Network,” Proc. IEEE Int’l. Symp. Software
Eng. (ISSRE ’04), 2004.

[21] F. Stevens, T. Courtney, S. Singh, A. Agbaria, J.F. Meyer, W.H.
Sanders, and P. Pal, “Model-Based Validation of an Intrusion-
Tolerant Information System,” Proc. 23rd Symp. Reliable Distributed
Systems (SRDS 2004), Oct. 2004.

[22] R.A. Sahner, K.S. Trivedi, and A. Puliafito, Performance and
Reliability Analysis of Computer Systems: An Example-Based Approach
Using the SHARPE Software Package. Kluwer Academic Publishers,
1996.

[23] http://www.relexsoftware.com/products/relanalysissoft.asp,
2004.

[24] M. Malhotra and K. Trivedi, “Power-Hierarchy of Dependability
Model Types,” IEEE Trans. Reliability, vol. 43, no. 2, pp. 493-502,
Sept. 1994.

[25] S. Rai, M. Veeraraghavan, and K. Trivedi, “A Survey on Efficient
Computation of Reliability Using Disjoint Products Approach,”
Networks, vol. 25, no. 3, pp. 147-163, 1995.

[26] R.E. Bryant, “Graph Based Algorithms for Boolean Function
Manipulation,” IEEE Trans. Computers, vol. 35, no. 8, pp. 677-691,
Aug. 1986.

[27] X. Zang, H. Sun, and K. Trivedi, “A BDD-Based Algorithm for
Reliability Analysis of Phased-Mission Systems,” IEEE Trans.
Reliability, vol. 48, no. 1, pp. 50-60, Mar. 1999.

[28] J.E. Arsenault and J.A. Roberts, Reliability and Maintainability of
Electronic Systems. Rockville, MD: Computer Science Press, 1980.

[29] R.E. Barlow and F. Proschan, Statistical Theory of Reliability and Life
Testing. New York: Holt, Rinehart and Winston, 1975.

[30] B.S. Dhillon and C. Singh, Engineering Reliability: New Techniques
and Applications. New York: Wiley, 1981.

[31] E. Henley and H. Kumamoto, Reliability Engineering and Risk
Assessment. Englewood Cliffs, N.J.: Prentice-Hall, 1981.

[32] N.G. Leveson, Safeware: System Safety and Computers. Addison-
Wesley Publishing Co., 1995.

[33] J.B. Dugan and M.R. Lyu, “Dependability Modeling for Fault-
Tolerant Software and Systems,” Software Fault Tolerance,M.R. Lyu,
ed., Chichester: John Wiley & Sons, pp. 109-138, 1995.

NICOL ET AL.: MODEL-BASED EVALUATION: FROM DEPENDABILITY TO SECURITY 61

[34] J.B. Dugan, S.J. Bavuso, and M.A. Boyd, “Fault Trees and
Sequence Dependencies,” Proc. Reliability and Maintainability
Symp., pp. 286-293, 1990.

[35] J.B. Dugan, “Fault Trees and Imperfect Coverage,” IEEE Trans.
Reliability, vol. 38, no. 2, pp. 177-185, 1989.

[36] X. Zang, D. Wang, H. Sun, and K. Trivedi, “A BDD-Based
Algorithm for Analysis of Multistate Systems with Multistate
Components,” IEEE Trans. Computers, vol. 52, no. 12, pp. 1608-
1618, Dec. 2003.

[37] Y. Ma and K. Trivedi, “An Algorithm for Reliability Analysis of
Phased-Mission Systems,” Reliability Eng. and System Safety, vol. 66,
no. 2, pp. 157-170, 1999.

[38] “CAFTA: A Fault Tree Analysis Tool Designed for PSA,” Proc.
Probabilistic Risk Assessment and Risk Management Conf. (PSA ’87),
vol. 2, pp. 588-592, 1987.

[39] http://www.ds-s.com/risk_and_reliability_tools.asp, 2004.
[40] B. Schneier, Secrets and Lies: Digital Security in a Networked World.

John Wiley & Sons, Aug. 2000.
[41] D. Dolev and A. Yao, “On the Security of Public Key Protocols,”

IEEE Trans. Information Theory, vol. 29, no. 2, pp. 198-208, 1983.
[42] C. Meadows, “Applying Formal Methods to the Analysis of a Key

Management Protocol,” J. Computer Security, vol. 1, no. 1, pp. 5-36,
1992.

[43] T. Woo and S. Lam, “A Semantic Model for Authentication
Protocols,” Proc. 1993 IEEE Symp. Security and Privacy, pp. 178-
195, 1993.

[44] W. Marrero, E. Clark, and S. Jha, “Modeling Checking for Security
Protocols,” Technical Report CMU-SCS-97-139, Carnegie Mellon
Univ., May 1997.

[45] F. Besson, J. Jensen, D.L. Métayer, and T. Thorn, “Model Checking
Security Properties of Control Flow Graphs,” J. Computer Security,
vol. 9, no. 3, pp. 217-250, 2001.

[46] H. Chen, D. Dean, and D. Wagner, “Model Checking One Million
Lines of C Code,” Proc. 11th Ann. Network and Distributed System
Security Symp., 2004.

[47] R.W. Ritchey and P. Ammann, “Using Model Checking to
Analyze Network Vulnerabilities,” Proc. IEEE Symp. Security and
Privacy, pp. 156-165, May 2000.

[48] G. Ciardo and A.S. Miner, “Efficient Reachability Set Generation
and Storage Using Decision Diagrams,” Proc. 20th Int’l Conf.
Application and Theory of Petri Nets, pp. 6-25, 1999.

[49] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang,
“Symbolic Model Checking: 1020 States and Beyond,” Information
and Computation, vol. 98, no. 2, pp. 142-170, June 1992.

[50] S. Singh, J. Lyons, and D. Nicol, “Fast Model-Based Penetration
Testing,” Proc. 2004 Winter Simulation Conf., Dec. 2004.

[51] J.K. Muppala, M. Malhotra, and K.S. Trivedi, “Markov Depend-
ability Models of Complex Systems: Analysis Techniques,”
Reliability and Maintenance of Complex Systems, S. Ozekici, ed.,
Germany: Springer, pp. 442-486, 1996.

[52] B. Haverkort, R. Marie, G. Rubino, and K.S. Trivedi, Performability
Modeling Tools and Techniques. Chichester, England: John Wiley &
Sons, 2001.

[53] K.S. Trivedi, J.K. Muppala, S.P. Woolet, and B.R. Haverkort,
“Composite Performance and Dependability Analysis,” Perfor-
mance Evaluation, vol. 14, no. 3-4, pp. 197-215, 1992.

[54] J.K. Muppala, S.P. Woolet, and K.S. Trivedi, “Real-Time Systems
Performance in the Presence of Failures,” Computer, vol. 24, no. 5,
pp. 37-47, May 1991.

[55] K.S. Trivedi, S. Ramani, and R.M. Fricks, “Recent Advances in
Modeling Response-Time Distributions in Real-Time Systems,”
Proc. IEEE, vol. 91, no. 7, pp. 1023-1037, 2003.

[56] K.G. Popstojanova and K. Trivedi, “Architecture Based Approach
to Reliability Assessment of Software Systems,” Performance
Evaluation, vol. 45, no. 2-3, pp. 179-204, 2001.

[57] S. Garg, Y. Huang, C.M.R. Kintala, S. Yajnik, and K. Trivedi,
“Performance and Reliability Evaluation of Passive Replication
Schemes in Application Level Fault Tolerance,” Proc. 29th Int’l
Symp. Fault-Tolerant Computing, pp. 322-328, June 1999.

[58] J.-C. Laprie and K. Kanoun, “X-Ware Reliability and Availability
Modeling,” IEEE Trans. Software Eng., vol. 18, no. 2, pp. 130-147,
1992.

[59] W.H. Sanders and J.F. Meyer, “Performability Evaluation of
Distributed Systems Using Stochastic Activity Networks,” Proc.
Int’l Conf. Petri Nets and Performance Models, pp. 111-120, 1987.

[60] Y. Ma, J. Han, and K. Trivedi, “Composite Performance &
AvailabilityAnalysis ofWireless CommunicationNetworks,” IEEE
Trans. Vehicular Technology, vol. 50, no. 5, pp. 1216-1223, Sept. 2001.

[61] R.M. Smith, K.S. Trivedi, and A.V. Ramesh, “Performability
Analysis: Measures, an Algorithm, and a Case Study,” IEEE
Trans. Computers, vol. 37, no. 4, pp. 406-417, Apr. 1988.

[62] W.J. Stewart, Introduction to the Numerical Solution of Markov
Chains. Princeton, 1994.

[63] A. Reibman, R.M. Smith, and K. Trivedi, “Markov and Markov
Reward Models: A Survey of Numerical Approaches,” European J.
Operations Research, pp. 257-267, 1989.

[64] G. Ciardo, J. Muppala, and K. Trivedi, “SPNP: Stochastic Petri Net
Package,” Proc. Third Int’l Workshop Petri Nets and Performance
Models, pp. 142-151, 1989.

[65] W.H. Sanders, W.D. Obal, M.A. Qureshi, and F.K. Widjanarko,
“The UltraSAN Modeling Environment,” Performance Evaluation,
vol. 24, no. 1, pp. 89-115, Oct.-Nov. 1995.

[66] D.D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derisavi, J.M.
Doyle, W.H. Sanders, and P.G. Webster, “The Möbius Framework
and Its Implementation,” IEEE Trans. Software Eng., vol. 28, no. 10,
pp. 956-969, Oct. 2002.

[67] K. Vaidyanathan and K. Trivedi, “A Measurement-Based Model
for Estimation of Resource Exhaustion in Operational Software
Systems,” Proc. 10th Int’l Symp. Software Reliability Eng., pp. 84-93,
Nov. 1999.

[68] M.C. Hsueh, R. Iyer, and K. Trivedi, “Performability Modeling
Based on Real Data: A Case Study,” IEEE Trans. Computers, vol. 37,
no. 4, pp. 478-484, Apr. 1988.

[69] D. Chen, D. Selvamuthu, D. Chen, L. Li, R.R. Some, A.P. Nikora,
and K. Trivedi, “Reliability and Availability Analysis for the JPL
Remote Exploration and Experimentation System,” Proc. Int’l
Conf. Dependable Systems and Networks, pp. 337-344, June 2002.

[70] J.K. Muppala, A.S. Sathaye, R.C. Howe, and K.S. Trivedi,
“Dependability Modeling of a Heterogenous VAXcluster System
Using Stochastic Reward Nets,” Hardware and Software Fault
Tolerance in Parallel Computing Systems, Ellis Horwood Ltd.,
pp. 33-59, 1992.

[71] V. Mainkar and K. Trivedi, “Sufficient Conditions for Existence of
a Fixed Point in Stochastic Reward Net-Based Iterative Models,”
IEEE Trans. Software Eng., vol. 22, no. 9, pp. 640-653, Sept. 1996.

[72] L. Tomek and K. Trivedi, “Fixed-Point Iteration in Availability
Modeling,” Informatik-Fachberichte, Vol. 283: Fehlertolerierende Re-
chensysteme, Springer-Verlag, Berlin, pp. 229-240, 1991.

[73] J.G. Kemeney and J.L. Snell, Finite Markov Chains. D. Van
Nostrand Company, Inc., 1960.

[74] P. Buchholz, “Exact and Ordinary Lumpability in Finite Markov
Chains,” J. Applied Probability, vol. 31, pp. 59-74, 1994.

[75] P. Buchholz, “Efficient Computation of Equivalent and Reduced
Representations for Stochastic Automata,” Int’l J. Computer
Systems Science & Eng., vol. 15, no. 2, pp. 93-103, 2000.

[76] R. Milner, Communication and Concurrency. London: Prentice Hall,
1989.

[77] P.C. Kanellakis and S.A. Smolka, “CCS Expressions, Finite State
Processes, and Three Problems of Equivalence,” Proc. ACM Symp.
Principles of Distributed Computing, pp. 228-240, 1983.

[78] R. Paige and R.E. Tarjan, “Three Partition Refinement Algo-
rithms,” SIAM J. Computing, vol. 16, no. 6, pp. 973-989, 1987.

[79] J.C. Fernandez, “An Implementation of an Efficient Algorithm for
Bisimulation Equivalence,” Science of Computer Programming,
vol. 13, no. 2-3, pp. 219-236, 1990.

[80] M. Bernardo and R. Gorrieri, “A Tutorial on EMPA: A Theory of
Concurrent Processes with Nondeterminism, Priorities, Probabil-
ities and Time,”Theoretical Computer Science, vol. 202, pp. 1-54, 1998.

[81] D.T. Huynh and L. Tian, “On Some Equivalence Relations for
Probabilistic Processes,” Fundamenta Informaticae, vol. 17, pp. 211-
234, 1992.

[82] S. Derisavi, H. Hermanns, and W.H. Sanders, “Optimal State-
Space Lumping in Markov Chains,” Information Processing Letters,
vol. 87, no. 6, pp. 309-315, Sept. 2003.

[83] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad,
“Stochastic Well-Formed Colored Nets and Symmetric Modeling
Applications,” IEEE Trans. Computers, vol. 42, no. 11, pp. 1343-
1360, Nov. 1993.

[84] W.H. Sanders and J.F. Meyer, “Reduced Base Model Construction
Methods for Stochastic Activity Networks,” IEEE J. Selected Areas
in Comm., vol. 9, no. 1, pp. 25-36, Jan. 1991.

62 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 1, JANUARY-MARCH 2004

[85] W.D. Obal II, “Measure-Adaptive State-Space Construction
Methods,” PhD Dissertation, Univ. of Arizona, 1998.

[86] H. Hermanns and M. Ribaudo, “Exploiting Symmetries in
Stochastic Process Algebras,” Proc. 12th European Simulation
Multiconf. (ESM), pp. 763-770, 1998.

[87] S. Gilmore, J. Hillston, and M. Ribaudo, “An Efficient Algorithm
for Aggregating PEPA Models,” IEEE Trans. Software Eng., vol. 27,
no. 5, pp. 449-464, May 2001.

[88] P. Buchholz, “Exact Performance Equivalence: An Equivalence
Relation for Stochastic Automata,” Theoretical Computer Science,
vol. 215, no. 1/2, pp. 263-287, 1999.

[89] P. Buchholz, “Hierarchical Markovian Models: Symmetries and
Reduction,” Performance Evaluation, vol. 22, no. 1, pp. 93-110, Feb.
1995.

[90] P. Buchholz, “Markovian Process Algebra: Composition and
Equivalence,” Proc. Second Workshop Process Algebras and Perfor-
mance Modelling, Arbeitsberichte des IMMD, vol. 27, no. 4, pp. 11-
30, 1994.

[91] P. Buchholz, “Equivalence Relations for Stochastic Automata
Networks,” Computation with Markov Chains, W.J. Stewart, ed.
Kluwer Int’l Publishers, pp. 197-216, 1995.

[92] P. Buchholz, “A Framework for the Hierarchical Analysis of
Discrete Event Dynamic Systems (habilitations thesis),” PhD
dissertation, Univ. Dortmund, Germany, 1996.

[93] H. Hermanns, Interactive Markov Chains and the Quest for Quantified
Quality. Springer, LNCS vol. 2428, 2002.

[94] P.-J. Courtois and P. Semal, “Computable Bounds for Conditional
Steady-State Probabilities in Large Markov Chains and Queueing
Models,” IEEE J. Selected Areas in Comm., vol. 4, no. 6, pp. 926-937,
Sept. 1986.

[95] P.J. Courtois, Decomposability. New York: Academic Press, 1977.
[96] A. Bobbio and K. Trivedi, “An Aggregation Technique for the

Transient Analysis of Stiff Markov Chains,” IEEE Trans. Compu-
ters, vol. 35, no. 9, pp. 803-814, Sept. 1986.

[97] A. Bobbio and K.S. Trivedi, “Computing Cumulative Measures of
Stiff Markov Chains Using Aggregation,” IEEE Trans. Computers,
vol. 39, no. 10, pp. 1291-1297, 1990.

[98] D. Daly, P. Buchholz, and W.H. Sanders, “An Approach for
Bounding Reward Measures in Markov Models Using Aggrega-
tion,” Technical Report UILU-ENG-04-2206 (CRHC-04-06), Univ.
of Illinois at Urbana-Champaign Coordinated Science Laboratory,
July 2004.

[99] A. Srinivasan, T. Kam, S. Malik, and R.E. Brayton, “Algo-
rithms for Discrete Function Manipulation,” Proc. Int’l Conf.
CAD (ICCAD ’90), pp. 92-95, 1990.

[100] E.M. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT
Press, 1999.

[101]G. Ciardo, G. Lüttgen, and R. Siminiceanu, “Saturation: An
Efficient Iteration Strategy for Symbolic State-Space Generation,”
Proc. Int’l Conf. Tools and Algorithms for the Construction and
Analysis of Systems, pp. 328-342, 2001.

[102]G. Ciardo, R.M. Marmorstein, and R. Siminiceanu, “Saturation
Unbound,” Proc. Int’l Conf. Tools and Algorithms for the Construction
and Analysis of Systems, pp. 379-393, 2003.

[103] B. Plateau, “On the Stochastic Structure of Parallelism and
Synchronization Models for Distributed Algorithms,” Proc. ACM
SIGMETRICS Conf. Measurement and Modeling of Computer Systems,
pp. 147-154, 1985.

[104] B. Plateau and K. Atif, “Stochastic Automata Network for
Modeling Parallel Systems,” IEEE Trans. Software Eng., vol. 17,
no. 10, pp. 1093-1108, Oct. 1991.

[105] P. Buchholz, “Numerical Solution Methods Based on Structured
Descriptions of Markovian Models,” Computer Performance Evalua-
tion, Elsevier Science Publishers B.V. (North-Holland), pp. 251-
267, 1991.

[106] P. Buchholz and P. Kemper, “Numerical Analysis of Stochastic
Marked Graphs,” Proc. Sixth Int’l Workshop Petri Nets and
Performance Models (PNPM ’95), pp. 32-41, Oct. 1995.

[107] S. Donatelli, “Superposed Stochastic Automata: A Class of
Stochastic Petri Nets Amenable to Parallel Solution,” Proc. Fourth
Int’l Workshop Petri Nets and Performance Models, pp. 54-63, 1991.

[108] S. Donatelli, “Superposed Generalized Stochastic Petri Nets:
Definition and Efficient Solution,” Proc. 15th Int’l Conf. Applications
and Theory of Petri Nets, pp. 258-277, 1994.

[109] P. Kemper, “Numerical Analysis of Superposed GSPNs,” Proc.
Sixth Int’l Workshop Petri Nets and Performance Models (PNPM ’95),
pp. 52-61, 1995.

[110] P. Buchholz, G. Ciardo, S. Donatelli, and P. Kemper, “Complexity
of Memory-Efficient Kronecker Operations with Applications to
the Solution of Markov Models,” INFORMS J. Computing, vol. 12,
no. 3, pp. 203-222, 2000.

[111]G. Ciardo and A. Miner, “A Data Structure for the Efficient
Kronecker Solution of GSPNs,” Proc. Eighth Int’l Workshop Petri
Nets and Performance Models, pp. 22-31, 1999.

[112]A.S. Miner, “Efficient Solution of GSPNs Using Canonical Matrix
Diagrams,” Proc. Ninth Int’l Workshop Petri Nets and Performance
Models, pp. 101-110, Sept. 2001.

[113]D.D. Deavours and W.H. Sanders, “An Efficient Disk-Based Tool
for Solving Large Markov Models,” Performance Evaluation, vol. 33,
pp. 67-84, 1998.

[114]D.D. Deavours and W.H. Sanders, “On-the-Fly’ Solution Techni-
ques for Stochastic Petri Nets and Extensions,” IEEE Trans.
Software Eng., vol. 24, no. 10, pp. 889-902, Oct. 1998.

[115] E. de Souza e Silva and H.R. Gail, “Calculating Availability and
Performability Measures of Repairable Computer Systems,”
J. ACM, vol. 36, pp. 171-193, Jan. 1989.

[116] E. de Souza e Silva and H.R. Gail, “Calculating Transient
Distributions of Cumulative Reward,” Proc. SIGMETRICS/Perfor-
mance-95, pp. 231-240, May 1995.

[117]M.A. Qureshi and W.H. Sanders, “A New Methodology for
Calculating Distributions of Reward Accumulated During a Finite
Interval,” Proc. 26th Int’l Symp. Fault-Tolerant Computing, pp. 116-
125, June 1996.

[118]V.V. Lam, P. Buchholz, and W.H. Sanders, “A Structured Path-
Based Approach for Computing Transient Rewards of Large
CTMCs,” Proc. First Int’l Conf. Quantitative Evaluation of Systems
(QEST), Sept. 2004.

[119] J. Muppala, M. Malhotra, and K. Trivedi, “Stiffness-Tolerant
Methods for Transient Analysis of Stiff Markov Chains,” Micro-
electronics and Reliability, vol. 34, no. 11, pp. 1825-1841, 1994.

[120]A. Reibman and K.S. Trivedi, “Numerical Transient Analysis of
Markov Models,” Computers and Operations Research, vol. 15, no. 1,
pp. 19-36, 1988.

[121]A. van Moorsel and W.H. Sanders, “Adaptive Uniformization,”
ORSA Comm. in Statistics: Stochastic Models, vol. 10, no. 3, pp. 619-
648, Aug. 1994.

[122]A.P.A. van Moorsel and W.H. Sanders, “Transient Solution of
Markov Models by Combining Adaptive & Standard Uniformiza-
tion,” IEEE Trans. Reliability, vol. 46, no. 3, pp. 430-440, Sept. 1997.

[123]M. Malhotra and A. Reibman, “Selecting and Implementing Phase
Approximations for Semi-Markov Models,” Comm. Statistical
Stochastic Models, vol. 9, no. 4, pp. 473-506, 1993.

[124] S. Gokhale and K. Trivedi, “A Time/Structure Based Software
Reliability Model,” Annals of Software Eng., vol. 8, pp. 85-121, 1999.

[125] S. Gokhale, P.N. Marinos, M.R. Lyu, and K. Trivedi, “Effect of
Repair Policies on Software Reliability,” Proc. 12th Ann. Conf.
Computer Assurance (COMPASS), pp. 105-116, June 1997.

[126] R. Geist, M. Smotherman, K.S. Trivedi, and J.B. Dugan, “Relia-
bility Analysis of Life-Critical Systems,” Acta Informatica, vol. 23,
no. 6, pp. 621-642, 1986.

[127]G. Ciardo, R.A. Marie, B. Sericola, and K.S. Trivedi, “Perform-
ability Analysis Using Semi-Markov Reward Processes,” IEEE
Trans. Computers, vol. 39, no. 10, pp. 1251-1264, Oct. 1990.

[128]V. Kulkarni,Modeling and Analysis of Stochastic Systems.New York:
Chapman Hall, 1995.

[129]M. Ajmone Marsan, G. Balbo, and G. Conte, “A Class of
Generalized Stochastic Petri Nets for the Performance Evaluation
of Multiprocessor Systems,” ACM Trans. Computer Systems, vol. 2,
no. 2, pp. 93-122, 1984.

[130] J.F. Meyer, A. Movaghar, and W.H. Sanders, “Stochastic Activity
Networks: Structure, Behavior, and Application,” Proc. Int’l
Workshop Timed Petri Nets, pp. 106-115, July 1985.

[131]W.H. Sanders and J.F. Meyer, “Stochastic Activity Networks:
Formal Definitions and Concepts,” Lectures on Formal Methods and
Performance Analysis, First EEF/Euro Summer School on Trends in
Computer Science, LNCS, no. 2090, pp. 315-343, 2001.

[132] J. Hillston, A Compositional Approach to Performance Modelling.
Cambridge Univ. Press, 1996.

[133]H. Hermanns and M. Rettelbach, “Syntax, Semantics, Equiva-
lences, and Axioms for MTIPP,” Proc. Second Workshop Process
Algebras and Performance Modelling, Arbeitsberichte des IMMD,
vol. 27, no. 4, pp. 71-87, 1994.

[134]M. Malhotra and K. Trivedi, “Dependability Modeling Using Petri
Nets,” IEEE Trans. Reliability, vol. 44, no. 3, pp. 428-440, Sept. 1995.

NICOL ET AL.: MODEL-BASED EVALUATION: FROM DEPENDABILITY TO SECURITY 63

[135] J.B. Dugan, V. Nicola, R. Geist, and K. Trivedi, “Extended
Stochastic Petri Nets: Applications and Analysis,” Proc. Conf.
Performance ’84, pp. 507-519, 1985.

[136]M.A. Marsan and G. Chiola, “On Petri Nets with Deterministic
and Exponentially Distributed Firing Times,” Advances in Petri
Nets, LNCS, vol. 266, Springer, pp. 132-145, 1987.

[137]H. Choi, V. Kulkarni, and K. Trivedi, “Markov Regenerative
Stochastic Petri Nets,” Performance Evaluation, vol. 20, pp. 337-357,
1994.

[138]V. Catania, A. Puliafito, M. Scarpa, and L. Vita, “Concurrent
Generalized Petri Nets,” Proc. Conf. Numerical Solution of Markov
Chains, pp. 359-382, Jan. 1995.

[139]G. Horton, V. Kulkarni, D. Nicol, and K.S. Trivedi, “Fluid
Stochastic Petri Nets: Theory, Application, and Solution Techni-
ques,” European J. Operations Research, vol. 105, no. 1, pp. 184-201,
Feb. 1998.

[140]G. Ciardo, D.M. Nicol, and K.S. Trivedi, “Discrete-Event Simula-
tion of Fluid Stochastic Petri Nets,” IEEE Trans. Software Eng.,
vol. 25, no. 2, pp. 207-217, 1999.

[141] R. Ortalo, Y. Deswarte, and M. Kaâniche, “Experimenting with
Quantitative Evaluation Tools for Monitoring Operational Secur-
ity,” IEEE Trans. Software Eng., vol. 25, pp. 633-650, Oct. 1999.

[142] B. Littlewood, S. Brocklehurst, N. Fenton, P. Mellor, S. Page, and
D. Wright, “Towards Operational Measures of Computer Secur-
ity,” J. Computer Security, vol. 2, pp. 211-229, 1993.

[143] E. Jonsson and T. Olovsson, “A Quantitative Model of the Security
Intrusion Process Based on Attacker Behavior,” IEEE Trans.
Software Eng., vol. 23, no. 4, pp. 235-245, Apr. 1997.

[144]M. Dacier, Y. Deswarte, and M. Kaâniche, “Quantitative Assess-
ment of Operational Security: Models and Tools,” Technical
Report 96493, Laboratory for Analysis and Architecture of
Systems, May 1996.

[145]D. Wang, B. Madan, and K. Trivedi, “Security Analysis of SITAR
Intrusion-Tolerant System,” Proc. ACM Workshop Survivable and
Self-Regenerative Systems, pp. 23-32, 2003.

[146]W.H. Sanders, M. Cukier, F. Webber, P. Pal, and R. Watro,
“Probabilistic Validation of Intrusion Tolerance,” Supplemental
Volume of the Proc. Int’l Conf. Dependable Systems & Networks (DSN-
2002), pp. B-78-B-79, June 2002.

[147] http://www.nessus.org/, 2004.
[148] http://www.insecure.org/nmap/, 2004.
[149]D. Farmer and E.H. Spafford, “The COPS Security Checker

System,” Proc. Summer Usenix Conf., pp. 165-170, 1990.
[150] http://www.net.tamu.edu/network/tools/tiger.html, 2004.
[151]A. Sharma, J.R. Martin, N. Anand, M. Cukier, and W.H. Sanders,

“Ferret: A Host Vulnerability Checking Tool,” Proc. 10th IEEE
Pacific Rim Int’l Symp. Dependable Computing (PRDC-10), pp. 389-
394, Mar. 2004.

[152] P. Heidelberger, “Fast Simulation of Rare Events in Queueing and
Reliability Models,” ACM Trans. Modeling and Computer Simula-
tion, vol. 1, no. 5, pp. 43-85, 1995.

[153] J. Banks, J. Carson, B. Nelson, and D. Nicol, Discrete-Event System
Simulation. Upper Saddle River, N.J.: Prentice-Hall, 2000.

[154]G. Shedler, Regenerative Stochastic Simulation. Boston: Prentice-
Hall, 1993.

[155] R.E. Nance, “A History of Discrete Event Simulation Program-
ming Languages,” Proc. Second ACM SIGPLAN Conf. History of
Programming Languages, pp. 149-175, 1993.

[156] http://www.isi.edu/nsnam/ns/, 2004.
[157] http://www.ssfnet.org, 2004.
[158]D. Moore, C. Shannon, and K. Claffy, “Code-Red: A Case Study on

the Spread and Victims of an Internet Worm,” Proc. Internet
Measurement Workshop (IMW), pp. 273-284, Nov. 2002.

[159]D. Nicol, M. Liljenstam, and J. Liu, “Multiscale Modeling and
Simulation of Worm Effects on the Internet Routing Infrastruc-
ture,” Proc. 13th Int’l Conf. Modeling Techniques and Tools for
Computer Performance Evaluation (Performance TOOLS 2003), pp. 1-
10, Sept. 2003.

[160]M. Liljenstam, Y. Yuan, B. Premore, and D. Nicol, “A Mixed
Abstraction Level Model of Large-Scale Internet Worm Infesta-
tions,” Proc. 10th IEEE/ACM Symp. Modeling, Analysis and
Simulation of Computer and Telecomm. Systems (MASCOTS),
pp. 109-116, Oct. 2002.

[161] C.C. Zou, L. Gao, W. Gong, and D. Towsley, “Monitoring and
Early Warning for Internet Worms,” Proc. 10th ACM Conf.
Computer and Comm. Security, pp. 190-199, 2003.

[162]C.C. Zou, W. Gong, and D. Towsley, “Code Red Worm
Propagation Modeling and Analysis,” Proc. Ninth ACM Conf.
Computer and Comm. Security, pp. 138-147, 2002.

[163]V. Venkataraghavan, S. Nair, and P.-M. Seidel, “Simulation-Based
Validation of Security Protocols,” Proc. OPNETWORKS 2002 Conf.,
Aug. 2002.

[164]D. Apostal, T. Foote-Lennox, T. Markham, A. Dowd, R. Lu, and D.
O’Brian, “Checkmate Network Security Modeling,” Proc. DARPA
Information Survivability Conf. and Exposition, pp. 214-226, June
2001.

[165]V. Gorodetski, I. Kotenko, and O. Karsaev, “Multi-Agent
Technologies for Computer Network Security: Attack Simulation,
Intrusion Detection and Intrusion Detection Learning,” Int’l J.
Computer Systems Science and Eng., vol. 18, no. 4, pp. 191-200, July
2003.

[166]N. Falby, M. Thompson, and C. Irvine, “A Security Simulation
Game Definition Language,” Innovative Program Abstracts—Collo-
quium on Information Systems Security Education, June 2004.

[167]C. Irvine and M. Thompson, “Teaching Objectives of a Simulation
Game for Computer Security,” Proc. Informing Science and
Information Technology Joint Conf., June 2003.

[168] J. Drew, “Simulation to Support Security Issues Related to System
Interoperability,” Proc. Summer Simulation Conf., pp. 14-18, 2002.

[169] S. Lathrop, J. Hill, and J. Surdu, “Modeling Network Attacks,”
Proc. 12th Conf. Behavior Representation in Modeling and Simulation,
pp. 401-407, May 2003.

[170]W. Dizard III, “Seattle Cybergame Preceded Last Week’s Drill and
Simulated Reality,” Government Computer News, vol. 22, no. 11,
http://www.gcn.com/22_11/news/22099-1.html, 2003.

[171] T. Bridis, “Gov’t Simulates Terrorist Cyberattack,” Assoc. Press,
http://www.zone-h.org/en/news/read/id=3728, Nov. 2003.

David M. Nicol is a professor of electrical and
computer engineering at the University of Illinois
at Urbana-Champaign. He is a long-time con-
tributor in the field of parallel and distributed
discrete-event simulations, having written one of
the early PhD theses on the topic. He has also
worked in parallel algorithms, algorithms for
mapping workload in parallel architectures,
performance analysis, and reliability modeling
and analysis. His research contributions extend

to approximately 150 articles in leading computer science journals and
conferences, and he is coauthor of the textbook Discrete-Event Systems
Simulation. His current interests lie in modeling and simulation of very
large systems, particularly communications and other infrastructure,
with applications in security. He was coarchitect of the Scalable
Simulation Framework (SSF) and several of its implementations, now
in wide use for network analysis in education, industry, and government.
From 1997 to 2003, he was the editor-in-chief of the ACM Transactions
on Modeling and Computer Simulation, and from 2002-2003 he served
as the associate director for research, and then the acting director of the
Institute for Security Technology Studies at Dartmouth College.
Professor Nicol is a fellow of the IEEE.

64 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 1, JANUARY-MARCH 2004

William H. Sanders is a professor in the
Department of Electrical and Computer Engi-
neering and the Coordinated Science Laboratory
at the University of Illinois. He is vice-chair of
IFIP Working Group 10.4 on Dependable Com-
puting. In addition, he serves on the editorial
board of IEEE Transactions on Reliability and is
the area editor for simulation and modeling of
computer systems for the ACM Transactions on
Modeling and Computer Simulation. He is a past

chair of the IEEE Technical Committee on Fault-Tolerant Computing. He
is a fellow of the IEEE and the ACM. Dr. Sanders’s research interests
include performance/dependability/security evaluation and dependable
and secure computing. He has published approximately 150 technical
papers in these areas. He has served as an organizer and on the
program committees of numerous conferences and workshops. He is a
codeveloper of three tools for assessing the performability of systems
represented as stochastic activity networks: METASAN, UltraSAN, and
Möbius. Möbius and UltraSAN have been distributed widely to industry
and academia; more than 300 licenses for the tools have been issued to
universities, companies, and NASA for evaluating the performance,
dependability, security, and performability of a variety of systems. He is
also a codeveloper of the Loki distributed system fault injector and the
AQuA/ITUA middlewares for providing dependability/security to dis-
tributed and networked applications.

Kishor S. Trivedi holds the Hudson Chair in the
Department of Electrical and Computer Engi-
neering at Duke University, Durham, North
Carolina. He is the Duke-Site Director of a US
National Science Foundation Industry-University
Cooperative Research Center between North
Carolina State University and Duke University
for carrying out applied research in computing
and communications. He has been on the Duke
faculty since 1975. He is the author of a well-

known text entitled Probability and Statistics with Reliability, Queuing
and Computer Science Applications, with a thoroughly revised second
edition being published by John Wiley. He has also published two other
books, entitled Performance and Reliability Analysis of Computer
Systems (Kluwer Academic Publishers) and Queueing Networks and
Markov Chains (John Wiley). His research interests are in reliability and
performance assessment of computer and communication systems. He
has published more than 300 articles and lectured extensively on these
topics. He has supervised 37 PhD dissertations. He is a fellow of the
IEEE. He is a golden core member of the IEEE Computer Society. He is
a codesigner of the HARP, SAVE, SHARPE, and SPNP software
packages, which have been well-circulated.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

NICOL ET AL.: MODEL-BASED EVALUATION: FROM DEPENDABILITY TO SECURITY 65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

