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Reviewing L11-L13

What have we done so far?
e Signal models (L11-L12)
o Nonparametric models: ~ ACF and PSD.
o Parametric models: AR, MA and ARMA.
e Signal model estimation (L13)
o Nonparametric spectral estimation:  the periodogram.
Pros:
o fast to compute
@ asymptotically unbiased.
Cons:
@ limited resolution for finite N:
~~ the modified periodogram improves this
o large variance for all N:
~~ Blackman-Tukey's method lowers variance.
o Parametric spectral estimation: AR-estimation.
© Estimate r[k] from data.
© Reformulate Yule-Walker to get 4 = R r,.
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Learning objectives

After today's lecture you should be able to

@ explain what type of problems Wiener-filters can solve.
@ derive the Wiener-Hopf (WH) equations.
@ use the WH-equations to derive a causal FIR Wiener filter.

@ use the WH-equations to derive a non-causal IR Wiener
filter.

e Compute the mean squared error (MSE) of a Wiener-filter.
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Problem formulation
Filtering, smoothing and prediction

Filtering, smoothing and p

e Let s[n] and w[n] be zero mean, wide sense stationary
processes and
x[n] = s[n] + w[n].

Objective
o Select H(z) to make e[n] as "small” as possible
x[n] ——{ H(2) ﬂﬂﬁ—r e[n] = d[n] — d[n]
d[n]

@ Small could mean different things. We use mean squared error

E {e[n?},
since this is easy to minimize.
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Problem formulation
Filtering, smoothing and prediction

Filtering, smoothing and p

Based on measurements collected up until now, we encounter three
common problems (k > 0):

e Filtering — estimating current signal values, d[n] = s[n].
Applications: positioning, control systems, noise or echo
cancellation, etc.

@ Smoothing — estimating past signal values, d[n] = s[n — k].
Applications: signal analysis, image processing, system
identification (modelling).

e Prediction — estimating future signal values, d[n] = s[n + k].
Applications: decision making, planning, weather forecasts,
etc.
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Problem formulation
Filtering, smoothing and prediction

Filtering, smoothing and

These problems can be illustrated as

time
Prediction: ‘ | E ‘
Filtering: | 2 | ‘
/ E
Smoothing: | /S ! |
T 'Time of interest
Measurements

CHALMERS Chalmers University of Technology Tomas McKelvey 6/16



Problem formulation
Filtering, smoothing and prediction

Filtering, smoothing and p

@ We seek a linear estimator (filter)

d[n] = h[n] * x[n] = > _ h[k]x[n — K]

k
of d[n].

@ As mentioned above, we wish to minimize the mean square
error (MSE),

2
MSE(h) = E (d[n] — > " hlK]x[n - k])
k

where the vector h contains the impulse response coefficients
h[K].

e The resulting Wiener filter d[n] is a linear minimum mean
square error (LMMSE) estimator.
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Problem formulation
Filtering, smoothing and prediction

Cross-correlation function

In this filtering case we have two signals x and d and when
evaluating the MSE we will obtain terms E {d[n]|x[n — k]}.

The cross-correlation function for signals d and x is defined as
rax[k] = E {d[n]x[n — k|}

and describes how the two signals co-vary.
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General solution Wiener-Hopf equations

Wiener-Hopf (W-H) equa

@ The W-H equations are very important and can be used to
solve all the problems mentioned above.

e Objective: (again) We wish to minimize

2
MSE(h) = E (d[n] — Y hlK]x[n - k])

k

with respect to h.

e Derivation 1: the function is quadratic in h
= it is convex in h
= no local optima (except for the global optimum)
= sufficient to differentiate and set to zero!
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General solution Wiener-Hopf equations

Wiener-Hopf (W-H) equat
o Differentiate the MSE:

0 0 i
aT[t]MSE(h) Fhidl { (d[n] Z h[k]x[n — k]) }
¢ {2 (d[n] S ikl - k]> (~xln— t])}

k

= —2rg[t] +2)  h[K]r[t — K]
k
@ Setting this derivative to zero gives the

Wiener-Hopf (WH) equations
> " h[KIrc[t — K] = rax[t],
K
for all t. Optimal h[t] must satisfy WH.
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Causal FIR filters
MSE of optimal FIR filter
Filtering solutions General LMMSE estimator

FIR filters

@ Suppose H(z) is a causal FIR filter:

p—1
d[n] = hlk]x[n — K].
n=0

@ The W-H eq’s can be written as

r«[0] ri[1] oo rxp—1] h[0] rax[0]
re[1] r«[0] oo rx[p—2] h[1] _ rax[1]
rp—1] rlp—2 ... nlo] hméuj ralp — 1]

R« h Fox

which yields that

-1
hopt — RX rdX.
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Causal FIR filters
MSE of optimal FIR filter
Filtering solutions General LMMSE estimator

What is the minimum M

@ The minimum MSE can be calculated by plugging in hgp:
E{2.ln} =E {em;n[n] <d[n] - 3opt[n])} - {Note: dopt L e[n]}
p—1
=F { <d[n] = hopt[K]x[n — k]> d[n]}

k=0
p—1

= ra0] = > hopt[Klrax[k] = ra[0] — r R, Mras
k=0

e Special case: if d[n] and x[n] are uncorrelated, then d[n] = 0
and the MSE is r4[0].

@ In general, the more correlated (similar) x[n] is to d[n] the
better is the estimate d[n]!
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Causal FIR filters
MSE of optimal FIR filter
Filtering solutions General LMMSE estimator

The LMMSE estimator

Consider two vectors z and v which are zero mean and have the
joint covariance

£ z| |z T E {zzT} E {ZVT} Q22 QVE
V| |v E{VZT} E{VVT} sz vi
Assume we want to estimate the value of z by forming a linear

combination of v, i.e.
z=Kv

such that
MSE = E{||lz—2|?} = E {(z k) T(z - Kv)}

is minimized. Linear Minimum Mean Squared Error Estimator
(LMMSE) .
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Causal FIR filters
MSE of optimal FIR filter
Filtering solutions General LMMSE estimator

Solution

Evaluating the MSE yields

MSE =E {(z —Kv)T(z - Kv)} =trE {(z — Kv)(z — Kv)T}
:tr(sz - Ksz - QVCKT + KQVVKT)
=tr (K = QLAZNQW(K — QLAINT) +tr(Qz — QLQL Qve)

The optimal K is hence

OPt sz(‘-\)vv1
and the optimal MSE is

MSEopt - tr( sz QVZQ QVZ)
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Causal FIR filters
MSE of optimal FIR filter
Filtering solutions General LMMSE estimator

The Wiener filter is the L

The FIR Wiener filter is obtained by setting

x[n]
x[n—1]
z=d[n and v= _
x[p—1]
which imply
|:sz QVE:| _ |:rd[0] I’;;(:|
sz vi ¥ dx Rx
and hence,
Kopt = QLA =ri Rt and MSE,p: = rg[0] — rJ R ry,
p—1
dln] = 2 = Kopev = ri R v = > hope [ k]x[n — K]
k=0
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Causal FIR filters
MSE of optimal FIR filter
Filtering solutions General LMMSE estimator

Learning objectives

After today's lecture you should be able to

@ explain what type of problems Wiener-filters can solve.
@ derive the Wiener-Hopf (WH) equations.
@ use the WH-equations to derive a causal FIR Wiener filter.

@ use the WH-equations to derive a non-causal IR Wiener
filter.

e Compute the mean square error (MSE) of a Wiener-filter.
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