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Overview L11-L14

4 lectures
Course material: Compendium by Mats Viberg (on Canvas)

Lab project 2, more details on Canvas

Ch 2 & 3 ACF, PSD, AR, MA, ARMA
Signal models

Ch 4 Spectral estimation, non-parametric and parametric.
Characterization and signal model estimation

Ch 5 Optimal filters
Signal estimation
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Why study?

Signal models
Understand given signal descriptions
Need ways to describe signals
With the right framework we can develop tools

Signal characterization
Optimal filtering

Signal model estimation
Ways to characterize the signals and the systems that
generated it

Example: Monitoring the structural health of a bridge using
vibration analysis.

Predict future signal values
Share prices on the stock market
Electric energy consumption

Optimal filters
Suppress noise
Signal separation
Estimate states/parameters that are not directly observed
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Fields where this is important

Communication
Monitoring
Control
Economy / Econometrics
Meteorology
Signal Processing
Diagnostic medicin
Biology etc.
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Learning objectives

After today’s lecture you should be able to

Describe what an autocorrelation function (ACF) is
(definition and interpretation).

Explain why the Fourier transform of the ACF is called the
power spectral density (PSD)

Summarize what AR, MA and ARMA processes are.
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Discrete time systems and signals

Focus is on discrete time (DT) signals and systems.

System / H(z)
e[n] x [n]

We regard e[n] and x [n] as stochastic processes
We regard H(z) is a linear system/filter
n is integer valued, often a time index.

Standing assumptions:
Signals have zero mean value, E{e[n]} = 0, E{x [n]} = 0
Signal are wide sense stationary (WSS), which implies

E{x [n]x [n − k]} = rx [k]
First and second order signal properties are invariant w.r.t.
absolute time

What is a strict stationary process?
Chalmers University of Technology Tomas McKelvey 6/19



Autocorrelation function (ACF)

rx [k] = E{x [n]x [n − k]}

Example: If rx [0] = 1 what do we know about x [n].

Suppose x [n] is ergodic

rx [0] = E{x2[n]} ≈ 1
N

N∑
n=1

x2[n]
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Autocorrelations

What is E
(
x2), E (y2) and E (x y)?
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Autocorrelations

What is E
(
v2), E (u2) and E (u v)?
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Autocorrelations

What is rx [0] for the two processes?
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ACF

rx [0] = E{x2[n]} is the variance

ACF gives no information about the underlying density!

Example: Interpretation of rx [k] > 0.

⇒ x [n], x [n − k] often has the same sign

rx [k] ≈
1
N

N∑
n=1

x [n]x [n − k]

rx [k] give information about how the signal repeats certain patterns
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Autocorrelations

What is E
(
x2), E (z2) and E (x z)?
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Power Spectral Density (PSD)

The PSD of x [n] is the discrete time Fourier transform (DTFT) of
the ACF

Px(e
jω) =

∞∑
k=−∞

rx [k]e
−jωk ω is in rad/sample

where the ACF is

rx [k] = E{x [n]x [n − k]}

and
rx [k] =

1
2π

∫ π

−π
Px(e

jω)e jωk dω

Why the name power spectral density?

Power of x [n] = E{x2[n]}

=
1
2π

∫ π

−π
Px(e

jω) dω

Px(e
jω) is power per rad/sample
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Some useful relations

1 If rx [n] and Px(z) are each others Z-transform pairs, then

Px(e
jω) = Px(z)|z=e jω

2 If e[n] is the input to a linear system with impulse response
h[n] then (linear convolution)

x [n] =
∞∑

k=−∞
h[k]e[n − k]

X (z) = H(z)E (z) if these exists

Px(e
jω) = |H(e jω)|2Pe(e

jω)
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more relations

We have the Z-transform pairs

rx [n − 1]↔ z−1Px(z)

rx [n −m]↔ z−mPx(z)

x [n]↔ X (z) =
∞∑

n=−∞
z−nx [n]

δ[n]↔ 1

where the Kronecker delta function is

δ[n] =

{
1 n = 0
0 n 6= 0
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Signal models

H(z)
e[n] x [n]

e[n] is WSS white noise ⇒

E{e[n]} = 0

re [k] = E{e[n]e[n − k]} = σ2
eδ[k] =

{
σ2
e n = 0

0 n 6= 0

Pe(e
jω) = DTFT{re [k]} = σ2

e DTFT{δ[k]} = σ2
e

white = all frequencies have equal power. Output PSD is shaped
by the filter

Px(e
jω) = |H(e jω)|2σ2

e
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AR process

x [n] is an AR(p) process if

x [n] + a1x [n − 1] + . . .+ apx [n − p] = e[n]

or (in it’s generative form)

x [n] = −
p∑

k=1

akx [n − k] + e[n]

the “new value” is the regression of the old values plus the
innovation. Hence the name auto-regression AR.
The Z-transform is (if exists)

X (z)(1+ a1z
−1 + . . .+ apz

−p) = E (z)

which yields

H(z) =
X (z)

E (z)
=

1
1+ a1z−1 + . . . apz−p
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MA process

x [n] is an MA(q) process if

x [n] = e[n] + b1e[n − 1] + . . .+ bqe[n − q]

The “new value” is a moving average (MA) of the input process e[n]
The Z-transform is

H(z) = 1+ b1z
−1 + . . .+ bqz

−q
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ARMA process

x [n] is an ARMA(p, q) process if

x [n]+a1x [n−1]+. . .+apx [n−p] = e[n]+b1e[n−1]+. . .+bqe[n−q]

or (in it’s generative form)

x [n] = −
p∑

k=1

akx [n − k] + e[n] +

q∑
k=1

bqe[n − q]

the “new value” is the regression of the old values plus moving
average of the innovation. Hence the name auto-regression moving
average ARMA.

H(z) =
1+ b1z

−1 + . . .+ bqz
−q

1+ a1z−1 + . . .+ apz−p
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