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@ 4 lectures
o Course material: Compendium by Mats Viberg (on Canvas)

@ Lab project 2, more details on Canvas

Ch 2 & 3 ACF, PSD, AR, MA, ARMA
@ Signal models
Ch 4 Spectral estimation, non-parametric and parametric.
@ Characterization and signal model estimation
Ch 5 Optimal filters
@ Signal estimation
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@ Signal models

e Understand given signal descriptions
o Need ways to describe signals
e With the right framework we can develop tools
e Signal characterization
o Optimal filtering
@ Signal model estimation
e Ways to characterize the signals and the systems that
generated it
o Example: Monitoring the structural health of a bridge using
vibration analysis.
o Predict future signal values
@ Share prices on the stock market
o Electric energy consumption
e Optimal filters
e Suppress noise
e Signal separation
o Estimate states/parameters that are not directly observed
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Communication
Monitoring

Control

Economy / Econometrics
Meteorology

Signal Processing

Diagnostic medicin

Biology etc.
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After today's lecture you should be able to

@ Describe what an autocorrelation function (ACF) is
(definition and interpretation).

@ Explain why the Fourier transform of the ACF is called the
power spectral density (PSD)

@ Summarize what AR, MA and ARMA processes are.
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Focus is on discrete time (DT) signals and systems.

ﬂ» System / H(z) ﬂ»

We regard e[n] and x[n] as stochastic processes
We regard H(z) is a linear system/filter

n is integer valued, often a time index.

Standing assumptions:
e Signals have zero mean value, E{e[n]} =0, E{x[n]} =0
e Signal are wide sense stationary (WSS), which implies
o E{x[n]x[n — K]} = r[K]
o First and second order signal properties are invariant w.r.t.
absolute time

What is a strict stationary process?
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r[k] = E{x[n]x[n — k]}

Example: If r [0] =1 what do we know about x[n].

Suppose x[n] is ergodic

1 N
510 = EQC[nl} ~ 3 %0
n=1
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e What is E (x?), E(y?) and E(xy)?

24 2 0 2 4

CHALMERS Chalmers University of Technology Tomas McKelvey 8/19



e What is E (v?), E (u?) and E (uv)?
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e What is r[0] for the two processes?

—>o Gaussian

—+ Impulsive
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discrete time n
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r[0] = E{x?[n]} is the variance
ACF gives no information about the underlying density!
Example: Interpretation of r[k] > 0.
= x[n], x[n — k] often has the same sign

N

re[k] =~ % Zx[n]x[n — K]

n=1

r«[k] give information about how the signal repeats certain patterns
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e What is E (x?), E (z?) and E(xz)?

_ot
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The PSD of x[n] is the discrete time Fourier transform (DTFT) of
the ACF

P, (e) = Z re[kle K w is in rad/sample

k=—00
where the ACF is
rx[k] = E{x[n]x[n — K]}

and

rlk] = l/ﬂ P ()" du

2 J_,
Why the name power spectral density?
Power of x[n] = E{x?[n]}
1 (7 ;
= — Py (e’Y) dw
27 ),
P, (e/*) is power per rad/sample



© If ri[n] and Py(z) are each others Z-transform pairs, then
PX(ejw) = Pu(2)|,2ee

@ If e[n] is the input to a linear system with impulse response
h[n] then (linear convolution)

x[n]= > hlkle[n — K]

k=—00
X(z) = H(z)E(z) if these exists
P(€/) = |H(e™)*Pe(e/*)
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We have the Z-transform pairs

rn—1] < z_lPX(z)

r[n —m] < z7"Py(2)
x[n] < X(z) = Y z "x[n]

d[n] <1

where the Kronecker delta function is

w={3 0=
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e[n] x[n]

—— H(z) +—

e[n] is WSS white noise =

E{e[n]} =0

o2 n=0
re[k] = E{e[n]e[n — K]} = oci[k] = {oe n#0

P.(e/) = DTFT{re[k]} = 02 DTFT{d[K]} = o2
white = all frequencies have equal power. Output PSD is shaped

by the filter ' .
P(¥) = |H()|?0
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x[n] is an AR(p) process if

x[n] + aix[n — 1]+ ...+ apx[n — p] = €[n]

or (in it's generative form)

x[n] == ax[n— K] + e[n]
k=1

the “new value” is the regression of the old values plus the
innovation. Hence the name auto-regression AR.
The Z-transform is (if exists)

X(z2)(1+az7t 4. +a,z7P) = E(2)
which yields

X(z) 1
E(z) l4az7l+...a2,z7P
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x[n] is an MA(q) process if
x[n] = e[n] + bie[n — 1] + ... + bge[n — q]

The “new value” is a moving average (MA) of the input process e[n]
The Z-transform is

H(z) =1+ bzt + ...+ byz 9
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x[n] is an ARMA(p, q) process if

x[n]+aix[n—1]+...+apx[n—p] = e[n]+bre[n—1]+...4+bge[n—q]

or (in it's generative form)

p q
x[n] = — Z agx[n— k| + e[n] + Z bge[n — q]
k=1 k=1

the “new value” is the regression of the old values plus moving

average of the innovation. Hence the name auto-regression moving
average ARMA.

B 1—|—b12_1+...+bq2_q

H =
(2) l+az7l+...4apzP
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