§ CHALMERS | (@7)3 University of Gothenburg Dr. Sam Jobara

Fundamentals of Software Architecture
DIT344

Sam Jobara Ph.D.
jobara@chalmers.se

Software Engineering Division
Chalmers | GU

mailto:jobara@chalmers.se

30

Y CHALMERS |

UNIVERSITY OF TECHNOLOGY

5 University of Gothenburg Dr. Sam Jobara

Dr. Sam Jobara
Chalmers | University of Gothenburg

| have a Ph.D. in Computer Science and Engineering, USF, USA

| have research interests in testing and fault modeling, computer architecture,
information security, and product line engineering. | am also interested in learning and
cognitive theories.

My teaching covers a multitude of courses in Computer architecture, Information
security, TDA594 Software engineering principles for complex systems, & DIT824
Software engineering for data-intensive Al applications.

My industrial experience spans over 18 years as an IT Consultant in

Telecommunication, Information Security, and Supply Chain Management.

jobara@chalmers.se

mailto:jobara@chalmers.se

Dr. Sam Jobara

Software Architecture
DIT344

Requirements, &
Quality Attributes

Dr. Sam Jobara
Chalmers | University of Gothenburg

;) University of Gothenburg Dr. Sam Jobara

N, S
) /S
Y i)

CHALMERS |
-
N7 UNIVERSITY OF TECHNOLOGY &

References

» Object-Oriented Software Engineering, Chapter 4
by Lethbridge & Laganiere

o Software Architecture in Practice, Chapter 3 & 4
by Len Bass; Paul Clements; Rick KazmanPublished

« Other literatures (see reference at slides)

Dr. Sam Jobara

Objectives

Learning experience for this lecture:
* Problem statement and Systems Requirements
« How to capture and document system requirement
* Introduce System quality attributes
« How to define, and measure quality attributes

&

=4 § CHALMERS | i@f} University of Gothenburg Dr. Sam Jobara

Outline

O G|
@ Software Architecture Contexts '
@ System Requirements '
j: System Components & Layers '
\ﬁq Use Cases Brief '
17@; Quality Attributes '

@ QA Scenarios '

) University of Gothenburg Dr. Sam Jobara

System Architecture

It consists of the Structure (Style) of the system, driven by architecture
characteristics, design principles, and architecture decisions

<«— Architecture characteristics ———» Style Structure or pattern

(such as client-server,P2P
microservices, layered)

=

= =

2 i %

= =

(¢») . &

- -

M 0,

Q. _ o

- Architecture styles used @

J Y

Structure B

A

Architecture characteristics (Attributes)

System quality attributes which encompasses all -ilties

<«— Architecture characteristics ———»

Availability Reliability Testability
Scalability Security Agility

Fault tolerance Elasticity Recoverability

Performance Deployability ~ Learnability

Dr. Sam Jobara

GOT,
v‘“‘. llo

CHALMERS |

UNIVERSITY OF TECHNOLOGY

: UnlverS|ty of Gothenburg Dr. Sam Jobara

Design Principles

A design principle is a guideline rather than a hard-and-fast rule

Architecture characteristics ————»

client requests client requests client requests
I

A

INPIJUPLY —»

| I ﬁ]
M
' ~ »,
| -
— =
o
(D o
o . 3
(E o - Q-
Q. Whenever possible leverage async messaging ©
L . = M
S between services to increase performance »
J \/

\/

< Structure

.GDT‘,
O
&

CHALMERS | ({

UNIVERSITY OF TECHNOLOGY

) University of Gothenburg Dr. Sam Jobara

Architecture Decisions
Define the rules for how a system should be constructed

<«— Architecture characteristics ——»

I presentation layer component CLOSED ‘
q .

§) Ty T 2.
— -
E
Q. =
@ : : .
a] Only the business and services layer can ©
— . D
S access the persistence layer »
wv

l \ /

A

Structure 5

| CHALMERS

UNIVERSITY OF TECHNOLOGY

University of Gothenburg

Dr. Sam Jobara

Mind Map for Software Architecture disciplines™

Architects need some knowledge and expertise as shown in the
mind map, and this is not an inclusive map!

architectural characteristics

fitness function

appropriate coupling
incremental change

Evolutionary Architecture

Applying Abstraction
Decision Scoy

Writing Skills

Technical
Software Architecture

Correspondence Soft Skills

Change Management

resentation skills

Application Architecture

More to come.

The responsibilities of a software architect
encompass technical abilities, soft skills,
operational awareness, and a host of others

Patterns

Metrics

Integration Architecture

Radiators

Enterprise Integration Patterns

EDA (Event driven architectures

Communication

Service-oriented Architecture

Integration Hubs

Pipes and Filters
ESB-SOA
Distributed microservices

Service-based
Serverless

Monolithic
Modular

Microkernel

Space-based architecture

Domain specific

architecture by implication

witches brew

Anti-patterns
Big Design Up Front
Last 10% Traj
Vision
Drivers _ Strategic imperatives
Current objectives
Incumbent
Conservative
Approach
Innovative
Disruptive
Business Engagement
7 i Business Processes
: N Fiscal
\Enterprise Architecture Cydles
2SS = Market
Are they delivering?
Are cost levels "acceptable™?
Reputation of IT
- Paralyze the business?
Applying synergies
Negatively impact delivery?
 Technology
\ Automated Systems
\IT Organization
_Trade-offs
Visualizations

* Richards, Mark; Ford, Neal (2020). Fundamentals of Software Architecture

+GOTR

T‘ﬁ) University of Gothenburg Dr. Sam Jobara

2
Q

S,

CHALMERS | ({

UNIVERSITY OF TECHNOLOGY

s
A

Architect vs. Developer
« Atight collaboration between the architect and the development

team is essential.
» See details in the DevOps guest lecture

Class /“\ = =
Architecture design | =8 o
characteristics == [;_ (o s =
= L E N Leadership T B

o »
Architect @ Developer = &
—’?" 8 - e &

\""""/ Tommem
HH Mentoring
2 -‘ \/ —
Component Source L
structure code
Old way New way

CHALMERS | ((®%)3 University of Gothenburg Dr. Sam Jobara

Learning Unit Obligation

- Understand the 4 component of System Architecture and their
relationship to each others.

- Realise the need for a close collaboration between architects and
system developers.

5 University of Gothenburg Dr. Sam Jobara

UNIVERSITY OF TECHNOLOGY

=72 CHALMERS

Outline

@ Concept alignment

- —
@ System Requirements '
G: System Components & Layers '
\ﬁi Use Cases Brief '
Q@; Quality Attributes '

@v QA Scenarios '

CHALMERS | ((®%)3 University of Gothenburg Dr. Sam Jobara

Software Architecture Contexts

ARCHITECTURE IN A TECHNICAL CONTEXT
Inhibit or enable the achievement of a system'’s technical quality attributes.

ARCHITECTURE IN A PROJECT LIFE-CYCLE CONTEXT
1. Waterfall: Plan Do Check Act
2. lterative: Short cycles of PDCA
3. Agile: It includes Lean, Scrum, XP, Kanban, DevOps.
These frameworks are all incremental and iterative.
They emphasize close collaboration between stakeholders.

ARCHITECTURE IN A BUSINESS CONTEXT

Many business goals will be manifested as quality attribute requirements as
Business needs and wants, budget, market and more.

Software Architecture Contexts

ARCHITECTURE IN A PROFESSIONAL CONTEXT

Diplomacy with stakeholders
Communication (RACI)
Consultation & Negotiation
Economy & Budget sense
Legal and regulatory issues
Market knowledge

Up to date technology
Learning organization enabler

Dr. Sam Jobara

CHALMERS | University of Gothenburg

Learning Focus

- Understand the architecture contexts and how they impact system
development

- Understand the nature of agile project life-cycle context of system
development

- Realize the obligation of system architects professional career
development

Dr. Sam Jobara

Dr. Sam Jobara

Outline

Q Concept alignment

el Software Architecture Contexts

=

i System Components & Layers '
\ﬁ% Use Cases Brief '
ZV@Q Quality Attributes '
3@ QA Scenarios '

;) University of Gothenburg Dr. Sam Jobara

What is a requirement?

Definition:

a requirement is a statement (Scope of Work SOW) describing:
1. an aspect of what the system functions must do,

2. aconstraint on the system’s development

3. adequately solving the stakeholders’ problem

Dr. Sam Jobara

Types of requirements

Functional requirements: describe what the system should do

Non-Functional requirement: deal with how system attributes perform.

Requirements can be tricky!

Regulatory, liability, budgetary, timely, leverage, skills, etc

| CHALMERS | ((®%)3 University of Gothenburg

The functional requirements: WHAT as follows:
* What I/O the system should expect
« What data structure and medium to use.

« What computations the system should perform
* What is the User and system admin functions

Non-Functional Requirement

The attributes “HOW?”, to be covered later

Dr. Sam Jobara

CHALMERS | ((®%)3 University of Gothenburg Dr. Sam Jobara

Constraints

Constraints a set restrictions on how the user requirements are to be implemented.
» Interface APIls Requirements.

« Communication (protocols) Interfaces.

« Hardware Interfaces.

« Software compatibility & Interfaces.

» User Interfaces & experience

« Language, code, and reusability

« Testing and maintenance

Dr. Sam Jobara

Do customers know what they want?

Stakeholders engagement issue

What about scope creep!

E g
8] YOU'VE SAID,"NEXT |y
hJYAoL\l; lY)'of:l%E | WEEK"FOR SEVEN WEEKS >
WITH YOUR I'LL BE § IN A ROW. WHAT MAKES |
PROTJECT DONE 12| YOU THINK I'M GOING g THE FIRST
WEEK. § §
3 <
- |
s g
g .
| <
8 °

CHALMERS

UNIVERSITY OF TECHNOLOGY

7 University of Gothenburg Dr. Sam Jobara

System Requirement

How they fail?

Why Software Projects fail? Project Management
Changing or poorlyiqo:\ilr::‘r::tds A8 o 4

Underfunding or under-resourcing

Poor team or or:‘gat:‘nai;l;t:;\:: (o) 4 M a n ag e M a n ag e

Insufficient time allocated to testing

Developer churn and loss of key
talent/employee

Missed delivery timeline expectations

Manage
Stakeholders

Time constraints and pre-mature
software release

Immature dev tools and application
platforms

Dr. Sam Jobara

Understand problem and setting the scope

Start Domain analysis to understand the background of the project.
Careful attention to the problem statement.

are we adequately solving the problem? (BCDR project)

It is a good idea to define the problem and scope as early as possible

(but consider Agile cycles)

It is very important to define the stakeholders early with detailed RACI matrix.

Clear RACI helps allot in facilitating communication, collaboration and accountability

UNIVERSITY OF TECHNOLOGY

{ CHALMERS

System Requirement

R: Responsible

University of Gothenburg

Person assigned to do the task

A: Accountable Person makes final decisions and own task

C: Consulted
| : Informed

Person that should (must) be consulted for the task
Person to be informed when a decision or action is made

Dr. Sam Jobara

RACI Matrix Template

Project Leadership Project Team Members | Project Sub-Teams External Resources
-] -] - = E - g -
R R R M B EI R E AR E R 3k
3 5lcS|eE[ZEl 2 |sE £S|=E|gcE|ls|ESEs| 2|23 =222
Project Deliverable ° 2lS 2l E|S E K- 2 s S 23 » EG’ % = %gc c (sl 2| S e | e
(or Activity) [§e*oldg< 3 === 2 (3 T & [Eoe<| = =] S |2 |
a <
Initiate Phase Activities
- Submit Project Request AIC | RIA RIA|AIC|AC| C
- Request Review by PMO R A
- Research Solution 1 C RIA|AIC|AC | C C C | AC
- Develop Business Case 1 AIC 1 1 RA| C C C C C C
|Plan Phase Activities
- Create Project Charter C C RA| C C C C C
- Create Schedule 1 1 1 | RA | C C C C C C C C 1
- Create Additional Plans as required | | I I RIA | | 1 I C |
|Execute Phase Activities
- Build Deliverables cnjcnjcn|ca R/IA | RIA [RIA | RIA | RA AIC
- Create Status Report 1 | 1 I R/IA | RIA | RIA | RIA C 1
IControl Phase Activities
- Perform Change Management C C C R A A A A C |
IClose Phase Activities
- Create Lessons Learned C C C C RA| C C C C C C C C C
- Create Project Closure Report 1 1 I | RIA | 1 1 | | I I 1

Project requirements are highly dependent on scope.

s it greenfield or redesign, variation, upgrade, etc
 |s there a contract with scope/requirement
« Can we modify the scope/requirement, and at what stage

Requirements Clients have
must be determined produced requirements
New
development A B
Evolution of C D
existing system

Dr. Sam Jobara

3 University of Gothenburg Dr. Sam Jobara

Example
A system that handles university degree requirements and registrations.

Then develop a requirements statement from this.
General statement: Automate all the functions of the registrar’s office.

Narrower problem statement such as the following:

‘Helping university administrators manage lists of courses, degree requirements, registration and
academic results. Helping students choose and register in courses in which they are interested
that will lead to their degree.’

What functions to include in the system.

The functions marked with a ‘++” will be included, while those marked with a ‘——" will be excluded.
—— Applications for admission

++ Editing and querying the list of available courses.

++ Editing and querying the requirements for obtaining a degree

++ Editing and querying the list of courses to be taught in a given semester

—— Scheduling the times that courses will be offered

—— Allocating courses or exams to rooms

++ Helping students determine which courses they could take by analyzing their degree requirements.
++ Registering students

++ Recording marks

++ Printing transcripts

| CHALMERS | (@1)3 University of Gothenburg Dr. Sam Jobara

System Requirement

Agile approaches to requirements

You do not develop large requirements documents. Instead, two approaches are
employed: user stories and test case.

User story: is similar to a use case, but has a looser structure; it describes some
proposed software feature from the perspective of how the user will use it and
should be limited to about three sentences. Development proceeds by choosing a
very small number of user stories to implement in the next iteration. Ideally each
iteration will take only a few days to develop.

Test case: The first stage of development in many agile approaches is to first
develop test cases. The series of test cases becomes the detailed specification of
how a user story should be implemented.

Dr. Sam Jobara

System Requirement

Managing changing requirements
* Requirements change.

« Many reasons for change, such as, business needs, budget, technology,
market, skills, Schedule, testing, scope, legal, etc.

« Requirements analysis should therefore never really stop.
« The development team should continue to interact with the stakeholders

* Incremental & iterative deployment: Agile, Lean, Scrum, etc.

(@ T‘B ;) University of Gothenburg Dr. Sam Jobara

System Requirement

Requirements on Requirements

S Specific
To-the-point, precise (iterative!)
M Measurable
Quantifiable and verifiable
A Acceptable
to the stakeholders, but achievable

R Realistic
Deducible to the real business drivers
T Testable

"The client kept changing the requirements
on a daily basis, so we decided to freeze
them until the next release."

Dr. Sam Jobara

Let’s consider

‘It is easy to extend”
“The system should respond_quickly”
“The user should not have to wai

“The system should be state-of-the-art ...”

“All communication between client and server is secure”

not measurable

“Determine solution within 0.3 sec”

“The system sho 1
“The Sys’[em can not pI‘EC/Se ague.' to What7 1

“The system can handle 100 concurrent users”

[attainable }

iﬁ a’omg What7}

time-dependent; J

means something else tomorrow

[subjective

Dr. Sam Jobara

Prioritizing Requirements

MoSCoW Method:

M - MUST: be satisfied in the final solution.
S - SHOULD: high-priority item that should be included if it is possible.
C - COULD: is considered desirable but not necessary.

W - WON'T: stakeholders have agreed will not be implemented in this release.

Dr. Sam Jobara

Learning Focus

- Ability to describe requirement statement, and Scope of Work SOW

- Define types of requirement, and their classifications

- Realize the challenge of identifying functional vs. non-functional requirements

- Realise types of constrains and classify them based on their system impact

- Understand the reason behind most projects failure.

- Understand how RACI tool can help mitigating project risks at an early stage.

- Ability to define type of project based on greenfield, vs. upgrade or improvement
- Understand agile approach and user/test cases definitions.

- Understand requirement priorities and requirement on requirement

&7

G
S ==L HD
(B
|
|
7’1
')‘

University of Gothenburg Dr. Sam Jobara

Outline

@ Concept alignment

&3 Software Architecture Contexts '

@\ System Requirements

\54% Use Cases Brief '

g Quality Attributes '
@ QA Scenarios '

a3 Achieving QA using Tactics

CHALMERS | ((®%)3 University of Gothenburg Dr. Sam Jobara

What is a subsystem/component?

Sub-system models is a logical grouping of functionality into a
coherent subsystems:

« Operate on the same data
» Perform functions that belong to the same system
* Viewed at the same abstraction and details layer

UNIVERSITY OF TECHNOLOGY

Y CHALMERS i) University of Gothenburg Dr. Sam Jobara

Subsystem Functions

I'____._____I WIHd r-—-——- ._____:
: Site : Turbine : Grid |
Level 1 |
v v v
Processing unit power ElectricalUnit Control Unit Support Unit
Level 2 l
v v v v v
Rotor Gearbox Brake Generator Cooling system
Level 3 * v l * * v
Planetary stage Lubricating system Housing Parallel stage Accessories

Level 4

v v v v v v v

Gear Bearing Shaft
(wheel, pinion) (left, right) (parallel)

Gear (ring, Spline Bearing (planet, Shaft (planet carrier,
planet, sun...) (sun) planet carrier) planet, sun...)

CHALMERS

UNIVERSITY OF TECHNOLOGY

University of Gothenburg

Functional Decomposition

Malita District Hospital
Management System

Administrator Receptionist Billing Officer Pharmacist Head Nurse

l [l [l
System Patient Pharmacy Manage Patient
Maintenance Registration Bills inventory History

|
Staff Registration : l T I M l I

: Pa:nent | Admission puarr;zg:e Update Patient
Staff Information " or:natuon Bills |] Statusl
Room Registration Admit Patient View Financial Manage Drug Patient

I Report Inventory Checkout

|

Assign System User

View Financial Report

Check Room/Bed

Dr. Sam Jobara

CHALMERS | ((®%)3 University of Gothenburg Dr. Sam Jobara

System Components & Layers

Functional

Subsystems vs Layering Dimension

»

Layer 1

Layer 2

Layer 3

v

Abstraction
Dimension

CHALMERS

UNIVERSITY OF TECHNOLOGY

University of Gothenburg Dr. Sam Jobara

System Components & Layers

Subsystems vs Layering

[Layers of the OS| Model

Open Systems Interconnection model (OSI model) is a layered server architecture system
Each layer is defined according to a specific function to perform.
All these seven layers work collaboratively to transmit the data from one layer to another.

Software
Layers
. = To establish, manage, and terminate session OSI Oal iS to enable the
Session ool
7 i interoperability of diverse
\ — Receiver with standard communication
Network protocals. The mode
* To provide i e rki P . .
— © gurus9 com partitions a communication
. * To organize bits into frames system into abstraction layers

Layers

D U
Phy5|ca| = To provide mechanical and electrical specifications
* (Coax, Fiber, Wireless, Hubs, Repeaters

Network Layers Diagram

Dr. Sam Jobara

Learning Focus

- Ability to define subsystem models and site examples

- |ldentify functional decomposition and system layered abstraction

- Understand the purpose of collaborating layers in OSI model

=4 § CHALMERS | i@f} University of Gothenburg Dr. Sam Jobara

Outline

Q Concept alignment

@ Software Architecture Contexts '
@ System Requirements '

= System Components & Layers

= .

@ Quality Attributes '
@ QA Scenarios '

30

) University of Gothenburg Dr. Sam Jobara

Use Case (how actors will use the system)

« Determine the types of users or systems that will use the system.

« |tis a typical sequence of actions that an actor performs in order to complete a given task.
« An actor is a role that a user or some other system plays when interacting with system.

« Most of the actors will be users; a given user may be considered as several different actors

« A use case should include only actions in which the actor interacts with the system.

N, S
) /S
Y i)

CHALMERS |
-
N7 UNIVERSITY OF TECHNOLOGY &

;) University of Gothenburg Dr. Sam Jobara

How to describe a single use case

1.

S S R A

~

Name. Give a short, descriptive name to the use case.

Actors. List the actor or actors who can perform this use case.

Goals. Explain what the actor or actors are trying to achieve.

Preconditions. Describe the state of the system before the use case occurs.
Summary. Summarize what occurs as the actor or actors perform the use case.

Related use cases . List use cases that may be generalizations, specializations, extensions
or inclusions of this one.

Steps . Describe each step of the use case using a two-column format.

Postconditions . What state is the system in following the completion of the use case.

30

Y CHALMERS |

UNIVERSITY OF TECHNOLOGY

5 University of Gothenburg Dr. Sam Jobara

Example (Use Case)

Briefly describe a use case for leaving a particular automated car park (parking lot).
Use case: Exit car park, paying cash. Actors: Car drivers, Goals: To leave the
parking lot after having paid the amount due.

Preconditions: The driver must have entered the car park with his or her car, and
must have picked up a ticket upon entry

Summary: When a driver wishes to exit the car park, he or she must bring his or her
car to the exit barrier and interact with a machine to pay the amount due.

Related use case: Exit car park by paying using a debit card

Steps:
Actor actions System responses
1. Drive to exit barrier, triggeringa 2a. Detect presence of a car.
sensor. 2b. Prompt driver to insert his or her
card.
3. Insert ticket. 4. Display amount due.
5. Insert money into slot. 6a. Return any change owing.
6b Prompt driver to take the change
(if any).

6¢. Raise barrier.
7. Drive through barrier, triggering 8. Lower barrier.
a sensor.

30

Y CHALMERS |

UNIVERSITY OF TECHNOLOGY

5 University of Gothenburg Dr. Sam Jobara

Use case diagrams

Use case diagrams are UMLs notation for showing the relationships among a set of
use cases and actors.

They help a software engineer to convey a high-level picture of the functionality of a
system.

There are two main symbols in use case diagrams: an actor is shown as a stick
person and a use case is shown as an elliose. Lines indicate which actors perform

which use cases.
Add course offering
Add course
Registrar Actor
Enter grade
for course

Student Actor
Find information about course

A simple use case diagram showing three actors and five use cases

Professor Actor

Dr. Sam Jobara

The use case modeler can use extensions , generalizations or inclusions to
represent different types of relationships among use cases.

Extensions are used to make optional interactions or handle exceptional cases.

(Generalizations use triangle symbol: several similar use cases can be shown
along with a common generalized use case. Same like parent and child.

INnclusions allow you to express a part of a use case so that you can capture
commonality between several different use cases.

30

Y CHALMERS |

UNIVERSITY OF TECHNOLOGY

5 University of Gothenburg Dr. Sam Jobara

The open triangle points to a generalization. The «extend» and «include»
stereotypes show the other relationships between use cases. Note that actors can
also be arranged in a generalization hierarchy.

Open file

Ordinary User
Open file by Open file by
typing name browsing
E«extend» E«include»

Attempt to open file Browse for file
that does not exist
System

Administrator

Extension, generalization and inclusion in a use case diagram

@ University of Gothenburg

The benefits of use cases for software development

Use cases:

Can help to define the scope of the system

The number of use cases is a good indicator of a project’s size.

Develop and validate the requirements
Helps stakeholders to understand requirements

Can be used to structure user manuals.

Dr. Sam Jobara

30

Y CHALMERS |

UNIVERSITY OF TECHNOLOGY

5 University of Gothenburg Dr. Sam Jobara

Scenarios

A scenario is an instance of a use case

It can help to clarify the associated use case.

It is also often simply a use case instance .

Example: Describe a concrete scenario corresponding to the ‘Exit car park,
paying cash’ use case from Example 4.11.

Steps:
Actor actions System responses
Drives to the exit barrier. Detects the presence of a car.
Displays: ‘Please insert your ticket.
Inserts ticket. Displays: Amount due $2.50’.
Inserts $1 into the slot. Displays: Amount due $1.50’.
Inserts $1 into the slot. Displays: Amount due $0.50’.
Inserts $1 into the slot. Returns $0.50.
Displays: ‘Please take your $0. 50 change.
Raises barrier.
Drives through barrier, Lowers barrier.

triggering sensor.

Dr. Sam Jobara

CHALMERS | ({

UNIVERSITY OF TECHNOLOGY

Learning Focus

- Understand use cases and how they help in system requirement development
- Ability to show a use case for a given system functionality
- Know how to use generalize, include and extend use cases in use case diagram

- Understand use scenario and how to instantiate it from a use case

=7 CHALMERS

UNIVERSITY OF TECHNOLOGY

5 University of Gothenburg Dr. Sam Jobara

Outline

Q Concept alignment

@ Software Architecture Contexts '
@ System Requirements '

=

rH System Components & Layers '

\5?. Use Cases & Scenarios

@ QA Scenarios .

g’f@t ‘Eﬁ’ University of Gothenburg Dr. Sam Jobara

Quality Attributes

Systems are frequently redesigned not because they are functionally deficient.
Stakeholders decide value and priorities of functions and attribute.

It is the mapping of a system’s functionality onto software architecture that
determines the architecture’s quality attributes.

A quality requirement is a specification of the acceptable quality attribute.
A quality attribute is a measurable or testable property of a system.

Quiality attributes should be communicated based on KPIs that are
agreeable across all stakeholders.

Managing Software Quality

Main issues:

Quality cannot be added as an afterthought (really!)

In order to control, we must measure and use defined (KPIs)
Product quality vs process quality (Response vs. Efficiency)
Stakeholders are the juries when it comes to testing quality

There is always iteration of quality and cyclic development process
This explains why we have release and versioning management
Attributes qualification should be defined (technically and legally)

Dr. Sam Jobara

f‘f@ 7’}} University of Gothenburg Dr. Sam Jobara

Quality Attributes
Attribute Description
Performance How fast does it respond or execute?
Availability Is it available when and where | need to use it?
Safety How well does it protect against damage?
Usability How easy it is for people to learn and use?
Interoperability How easily does it interconnect with other systems?
Integrity Does it protect against unauthorized access and data loss?
Installability How easy is it to correctly install the product?
Robustness How well does it respond to unexpected operating conditions?
Reliability How long does it run before experiencing a failure?

Recoverability = How quickly can the user recover from a failure?

Attributes may imply different perspective based on system context

f‘f@ 7’}} University of Gothenburg Dr. Sam Jobara

Quality Attributes

Attribute Description

Efficiency How well does it utilize processor capacity, disk space,
memory, bandwidth, and other resources?

Flexibility How easily is it to modify functionality / UI?

Maintainability = How easy is it to correct defects or make changes?

Portability How easily can it be made to work on other platforms?

Reusability How easily can we use components in other systems?

Scalability How easily can | add more users, servers, or other

extensions?
Supportability = How easy will it be support after installation?
Testability Can | verify that it is implemented correctly?

CHALMERS |

UNIVERSITY OF TECHNOLOGY

University of Gothenburg

Quality Attributes

Quality attributes [edit]

Notable quality attributes include:

¢ accessibility

¢ accountability
e accuracy

» adaptability

o administrability
o affordability

o agility (see Common subsets below)
o auditability

e autonomy

e availability

o compatibility

o composability
o configurability
e correctness

o credibility

o customizability
¢ debuggability
o degradability

o determinability
o demonstrability

¢ dependability (see Common subsets below)

¢ deployability

o discoverability
o distributability
o durability

o effectiveness
o efficiency

* evolvability

o extensibility

o failure transparency
o fault-tolerance
o fidelity

o flexibility

¢ inspectability
o installability

o integrity

« interchangeability
o interoperability
e |earnability

o localizability

* maintainability
o manageability

Many of these quality attributes can also be applied to data quality.

https://en.wikipedia.org/wiki/List of system quality attributes

e mobility

¢ modifiability

o modularity

e observability
e operability

« orthogonality
e portability

e precision

o predictability
® process capabilities
e producibility

e provability

e recoverability
e relevance

o reliability

e repeatability
o reproducibility
¢ resilience

e responsiveness
o reusability

e robustness

Dr. Sam Jobara

* safety

o scalability

o seamlessness

o self-sustainability
o serviceability

o securability

o simplicity

o stability

o standards compliance
o survivability

o sustainability

o tailorability

o testability

o timeliness

o traceability

¢ transparency

o ubiquity

¢ understandability
¢ upgradability

o usability

o vulnerability

and more......

https://en.wikipedia.org/wiki/List_of_system_quality_attributes

CHALMERS

UNIVERSITY OF TECHNOLOGY

Dr. Sam Jobara

ISO/IEC 25010 Quality Model*

The quality of a system is the degree to which the system satisfies the stated and
implied needs of its various stakeholders.

The product quality model defined in ISO/IEC 25010 comprises the eight quality
characteristics shown in the following figure:

SOFTWAREPRODUCT
QUALITY

Functional
Suitability

Performance Compatibility Usability Reliability Security Maintainability Portability

Efficiency

*https://is025000.com/index.php/en/is0-25000-standards/iso-25010#:~:text=ISO%2FIEC%2025010&text=
The%20quality%20model%20determines%20which,stakeholders%2C%20and%20thus%20provides%20value.

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

Dr. Sam Jobara

Availability

Availability is the percentage of time when system it is operational.

Mean Time Between Failures (MTBF)

_ MTEF Number of hours that pass before a component fails

- MTEE + MTTR E.g. 2 failures per million hours: MTBF = 10%/2 = 0,5 * 106 hr
Availability Downtime Calculate MTTR by dividing
90% (1-nine) 36.5 days/year the ’|[O’[a| t:jme Slpteﬂ’[on

) _ unplannea maintenance
9% (Z'mnés) 365 days/year by the number of times an
99.9% (3-nines) 8.76 hours/year asset has failed
99.99% (4-nines) 52 minutes/year
99.999% (5-nines) 5 minutes/year

99.9999% (6-nines) 31 seconds/year !

§ CHALMERS | (@7)3 University of Gothenburg Dr. Sam Jobara

Performance

Performance is composed of the following sub-attributes:

Time behavior - system responses and processing times
« Throughput — number of bytes handled per second
* Response time/Turn-around time/ signal Latency & jitter

Resource utilization - Degree to which the amounts and types of resources used

Capacity - relate to stress condition perfomance

Dr. Sam Jobara

Security

Security can be characterized as a system providing

1.

o o M w0 Db

Nonrepudiation is the property that assures transaction authenticity
Confidentiality data or services are protected from unauthorized access.
Integrity is the property that data or services are being delivered as intended.
Availability is the property that the system will be available for legitimate use.
Auditable system tracks activities within is sufficient to trace and audit

Compliance & Privacy: Laws compliance: General Data Protection Regulation (GDPR)

;) University of Gothenburg Dr. Sam Jobara

N\ A
Y, i)
CHALMERS | [
!
Vi UNIVERSITY OF TECHNOLOGY 7’

Quality Attributes

Compatibility

Degree to which a product, system or component can exchange information with
other products, systems or components.

It has the following sub-characteristics:

Co-existence - Degree to which a product can perform its required functions
efficiently while sharing a common environment and resources.

Interoperability - Degree to which two or more systems, products or components
can exchange information and use the information that has been exchanged

Dr. Sam Jobara

The trade-off decision

Real life we trade-off
You can choose 2

but all 3 is expensive ow
TIME

SCOPE
CHANGE

EXPENSIVE SLOW

Fast

QUALITY

Project Management Triangle

I'™M TALKING ABOUT
OUR GOALS, NOT
THEIR GOALS.

TOTALLY
DIFFERENT.

f\

'~ —
/.2

DO WE HAVE ANY
GOALS THAT INVOLVE
MAKING CUSTOMERS
HAPPY?

OUR GOAL IS TO
SHIP A MILLION
UNITS THIS
QUARTER.

02004 SCOott AJamMS, INC. Dut by Usiverssl Uckek

Dilbert.com DilbertCartoonist@gmail com

-5~

| CHALMERS | (@1)3 University of Gothenburg Dr. Sam Jobara

Evaluating Quality Attributes
Quality attributes can be evaluated through:

« Scenario-based evaluation: eg. scenarios for assessing maintainability

« Simulation: a part of the architecture is implemented and executed in the actual
system context.

« Test Environment: Controlled nonproduction testing with similar environment
« Mathematical modeling: checking for potential deadlocks, and performance..

« Prototype or emulated concept design: Build a concept system, MVP (suitable
for large systems)

Dr. Sam Jobara

Evaluating Quality Attributes

Overlapping concerns
Performance: due to DDS attack or poor design
Security: due to poor layering or internal compromise

Untestable Concern
The quality attribute should be tested in all the circumstances. (stress condition)

Gathering Quality Attribute Information

Quality requirements and design constraints are enabled by two main techniques:
« Quality Attribute Scenario (QAS) and

« Quality Attribute Workshop (QAW).

§®t ‘Eﬁ’ University of Gothenburg Dr. Sam Jobara

Learning Focus

- Understand QAs relationship to system functionality, and how they qualify system
functional requirement.

- How to manage QAs, identify, measure and test them in the right context

- Understand the product quality model defined in ISO/IEC 25010 with the eight
quality characteristics

- Understand Qas for Security, Availability, and Performance in more details.

- Understand the techniques used for evaluating system QAs

=4 § CHALMERS | i@f} University of Gothenburg Dr. Sam Jobara

Outline

Q Concept alignment

@ Software Architecture Contexts '

System Requirements
System Components & Layers '
Use Cases & Scenarios '

Quality Attributes

O

|

0

Dr. Sam Jobara

QA Scenarios

Quality Attribute Scenario (QAS)*
QAS appears to solve the untestable and overlapping concerns.
The aim of a QAS is to capture the explicit and testable quality requirements

It does it in the same way the use case scenarios do for functional
requirements by initiating a use case instant.

QAS consists of six parts.

* “Software Architecture for Business”, by Lina Khalid, ISBN 978-3-030-13631-4 © Springer Nature Switzerland AG 2020

Dr. Sam Jobara

We specify quality attribute requirements, we capture them formally as six parts of QAS:

1. Source of stimulus. (a human, or any other actuator) that generated the stimulus.

2. Stimulus. A condition that requires a response. For different quality it means something specific.
3. Environment. The system may be in an overload condition, test, or in normal operation.

4. Artifact. Some artifact is stimulated. This may be a collection or whole system, or pieces of it.

5. Response. The response is the activity undertaken as the result of the arrival of the stimulus.

6. Response measure. A response should be measurable so that the requirement can be tested.

Parts of a quality attribute scenario
—_— _—> .
Stimulus Response (ex. web portal responsiveness).

Source Environment Response
of Stimulus Measure

:4 CHALMERS

UNIVERSITY OF TECHNOLOGY

University of Gothenburg

There are two types of QAS: general and concrete:
- A General scenario do not belong to any system.

- A Concrete scenario belongs to a particular system under specific conditions.

Table 3.1 General QAS for availability quality

Source The source can be internal or external, for example, people, hardware,
software, physical infrastructure, etc.
Stimulus Fault
Artifacts Processors, communication channels, persistent storage, process
Environment | Normal operation, shutdown, repair mode, overloaded operation
Response Prevent fault from becoming failure
Detect the fault
Recovery from the fault
Response Availability percentage, for example (99.999%), time to detect fault, time to
measure repair fault, time or time interval in which a system can be in a degraded mode,

etc.

Table 3.3 Concrete table

Source Internal hardware
Stimulus Crash

Artifacts Processors
Environment Normal operation
Response Detect the fault

Recovery from the fault

Response measure System can be in a degraded mode no more than 15 minutes

Dr. Sam Jobara

GOT,
(R

Y CHALMERS |

UNIVERSITY OF TECHNOLOGY 5

I'BB, University of Gothenburg Dr. Sam Jobara

2

We develop first the general quality attribute scenarios, for a specific attribute such
as availability.

Then we translate them to the specific requirement of the system under development
to get concrete scenarios, by specifying the source and the stimulus.

A general scenario for availability

¥

Artifact e
Processors, m
_ > communication >
Stimulus | channels, persistent Response
Fault: storage, processes J prgvent fault from
omission, becoming failure
Source crash, Environment Detect fault: log, notify Response
of Stimulus incorrect Normal operation, ~ Recover from fault: Measure
Internal/External: timing, startup, shutdown, disable event source, Time or time interval
people, hardware, incorrect repair mode, be unavailable, system must be available
software, physical response degraded fix'mask, degraded Availability percentage
infrastructure, operation, mode Time in degraded mode
physical overloaded Time to detect fault
environment operation Repair time

Proportion of faults
system handles

| CHALMERS | (@1)3 University of Gothenburg Dr. Sam Jobara

Quality Attribute Workshop (QAW)

Quiality Attribute Workshop is a facilitated method for a few-days workshop.

It connects stakeholders in the early part of the life cycle in order to find quality
attributes for the existing system.

The important thing to know about QAW is that:

* |t is focused on the stakeholders.

* [t is scenario based.

* [t is used before the software architecture begins.

* [t is focused on the system level concerns and on the role of software in the system.

Dr. Sam Jobara

Learning Focus

- Understand purpose of QAS and how to use them

- How to capture the 6 parts general and concrete scenarios

- Understand the purpose and activities of the QAW

ff@l \Eﬂ ;) University of Gothenburg Dr. Sam Jobara

QAs context

(Eour)

%

Developer Tester

0

See you at Architecture Styles |l
& Blockchains Architecture

