
Dr. Sam Jobara

Fundamentals of Software Architecture
DIT344

Sam Jobara Ph.D.
jobara@chalmers.se

Software Engineering Division
Chalmers | GU

mailto:jobara@chalmers.se

Dr. Sam Jobara

Dr. Sam Jobara
Chalmers | University of Gothenburg

I have a Ph.D. in Computer Science and Engineering, USF, USA

I have research interests in testing and fault modeling, computer architecture,
information security, and product line engineering. I am also interested in learning and
cognitive theories.

My teaching covers a multitude of courses in Computer architecture, Information
security, TDA594 Software engineering principles for complex systems, & DIT824
Software engineering for data-intensive AI applications.

My industrial experience spans over 18 years as an IT Consultant in
Telecommunication, Information Security, and Supply Chain Management.

jobara@chalmers.se

mailto:jobara@chalmers.se

Dr. Sam Jobara

Software Architecture
DIT344

Requirements, &
Quality Attributes

Dr. Sam Jobara
Chalmers | University of Gothenburg

Dr. Sam Jobara

References

• Object-Oriented Software Engineering, Chapter 4

by Lethbridge & Laganiere

• Software Architecture in Practice, Chapter 3 & 4

by Len Bass; Paul Clements; Rick KazmanPublished

• Other literatures (see reference at slides)

Dr. Sam Jobara

Objectives

Learning experience for this lecture:
• Problem statement and Systems Requirements

• How to capture and document system requirement

• Introduce System quality attributes

• How to define, and measure quality attributes

Dr. Sam Jobara

Concepts alignment

Software Architecture Contexts

System Requirements

System Components & Layers

Use Cases Brief

Quality Attributes

QA Scenarios

Outline

Dr. Sam Jobara

Concepts Alignment

System Architecture
It consists of the Structure (Style) of the system , driven by architecture
characteristics, design principles, and architecture decisions

Style, Structure or pattern
(such as client-server,P2P
microservices, layered)

Dr. Sam Jobara

Concepts Alignment

Architecture characteristics (Attributes)
System quality attributes which encompasses all -ilties

Dr. Sam Jobara

Concepts Alignment

Design Principles
A design principle is a guideline rather than a hard-and-fast rule

Dr. Sam Jobara

Concepts Alignment

Architecture Decisions
Define the rules for how a system should be constructed

Dr. Sam Jobara

Mind Map for Software Architecture disciplines*
Architects need some knowledge and expertise as shown in the

mind map, and this is not an inclusive map!

* Richards, Mark; Ford, Neal (2020). Fundamentals of Software Architecture

Dr. Sam Jobara

Architect vs. Developer
• A tight collaboration between the architect and the development

team is essential.
• See details in the DevOps guest lecture

Old way New way

Dr. Sam Jobara

Learning Unit Obligation

- Understand the 4 component of System Architecture and their
relationship to each others.

- Realise the need for a close collaboration between architects and
system developers.

Dr. Sam Jobara

Concept alignment

Software Architecture Contexts

System Requirements

System Components & Layers

Use Cases Brief

Quality Attributes

QA Scenarios

Outline

Dr. Sam Jobara

Software Architecture Contexts

ARCHITECTURE IN A TECHNICAL CONTEXT

Inhibit or enable the achievement of a system’s technical quality attributes.

ARCHITECTURE IN A PROJECT LIFE-CYCLE CONTEXT

1. Waterfall: Plan Do Check Act

2. Iterative: Short cycles of PDCA

3. Agile: It includes Lean, Scrum, XP, Kanban, DevOps.

These frameworks are all incremental and iterative.

They emphasize close collaboration between stakeholders.

ARCHITECTURE IN A BUSINESS CONTEXT

Many business goals will be manifested as quality attribute requirements as
Business needs and wants, budget, market and more.

Dr. Sam Jobara

Software Architecture Contexts

ARCHITECTURE IN A PROFESSIONAL CONTEXT

• Diplomacy with stakeholders

• Communication (RACI)

• Consultation & Negotiation
• Economy & Budget sense

• Legal and regulatory issues

• Market knowledge

• Up to date technology

• Learning organization enabler

Dr. Sam Jobara

Learning Focus

- Understand the architecture contexts and how they impact system
development

- Understand the nature of agile project life-cycle context of system
development

- Realize the obligation of system architects professional career
development

Dr. Sam Jobara

Concept alignment

Software Architecture Contexts

System Requirements

System Components & Layers

Use Cases Brief

Quality Attributes

QA Scenarios

Outline

Dr. Sam Jobara

System Requirement

What is a requirement?

Definition:
a requirement is a statement (Scope of Work SOW) describing:
1. an aspect of what the system functions must do,
2. a constraint on the system’s development
3. adequately solving the stakeholders’ problem

Dr. Sam Jobara

System Requirement

Types of requirements

Functional requirements: describe what the system should do

Non-Functional requirement: deal with how system attributes perform.

Requirements can be tricky!

Regulatory, liability, budgetary, timely, leverage, skills, etc

Dr. Sam Jobara

System Requirement

The functional requirements: WHAT as follows:

• What I/O the system should expect
• What data structure and medium to use.
• What computations the system should perform
• What is the User and system admin functions

Non-Functional Requirement

The attributes “HOW”, to be covered later

Dr. Sam Jobara

System Requirement

Constraints
Constraints a set restrictions on how the user requirements are to be implemented.

• Interface APIs Requirements.

• Communication (protocols) Interfaces.

• Hardware Interfaces.

• Software compatibility & Interfaces.

• User Interfaces & experience

• Language, code, and reusability

• Testing and maintenance

Dr. Sam Jobara

Do customers know what they want?

Stakeholders engagement issue

What about scope creep!

System Requirement

Dr. Sam Jobara

Manage
Risk

Manage
Stakeholders

Manage
Skills

Project Management

How they fail?

System Requirement

Dr. Sam Jobara

Understand problem and setting the scope

Start Domain analysis to understand the background of the project.

Careful attention to the problem statement.

are we adequately solving the problem? (BCDR project)

It is a good idea to define the problem and scope as early as possible

(but consider Agile cycles)

It is very important to define the stakeholders early with detailed RACI matrix.

Clear RACI helps allot in facilitating communication, collaboration and accountability

System Requirement

Dr. Sam Jobara

R: Responsible Person assigned to do the task
A: Accountable Person makes final decisions and own task
C: Consulted Person that should (must) be consulted for the task
I : Informed Person to be informed when a decision or action is made

System Requirement

Dr. Sam Jobara

Project requirements are highly dependent on scope.

• Is it greenfield or redesign, variation, upgrade, etc
• Is there a contract with scope/requirement
• Can we modify the scope/requirement, and at what stage

System Requirement

Dr. Sam Jobara

Example
A system that handles university degree requirements and registrations.
Then develop a requirements statement from this.
General statement: Automate all the functions of the registrar’s office.

Narrower problem statement such as the following:

‘Helping university administrators manage lists of courses, degree requirements, registration and
academic results. Helping students choose and register in courses in which they are interested
that will lead to their degree.’

What functions to include in the system.

The functions marked with a ‘++’ will be included, while those marked with a ‘−−’ will be excluded.
−− Applications for admission
++ Editing and querying the list of available courses.
++ Editing and querying the requirements for obtaining a degree
++ Editing and querying the list of courses to be taught in a given semester
−− Scheduling the times that courses will be offered
−− Allocating courses or exams to rooms
++ Helping students determine which courses they could take by analyzing their degree requirements.
++ Registering students
++ Recording marks
++ Printing transcripts

System Requirement

Dr. Sam Jobara

Agile approaches to requirements

You do not develop large requirements documents. Instead, two approaches are
employed: user stories and test case.

User story: is similar to a use case, but has a looser structure; it describes some
proposed software feature from the perspective of how the user will use it and
should be limited to about three sentences. Development proceeds by choosing a
very small number of user stories to implement in the next iteration. Ideally each
iteration will take only a few days to develop.

Test case: The first stage of development in many agile approaches is to first
develop test cases. The series of test cases becomes the detailed specification of
how a user story should be implemented.

System Requirement

Dr. Sam Jobara

Managing changing requirements

• Requirements change.

• Many reasons for change, such as, business needs, budget, technology,
market, skills, Schedule, testing, scope, legal, etc.

• Requirements analysis should therefore never really stop.

• The development team should continue to interact with the stakeholders

• Incremental & iterative deployment: Agile, Lean, Scrum, etc.

System Requirement

Dr. Sam Jobara

Requirements on Requirements

S Specific

To-the-point, precise (iterative!)

M Measurable

Quantifiable and verifiable

A Acceptable

to the stakeholders, but achievable

R Realistic

Deducible to the real business drivers

T Testable

System Requirement

Dr. Sam Jobara

Let’s consider

• “All communication between client and server is secure”

• “It is easy to extend”

• “The system should respond quickly”

• “The user should not have to wait more than a few second …”

• “Determine solution within 0.3 sec”

• “The system should be always available”

• “The system can handle multiple concurrent users”

• “The system can handle 100 concurrent users”

• “The system should be state-of-the-art …”
attainable

vague: to what?

doing what?

subjective
time-dependent;

means something else tomorrow

not measurablenot measurablenot measurable

not precise

Dr. Sam Jobara

Prioritizing Requirements

MoSCoW Method:

M - MUST: be satisfied in the final solution.

S - SHOULD: high-priority item that should be included if it is possible.

C - COULD: is considered desirable but not necessary.

W - WON'T: stakeholders have agreed will not be implemented in this release.

Dr. Sam Jobara

Learning Focus

- Ability to describe requirement statement, and Scope of Work SOW

- Define types of requirement, and their classifications

- Realize the challenge of identifying functional vs. non-functional requirements

- Realise types of constrains and classify them based on their system impact

- Understand the reason behind most projects failure.

- Understand how RACI tool can help mitigating project risks at an early stage.

- Ability to define type of project based on greenfield, vs. upgrade or improvement

- Understand agile approach and user/test cases definitions.

- Understand requirement priorities and requirement on requirement

Dr. Sam Jobara

Concept alignment

Software Architecture Contexts

System Requirements

System Components & Layers

Use Cases Brief

Quality Attributes

QA Scenarios

Achieving QA using Tactics

Outline

Dr. Sam Jobara

What is a subsystem/component?

Sub-system models is a logical grouping of functionality into a
coherent subsystems:

• Operate on the same data
• Perform functions that belong to the same system

• Viewed at the same abstraction and details layer

System Components & Layers

Dr. Sam Jobara

Subsystem Functions

System Components & Layers

Dr. Sam Jobara

Functional Decomposition

System Components & Layers

Dr. Sam Jobara

Subsystems vs Layering

Fu
el

Sy
ste

m

Pro
pulsi

on
Sy

ste
m

Ele
ctr

ica
l

Sy
ste

m

Brak
ing

Sy
ste

m

Layer 1

Layer 2

Layer 3

Abstraction
Dimension

Functional
Dimension

System Components & Layers

Dr. Sam Jobara

Subsystems vs Layering

7 Layers of the OSI Model
Open Systems Interconnection model (OSI model) is a layered server architecture system
Each layer is defined according to a specific function to perform.
All these seven layers work collaboratively to transmit the data from one layer to another.

System Components & Layers

OSI goal is to enable the
interoperability of diverse
communication systems
with standard communication
protocols. The model
partitions a communication
system into abstraction layers

Dr. Sam Jobara

Learning Focus

- Ability to define subsystem models and site examples

- Identify functional decomposition and system layered abstraction

- Understand the purpose of collaborating layers in OSI model

Dr. Sam Jobara

Concept alignment

Software Architecture Contexts

System Requirements

System Components & Layers

Use Cases Brief

Quality Attributes

QA Scenarios

Outline

Dr. Sam Jobara

Use Case (how actors will use the system)

• Determine the types of users or systems that will use the system.

• It is a typical sequence of actions that an actor performs in order to complete a given task.

• An actor is a role that a user or some other system plays when interacting with system.

• Most of the actors will be users; a given user may be considered as several different actors

• A use case should include only actions in which the actor interacts with the system.

Use Cases Brief

Dr. Sam Jobara

How to describe a single use case
1. Name. Give a short, descriptive name to the use case.

2. Actors. List the actor or actors who can perform this use case.

3. Goals. Explain what the actor or actors are trying to achieve.

4. Preconditions. Describe the state of the system before the use case occurs.

5. Summary. Summarize what occurs as the actor or actors perform the use case.

6. Related use cases . List use cases that may be generalizations, specializations, extensions
or inclusions of this one.

7. Steps . Describe each step of the use case using a two-column format.

8. Postconditions . What state is the system in following the completion of the use case.

Use Cases Brief

Dr. Sam Jobara

Example (Use Case)

Briefly describe a use case for leaving a particular automated car park (parking lot).
Use case: Exit car park, paying cash. Actors: Car drivers, Goals: To leave the
parking lot after having paid the amount due.

Preconditions: The driver must have entered the car park with his or her car, and
must have picked up a ticket upon entry

Summary: When a driver wishes to exit the car park, he or she must bring his or her
car to the exit barrier and interact with a machine to pay the amount due.

Related use case: Exit car park by paying using a debit card

Dr. Sam Jobara

Use case diagrams

Use case diagrams are UML’s notation for showing the relationships among a set of
use cases and actors.

They help a software engineer to convey a high-level picture of the functionality of a
system.

There are two main symbols in use case diagrams: an actor is shown as a stick
person and a use case is shown as an ellipse. Lines indicate which actors perform
which use cases.

Use Cases Brief

Dr. Sam Jobara

The use case modeler can use extensions , generalizations or inclusions to
represent different types of relationships among use cases.

Extensions are used to make optional interactions or handle exceptional cases.

Generalizations use triangle symbol: several similar use cases can be shown
along with a common generalized use case. Same like parent and child.

Inclusions allow you to express a part of a use case so that you can capture
commonality between several different use cases.

Use Cases Brief

Dr. Sam Jobara

The open triangle points to a generalization. The «extend» and «include»
stereotypes show the other relationships between use cases. Note that actors can
also be arranged in a generalization hierarchy.

Use Cases Brief

Dr. Sam Jobara

The benefits of use cases for software development

Use cases:

• Can help to define the scope of the system

• The number of use cases is a good indicator of a project’s size.

• Develop and validate the requirements

• Helps stakeholders to understand requirements

• Can be used to structure user manuals.

Use Cases Brief

Dr. Sam Jobara

Scenarios

A scenario is an instance of a use case

It can help to clarify the associated use case.

It is also often simply a use case instance .

Example: Describe a concrete scenario corresponding to the ‘Exit car park,
paying cash’ use case from Example 4.11.

Use Cases Brief

Dr. Sam Jobara

Learning Focus

- Understand use cases and how they help in system requirement development

- Ability to show a use case for a given system functionality

- Know how to use generalize, include and extend use cases in use case diagram

- Understand use scenario and how to instantiate it from a use case

Dr. Sam Jobara

Concept alignment

Software Architecture Contexts

System Requirements

System Components & Layers

Use Cases & Scenarios

Quality Attributes

QA Scenarios

Outline

Dr. Sam Jobara

Quality Attributes

Systems are frequently redesigned not because they are functionally deficient.

Stakeholders decide value and priorities of functions and attribute.

It is the mapping of a system’s functionality onto software architecture that
determines the architecture’s quality attributes.

A quality requirement is a specification of the acceptable quality attribute.

A quality attribute is a measurable or testable property of a system.

Quality attributes should be communicated based on KPIs that are
agreeable across all stakeholders.

Dr. Sam Jobara

Managing Software Quality

Main issues:
• Quality cannot be added as an afterthought (really!)

• In order to control, we must measure and use defined (KPIs)

• Product quality vs process quality (Response vs. Efficiency)

• Stakeholders are the juries when it comes to testing quality

• There is always iteration of quality and cyclic development process
• This explains why we have release and versioning management

• Attributes qualification should be defined (technically and legally)

Quality Attributes

Dr. Sam Jobara

Quality Attributes

Attributes may imply different perspective based on system context

Dr. Sam Jobara

Quality Attributes

Dr. Sam Jobara

Quality Attributes

https://en.wikipedia.org/wiki/List_of_system_quality_attributes and more......

https://en.wikipedia.org/wiki/List_of_system_quality_attributes

Dr. Sam Jobara

ISO/IEC 25010 Quality Model*

The quality of a system is the degree to which the system satisfies the stated and
implied needs of its various stakeholders.

The product quality model defined in ISO/IEC 25010 comprises the eight quality
characteristics shown in the following figure:

*https://iso25000.com/index.php/en/iso-25000-standards/iso-25010#:~:text=ISO%2FIEC%2025010&text=
The%20quality%20model%20determines%20which,stakeholders%2C%20and%20thus%20provides%20value.

Quality Attributes

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

Dr. Sam Jobara

Availability

Availability is the percentage of time when system it is operational.

Mean Time Between Failures (MTBF)

Number of hours that pass before a component fails

E.g. 2 failures per million hours: MTBF = 106 / 2 = 0,5 * 106 hr

Quality Attributes

Calculate MTTR by dividing
the total time spent on
unplanned maintenance
by the number of times an
asset has failed

Dr. Sam Jobara

Performance

Performance is composed of the following sub-attributes:

Time behavior - system responses and processing times

• Throughput – number of bytes handled per second

• Response time/Turn-around time/ signal Latency & jitter

Resource utilization - Degree to which the amounts and types of resources used

Capacity - relate to stress condition perfomance

Quality Attributes

Dr. Sam Jobara

Security

Security can be characterized as a system providing

1. Nonrepudiation is the property that assures transaction authenticity

2. Confidentiality data or services are protected from unauthorized access.

3. Integrity is the property that data or services are being delivered as intended.

4. Availability is the property that the system will be available for legitimate use.

5. Auditable system tracks activities within is sufficient to trace and audit

6. Compliance & Privacy: Laws compliance: General Data Protection Regulation (GDPR)

Quality Attributes

Dr. Sam Jobara

Compatibility

Degree to which a product, system or component can exchange information with
other products, systems or components.

It has the following sub-characteristics:

Co-existence - Degree to which a product can perform its required functions
efficiently while sharing a common environment and resources.

Interoperability - Degree to which two or more systems, products or components
can exchange information and use the information that has been exchanged

Quality Attributes

Dr. Sam Jobara

The trade-off decision

You can choose 2
but all 3 is expensive

Real life we trade-off

Dr. Sam Jobara

Evaluating Quality Attributes

Quality attributes can be evaluated through:

• Scenario-based evaluation: eg. scenarios for assessing maintainability

• Simulation: a part of the architecture is implemented and executed in the actual
system context.

• Test Environment: Controlled nonproduction testing with similar environment

• Mathematical modeling: checking for potential deadlocks, and performance..

• Prototype or emulated concept design: Build a concept system, MVP (suitable
for large systems)

Quality Attributes

Dr. Sam Jobara

Evaluating Quality Attributes

Overlapping concerns
Performance: due to DDS attack or poor design
Security: due to poor layering or internal compromise

Untestable Concern
The quality attribute should be tested in all the circumstances. (stress condition)

Gathering Quality Attribute Information
Quality requirements and design constraints are enabled by two main techniques:
• Quality Attribute Scenario (QAS) and
• Quality Attribute Workshop (QAW).

Quality Attributes

Dr. Sam Jobara

Learning Focus

- Understand QAs relationship to system functionality, and how they qualify system

functional requirement.

- How to manage QAs, identify, measure and test them in the right context

- Understand the product quality model defined in ISO/IEC 25010 with the eight

quality characteristics

- Understand Qas for Security, Availability, and Performance in more details.

- Understand the techniques used for evaluating system QAs

Dr. Sam Jobara

Concept alignment

Software Architecture Contexts

System Requirements

System Components & Layers

Use Cases & Scenarios

Quality Attributes

QA Scenarios

Outline

Dr. Sam Jobara

Quality Attribute Scenario (QAS)*

QAS appears to solve the untestable and overlapping concerns.

The aim of a QAS is to capture the explicit and testable quality requirements

It does it in the same way the use case scenarios do for functional
requirements by initiating a use case instant.

QAS consists of six parts.

* “Software Architecture for Business”, by Lina Khalid, ISBN 978-3-030-13631-4 © Springer Nature Switzerland AG 2020

QA Scenarios

Dr. Sam Jobara

We specify quality attribute requirements, we capture them formally as six parts of QAS:

1. Source of stimulus. (a human, or any other actuator) that generated the stimulus.

2. Stimulus. A condition that requires a response. For different quality it means something specific.

3. Environment. The system may be in an overload condition, test, or in normal operation.

4. Artifact. Some artifact is stimulated. This may be a collection or whole system, or pieces of it.

5. Response. The response is the activity undertaken as the result of the arrival of the stimulus.

6. Response measure. A response should be measurable so that the requirement can be tested.

Parts of a quality attribute scenario
(ex. web portal responsiveness).

QA Scenarios

Dr. Sam Jobara

There are two types of QAS: general and concrete:
- A General scenario do not belong to any system.
- A Concrete scenario belongs to a particular system under specific conditions.

QA Scenarios

Dr. Sam Jobara

We develop first the general quality attribute scenarios, for a specific attribute such
as availability.

Then we translate them to the specific requirement of the system under development
to get concrete scenarios, by specifying the source and the stimulus.

A general scenario for availability

QA Scenarios

Dr. Sam Jobara

Quality Attribute Workshop (QAW)
Quality Attribute Workshop is a facilitated method for a few-days workshop.
It connects stakeholders in the early part of the life cycle in order to find quality
attributes for the existing system.

The important thing to know about QAW is that:
• It is focused on the stakeholders.
• It is scenario based.
• It is used before the software architecture begins.
• It is focused on the system level concerns and on the role of software in the system.

QA Scenarios

Dr. Sam Jobara

Learning Focus

- Understand purpose of QAS and how to use them

- How to capture the 6 parts general and concrete scenarios

- Understand the purpose and activities of the QAW

Dr. Sam Jobara

QAs context

See you at Architecture Styles III
& Blockchains Architecture

