
Truong Ho-Quang

Software Architecture
DIT344

Truong Ho-Quang
truongh@chalmers.se

Software Engineering Division
Chalmers | GU

mailto:truongh@chalmers.se

Truong Ho-Quang

Schedule
Week Date Time Lecture Note
36 L1 Wed, 2 Sept 13:15 – 15:00 Introduction & Organization Truong Ho
37 L2 Wed, 9 Sept 13:15 – 15:00 Architecting Process & Views Truong Ho
37 S1 Thu, 10 Sept 10:15 – 12:00 << Supervision/Assignment>> TAs
38 L3 Wed, 16 Sept 13:15 - 15:00 Requirements & Quality Attributes Sam Jobara
38 S2 Thu, 17 Sept 10:15 – 12:00 << Supervision/Assignment>> TAs
38 L4 Fri, 18 Sept 13:15 – 15:00 Architectural Tactics & Roles and Responsibilities Truong Ho
39 S3 Wed, 23 Sept 13:15 – 15:00 << Supervision/Assignment>> TAs
39 L5 Thu, 24 Sept 10:15 – 12:00 Functional Decomposition & Architectural Styles P1 Truong Ho
39 L6 Fri, 25 Sept 13:15 – 15:00 Architectural Styles P2 Truong Ho
40 S4 Wed, 30 Sept 13:15 – 15:00 << Supervision/Assignment>> TAs
40 L7 Thu, 1 Oct 10:15 – 12:00 Architectural Styles P3 Sam Jobara
40 L8 Fri, 2 Oct 13:00 – 15:00 Guest Lecture: Scaling DevOps – GitHub’s Journey

from 500+ to 1500+ People
Johannes
Nicolai

41 S5 Wed, 7 Oct 13:15 – 15:00 << Supervision/Assignment>> TAs
41 L9 Thu, 8 Oct 10:15 – 12:00 Current Industrial SW Architecture Issues: Software

Architectures of Blockchain with Case Study
Sam Jobara

42 L10 Wed, 14 Oct 13:15 – 15:00 Design Principles Truong Ho
42 S6 Thu, 15 Oct 10:15 – 12:00 << Supervision/Assignment>> TAs
42 L11 Fri, 16 Oct 13:15 – 15:00 Guest Lecture: Architecture changes at Volvo

Truck’s Application System (TAS)
Anders
Magnusson

43 L12 Wed, 21 Oct 13:15 – 15:00 Architecture Evaluation Truong Ho
43 L13 Thu, 22 Oct 10:15 – 12:00 Reverse Engineering & Correspondence Truong Ho
43 Fri, 23 Oct 13:00 – 15:00 To be determined (exam practice?) Teachers
44 Exam 30 Oct 8:30 – 12:30

We are
HERE!

Truong Ho-Quang

Assignment schedule
Week Date Lecture Assignment 1 –

Task 1 (A1T1)
Assignment 1 –
Task 2 (A1T2)

Assignment 2
(A2)

36 L1 Wed, 2 Sept Introduction & Organization
37 L2 Wed, 9 Sept Architecting Process & Views A1T1 released
37 S1 Thu, 10 Sept << Supervision/Assignment>> Planing A1T1
38 L3 Wed, 16 Sept Requirements & Quality Attr.
38 S2 Thu, 17 Sept << Supervision/Assignment>> Work A1T1
38 L4 Fri, 18 Sept Tactics & Roles
39 S3 Wed, 23 Sept << Supervision/Assignment>> Work A1T1
39 L5 Thu, 24 Sept Decomposition & Style P1 Hand-in A1T1
39 L6 Fri, 25 Sept Architectural Styles P2 A1T2 released
40 S4 Wed, 30 Sept << Supervision/Assignment>> Feedback A1T1 Planing A1T2
40 L7 Thu, 1 Oct Architectural Styles P3
40 L8 Fri, 2 Oct Industrial lecture 1
41 S5 Wed, 7 Oct << Supervision/Assignment>> Work A1T2 A2 released
41 L9 Thu, 8 Oct Industrial lecture 2
42 L10 Wed, 14 Oct Design Principles
42 S6 Thu, 15 Oct << Supervision/Assignment>> Work A1T2 Work A2
42 L11 Fri, 16 Oct Industrial lecture 3 Hand-in A1T2
43 L12 Wed, 21 Oct Architecture Evaluation Feedback

A1T2
43 L13 Thu, 22 Oct Reverse Engineering Hand-in A2
43 Fri, 23 Oct Exam practice Tue, 27 Oct:

Feedback A2
44 Exam 30 Oct

Truong Ho-Quang

Assignment schedule
Week Date Lecture Assignment 1 –

Task 1 (A1T1)
Assignment 1 –
Task 2 (A1T2)

Assignment 2
(A2)

36 L1 Wed, 2 Sept Introduction & Organization
37 L2 Wed, 9 Sept Architecting Process & Views A1T1 released
37 S1 Thu, 10 Sept << Supervision/Assignment>> Planing A1T1
38 L3 Wed, 16 Sept Requirements & Quality Attr.
38 S2 Thu, 17 Sept << Supervision/Assignment>> Work A1T1
38 L4 Fri, 18 Sept Tactics & Roles
39 S3 Wed, 23 Sept << Supervision/Assignment>> Work A1T1
39 L5 Thu, 24 Sept Decomposition & Style P1 Hand-in A1T1
39 L6 Fri, 25 Sept Architectural Styles P2 A1T2 released
40 S4 Wed, 30 Sept << Supervision/Assignment>> Feedback A1T1 Planing A1T2
40 L7 Thu, 1 Oct Architectural Styles P3
40 L8 Fri, 2 Oct Industrial lecture 1
41 S5 Wed, 7 Oct << Supervision/Assignment>> Work A1T2 A2 released
41 L9 Thu, 8 Oct Industrial lecture 2
42 L10 Wed, 14 Oct Design Principles
42 S6 Thu, 15 Oct << Supervision/Assignment>> Work A1T2 Work A2
42 L11 Fri, 16 Oct Industrial lecture 3 Hand-in A1T2
43 L12 Wed, 21 Oct Architecture Evaluation Feedback

A1T2
43 L13 Thu, 22 Oct Reverse Engineering Hand-in A2
43 Fri, 23 Oct Exam practice Tue, 27 Oct:

Feedback A2
44 Exam 30 Oct

We are
HERE!

First hand-in
in 6 days

Truong Ho-Quang

Supervision sessions are mandatory
If you cannot attend a supervision session (with a valid reason):
• Inform your team members
• Inform your supervisors prior to the session
• Catch up with your team members!

Truong Ho-Quang

Voluntary student representatives

Drop me an email by Monday, Sept. 21 if you want to become a student
representative of this course.

Recap of previous lectures
• L1: What, Why, How? SW Architecture
• L2: Architecting process, stakeholders,

views
• L3: Requirements – Quality attributes

Part I:
Architectural Tactics

Objectives

• In this lecture you will learn:
• What is an architectural tactic
• How to address quality requirements through tactics
• A catalogue of tactics

9

Tactics

• A tactic is a design decision that influences the
achievement of a quality attribute response
• Different tactics for each quality attribute
• The same tactic could be relevant to many quality

attributes
• No consideration of tradeoffs
• Building blocks of archiectural styles

10

Example Quality Attributes

11

Interoperability

Modifiability

Availability

Security

Performance

Availability

• Definition:
The ability of a system to mask or repair faults such as the cumulative
service outage period does not exceed a required value over a
specified time interval.

12

Availability Tactics
• Recall: A failure occurs when the system no longer

delivers a service that is consistent with its
specification;
• Possibly a fault or a combination of faults has/have

the potential to cause a failure
• Recall: also that Recovery and Repair are also an

important aspect of availability.
• The tactics we discuss in this lecture will keep faults

from becoming failures or at least bound the effect
of faults and make repair possible.

Approaches to maintaining
availability
It may involve some type of:
• Redundancy
• Health monitoring to detect a failure
• Recovery when a fault is detected

• The monitoring and recovery can either be
automatic or manual

Availability General Scenario

15

From Lecture 3

Availability Concrete Scenario

16

From Lecture 3

Availability Tactics

17

Availability tactic: Fault Detection
Ping/Echo

• One component issues a ping and expects to receive back an echo within a
predefined time

• May be used with a single or group of components
• Clients use it to ensure that server object and communication path to server

are operating within expected performance bounds
• Organized in hierarchy (higher level fault detector pings lower levels ones and

vice versa)

Availability tactic: Fault Detection
Heartbeat(dead man timer)

• One component emits a heartbeat message periodically and other component listens for it.

• If heartbeat fails, the originating component assumed to have failed and a fault correction
component is notified

• A heartbeat can also carry data e.g. ATM

Exception

• Raised when one of the faults classes execute

• The exception handler typically executes in the same process that introduced exception

[https://www.digitalocean.com]

Availability tactic: Fault Recovery
(Preparation & Repair)
Voting
• Processes running on redundant processors
• Each take equivalent input and a simple output value that is sent to the

voter
• If the voter detects the deviate behavior from a single processor, it fails it
• The voting algorithm can be

• Majority rules
• Preferred component
• Or some other

• This method is used to correct
• Faulty operation of algorithm
• Failure of processor

https://www.edn.com/redundancy-for-safety-compliant-automotive-other-devices/

ISO26262 Specs – Road vehicles – Functional safety

https://www.edn.com/redundancy-for-safety-compliant-automotive-other-devices/
http://www.iso.org/

Availability tactic: Fault Recovery
(Preparation & Repair)
Active redundancy (Hot restart)

• All redundant components respond to events in parallel

Passive redundancy (Warm restart/ dual redundancy/ triple redundancy)

• One component (the primary) responds to events and inform the other components (the
standbys) of state updates they must make

Spare

• A standby spare computing platform is configured to replace many different failed components

• It must be rebooted to appropriate s/w configuration and have its state initialized when a failure
occurs.

• Making a checkpoint of the system state to a persistent device periodically- resume to that
persistent state afterwards

Wu, W. and Kelly, T., 2004, September. Safety tactics for
software architecture design. In Proceedings of the 28th
Annual International Computer Software and Applications
Conference, 2004. COMPSAC 2004. (pp. 368-375). IEEE.

Availability tactic: Fault Recovery
(Recovery-reintroduction)
Shadow operation
• A previously failed component may be run in “shadow-mode” for a short time.
• It mimics the behavior of working components before actual restore
State Synchronization
• Passive and active redundancy tactics require

the component being restored to have its state
upgraded before its return to service.

• State updating may depends on
• Down time, size of update, number of messages to

update
• Single message to state-update is preferable
• Incremental state upgrades with periods of service

may lead to complicated s/w

Checkpoint/ roll back
• It is a recording of consistent state created either

periodically or in response to specific events.

Question

23

Considering availability tactics, what
are the performance implications of

using these tactics?

Interoperability

• Definition:

The degree to which two or more systems can usefully exchange
meaningful information via interfaces in a particular context.

24

Interoperability General Scenario

25

From Lecture 3

Interoperability Concrete Scenario

26

From Lecture 3

Interoperability Tactics

27

Locate a service
through searching
a known directory

service.

coordinate and manage
and sequence the
invocation of particular
services

adds or removes
capabilities to an interface
(e.g. to hide information
from untrusted users)

Question

28

How do competing technology vendors
achieve interoperability?

Modifiability

• Definition:

Modifiability is about change, and our interest in it centers on the cost
and risk of making changes.

29

Modifiability General Scenario

30

From Lecture 3

Modifiability Concrete Scenario

31

From Lecture 3

Modifiability Tactics

32

If the responsibilities
A and B in a module
do not serve the
same purpose, they
should be placed in
different modules

Encapsulation = Define an explicit
interface to a module.
Intermediary = Break a dependency
Restrict dependencies = control
‘visibility’ (layered architecture)
Refactor = reducing duplicate
code/responsibilities

Flexibility of the system to
changes made in different
stages of sw
development/deployment

Question

33

What could be a disadvantage of ‘split
module’ and ‘defer binding’ as tactics?

Performance

• Definition:

Performance is about time and the software system’s ability to meet
timing requirements.

34

Performance General Scenario

35

From Lecture 3

Performance Concrete Scenario

36

From Lecture 3

Performance Tactics

37

Question

38

As developer, how would you ‘increase
resource efficiency’?

Security

• Definition:

Security is a measure of the system’s ability to protect data and
information from unauthorized access while still providing access to
people and systems that are authorized.

39

Security General Scenario

40

From Lecture 3

Security Concrete Scenario

41

From Lecture 3

Security Tactics

42

Summary Part I

• Definition of Architectural Tactic
• Well-known tactics for some of most common

quality attributes
• Tactics are building blocks of architectural styles
• Tactics can get outdated!

43

Part II:
Roles & Responsibilities

<<INTERFACER>>
MessageContainerView

<<INFORMATION
HOLDER>>

Theme

<<SERVICE
PROVIDER>>

AttachmentResolver

<<IH>> <<SP>>

<<COORDINATOR>>
MessageWebView

Information Holder
231 (29.65%)

Service Provider
323 (41.46%)

Coordinator
79 (10.14%)

Controller
20 (2.57%)

Interfacer
77 (9.88%)

Structurer
49 (6.29%)

uses
(289)

uses (30)

uses (13)

extends (51)

uses
(73)

controls
(9)notifies

(37)

uses
(78)

extends
(22)

extends
(21)

extends
(206)

extends
(90)

extends
(12)

uses (109)

stores|organizes
(69)

uses (101)

uses (22)

returns (23)

delegates
(63)

uses
(144)

Theme/Objective
of this lecture

45

•Understand the importance of being aware of role
when designing software.

•Build vocabulary for characterizing role/responsibility
•a set of six(6) common roles (role stereotypes)
•collaborations between role stereotypes

•Exploring impacts of role/stereotype in design quality
metrics in two realistic cases

What is role & responsibility?

Where to find role/responsibility?

• To establish working scope
• To seek agreement
• To facilitate communication/collaboration

when performing tasks
• Less waste

Why defining role is so important?

Role & Responsibility in Software Design

• Software is a set of components that
– carry different roles
– collaborate with different components

• Being aware of component’s role when
designing would help to:
– achieve better distribution of responsibility
– manage complexity/communication
– avoid redundancy
– increase mainteability

Role Stereotypes
- Definition
- Relationships between role stereotypes

Stereotype
A conventional, formulaic, and oversimplified conception, opinion, or

image
(www.thefreedictionary.com)

Role Stereotypes
• The concept “role stereotype”

was introduced by Rebecca
Wirfs-Brock.

• The concept indicates generic
roles that an software object
plays in the design.

• It is recommended that each
object carries a single
role/responsibility.

Object Design: Roles, Responsibilities and Collaborations,
Rebecca Wirfs-Brock and Alan McKean, Addison-Wesley,

2003

• Service providers do things
• Interfacers translate requests and convert from one level of abstraction to another
• Information holders know things
• Controllers direct activities
• Coordinators delegate work
• Structurers manage object relations or organize large numbers of similar objects

Role stereotypes
Service Provider (SP)
• performs specific work
• offers services
’-er’, ’-or’; public static
methods; might contains
some logics to do specific
tasks.

Information Holder (IH)
• knows/keeps information
• provides information
data encapsulation; get/set
methods; private/internal
methods

Interfacer (IF)
• transforms/converts

information and
requests btw SW layers

GUI-related; storefront; API;
extension points

Controller (CT)
•makes decision
• control complex tasks
’controller’, ’manager’; logic
statements; knows IH, SP, CO

Coordinator (CO)
• delegates works
• forwards info/requests
no/simple logic; knows
requester & requestee

Structurer (ST)
• keeps/maintains

relationship
• pool, collects, arranges

objs
Collection; sort(); compare();
validate(); add(); remove(); …

? ?
? ?
? ?

Information Holder (IH)

is a software element that
• keeps/knows information
• provides information to other elements

Example: An IH class might be characterized
by:

• The class may just contains attributes
• Methods, if any, could be

• Getters and setter
• Persistence methods, eg. saving to database or

implements Java’s Serializable interface
• Methods that are only used within the class

Service Provider (SP)

is a software element that
• performs specific works
• offers services to other elements on demand

A SP class can be characterized by:
• having name ended with “-er” (eg. Provider) or “-or” (eg. Creator,
Detector)

• has methods and attributes are easily accessed by other classes (often
static and public, or protected, not private)

• could be realization of a Interface
• decision making in methods should be at basic level, only to support

specific work

Service Provider Class - Example

calls service

Coordinator (CO)

is a software element that
• does not make decisions
• delegates work to other objects
• forwards info/requests

Signs of a CO class:
• Holding connection between working objects (SP, CT)
• Forwarding information and requests

• it is important to define which classes are requester and requestee
• information: method parameters; variables …

• When a Service Provider becomes too big, it evolves into Coordinator
• Results of refactoring god classes

Coordinator Class - Example

coordinates the works to
ImapStore, Pop3Store,

WebDavStore

Controller (CT)

is a software element that
• make decisions
• control complex tasks

A CT class might be characterized by:
• having class name ended with “Controller”, “Manager”
• Should have access to information holders, coordinators, or service

provider
• Its main responsibility is to make decision to control the flow of the

application
• Should contain condition statements (e.g. IF, IF ELSE, SWITCH CASE, x : ?)

• The decision should be at the higher level than decision made at SP/CO.

Controller Class - Example

Delegating the work

Structurer (ST)

is a software element that
• maintains relationships between software components
• pools/collects/arranges a set of elements

A ST class might be characterized by:
• extends Java’s Collections framework
• contains a collection of objects (of other classes)
• has methods that maintaining relationships between objects in the

collection
• methods that manipulate the collection such as sort(), compare(), validate(),

remove(), updates(), add(), delete() …
• methods that give access to the objects such as get(index), next(), hasNext() ...

Structurer - Example

holds a collection

accessing to the
collection

Interfacer
is a software element that

• transforms information or requests between distinct parts of the system
• User interfacer interacts with the users of the system, e.g. GUI components
• Internal interfacer exists between sub parts of the system, e.g. Data Management Tier
• External interfacer communicates with external systems, e.g. API, extension points of the

system

A ST class can be characterized by:
• Contains Java Swing, AWT, and other UI components

• Manage user interface and handle user interaction

• In Android apps, this extends Activity classes

• Encapsulates functions or objects in the system by

providing an Interface or an abstract class that can be

used outside of the system

• If an interface is created but never implemented: may be

this serves as an extension point for the system

Role stereotypes
Service Provider (SP)
• performs specific work
• offers services
’-er’, ’-or’; public static
methods; might contains
some logics to do specific
tasks.

Information Holder (IH)
• knows/keeps information
• provides information
data encapsulation; get/set
methods; private/internal
methods

Interfacer (IF)
• transforms/converts

information and
requests btw SW layers

GUI-related; storefront; API;
extension points

Controller (CT)
•makes decision
• control complex tasks
’controller’, ’manager’; logic
statements; knows IH, SP, CO

Coordinator (CO)
• delegates works
• forwards info/requests
no/simple logic; knows
requester & requestee

Structurer (ST)
• keeps/maintains

relationship
• pool, collects, arranges

objs
Collection; sort(); compare();
validate(); add(); remove(); …

Information HolderService Provider

Coordinator Controller

Interfacer

Structurer

uses

uses

uses

extends

uses

controls

notifies

uses
(78)

extends

extends

extends

extends

extends

uses

stores|organizesuses

uses

returns

delegates
(63)

uses

Relationship between
role stereotypes

Analysing Responsibility and
Collaborations of Objects

using CRC Card

66

Truong Ho-Quang

CRC Card

Message Builder
Purpose: The Message Builder is a hub of
activity in the application. It coordinates the
timing, the presentation of guesses, the
message construction. It centralizes control and
is a core element of the control architecture

Message Builder

Builds message from selection Message

Presents guesses to users Presenter

Controls the pacing

Candidate:
Name of the object
(component)

Responsibility

Corresponsing
collaborator

Display Screen

Cash Dispenser Deposit Drawer

Special
Keypad

Cancel
Key

Normal Pad

Printer Bank Card
Reader

1 2 3

4 5 6

7 8 9

0 .

Example: ATM system

Example: ATM system

An automated teller machine (ATM) is a machine through
which bank customers can perform a number of financial
transactions. The machine consists of a display screen, a bank
card reader, input keys, a money dispenser slot, a deposit slot
and a receipt printer. The main menu contains a list of the
transactions that can be performed. These transactions
include:

• deposit funds to an account
• withdraw funds from an account
• transfer funds from one account to the other
• query the balance of an account.

ATM class

The ATM class represents the teller machine. Its main
operations are to create and initiate transactions. This class
acts the following roles:
• a Controller role to both the Financial Subsystem and the
User Interface Subsystem.

ATM Class

Initiate Transaction User Interface

Execute Transaction User Interface

Financial Subsystem
• The Financial Subsystem implements the financial

aspects of a customer's interaction with the ATM. Its main
operations are to execute the following financial
transactions; deposit(), withdraw(),transfer(),
and balance() on customer accounts. There is one
Financial Subsystem contract that must execute all
the transactions. This subsystem acts as a Service Provider
which provides banking services for ATM Class.

Financial Subsystem

Deposit ATM Class

Withdraw ATM Class

Transfer ATM Class

Balance ATM Class

User Interface Subsystem

The User Interface Subsystem implements the interface
between the ATM and the bank customer. The User Interface
Subsystem has three responsibilities 1)To get numeric values from
users. 2) Get users selection from menu. 3) To display messages and
wait for events.
This subsystem acts as an Interfacer role to receive and transform
requests from users to the system.

User Interface Subsystem

Get numeric values ATM Class, Financial Subsystem

Get users selection ATM Class, Financial Subsystem

Display messages ATM Class, Financial Subsystem

Does using role stereotype help
in improving design quality?

Boeing Brewery Case (1)

Case description: R. Sharble and S. Cohen “The Object-Oriented Brewery: A Comparison of
Two ObjectOriented Development Methods” Boeing Technical Report no. BC2-G4059,
October, 1992.

System 2: Data-FocusSystem 1: Responsibility-Focus

Boeing Brewery (2) – Design Quality Facts
C-K metrics
Weighted Methods per Class (WMC)
Depth of Inheritance (DIT)
Number of Children (NOC)
Coupling between Objects (CBO)
Response For a Class (RFC)
Lack of Cohesion in Methods (LCOM)

K9-Mail Case (1)

Business layer (3.)

Presentation Layer (1.)

Data Access Layer (4.)

SQLiteDB

user-interface-logic (1.2.)

Service Layer (2.)

mail_providers

Cross-cutting
(5.)

intent provider (2.2.)

AlarmManager
API

content provider (2.1.)

activity.*

fragment.*user-interface
(1.1.)

layout (.xml
files, .kt)

Business Components (3.3.)

Business Entity Components (3.4.)

Business Workflow (3.2.)

MIME encoder |
decoder (3.2.3.)

mail.internet
mail.helper
mail.filter

Scheduling (3.2.1.)

mail

mail.powermail.ssl

mail.oauth

mailstore

mail.message

k9

account

Business Façade (3.1.)

controller.MessagingController controller.MessagingControllerCommand
uses

cr
yp

to

he
lp

er

ui.* provider.*
(Attachment,

DecryptedFile, Account)

search

message.*

mailstore

mailstore.migrations

mailstore.util

view

au
to

cr
yp

t

ca
ch

e

notification

widget.list

preferences

power
(IdleManager)

mailstore.migrations

Talk with mail-
providers (3.2.2.)

mail.store
(imap, pop2, webdav)

mail.transport

service.*

com.fsck.k9.intent.action.*

com.fsck.k9.intent.extra

Other (3.2.4.)

Relationship between
role stereotypes
K9-Mail Case (2)

Information Holder
231 (29.65%)

Service Provider
323 (41.46%)

Coordinator
79 (10.14%)

Controller
20 (2.57%)

Interfacer
77 (9.88%)

Structurer
49 (6.29%)

uses
(289)

uses (30)

uses (13)

extends (51)

uses
(73)

controls
(9)notifies

(37)

uses
(78)

extends
(22)

extends
(21)

extends
(206)

extends
(90)

extends
(12)

uses (109)

stores|organizes
(69)

uses (101)

uses (22)

returns (23)

delegates
(63)

uses
(144)

<<INTERFACER>>
MessageContainerView

<<INFORMATION
HOLDER>>

Theme

<<SERVICE
PROVIDER>>

AttachmentResolver

<<IH>>
<<SP>>

<<COORDINATOR>>
MessageWebView

K9-Mail Case (3)
Collaboration Patterns between Role Stereotypes

K9-Mail Case (4)
Design Metrics of Role Stereotypes

Coordinator

Service Provider

Information Holder

Structurer

Interfacer

Controller
0

5

10

15

20

25

30

35

40

cbo wmc

Quality
 Assu

rance

Summary Part II
• Having a concrete view on role/responsibility is

vital to software design.
• Role stereotypes can be used as a tool for:
• assigning roles to software elements (in design phase)
• comprehending work breakdown and collaboration

patterns in existing system

• Using CRC card when discussing/thinking of
responsibilities and collaborations of an object (can
be a component/subsystem/class)

