CHALMERS |

UNIVERSITY OF TECHNOLOGY

) UNIVERSITY OF GOTHENBURG

Software Architecture
DIT344

Truong Ho-Quang
truongh@chalmers.se

Software Engineering Division
Chalmers | GU

L NN
ST
Uey N

mailto:truongh@chalmers.se

CHALMERS |

UNIVERSITY OF TECHNOLOGY

ECI L

Wed, 2 Sept
Wed, 9 Sept
Thu, 10 Sept
Wed, 16 Sept
Thu, 17 Sept

Fri, 18 Sept

Wed, 23 Sept

Thu, 24 Sept

Fri, 25 Sept
ET sS4 Wed, 30 Sept
EZ L7 Thu, 1 Oct
“ L8 Fri, 2 Oct
B S5 Wed, 7 Oct
“ L9 Thu, 8 Oct
P L10 Wed, 14 Oct
EPB S6 Thu, 15 Oct
“ L11 Fri, 16 Oct
m L12 Wed, 21 Oct
FEB L13 Thu, 22 Oct
43 | Fri, 23 Oct
44

\Week | |Date ____[Time

13:15-15:00
13:15-15:00
10:15-12:00
13:15 - 15:00

10:15-12:00

13:15 - 15:00
13:15-15:00
10:15-12:00
13:15-15:00
13:15-15:00
10:15-12:00
13:00 — 15:00

13:15 -15:00
10:15-12:00

13:15 - 15:00
10:15-12:00
13:15 -15:00

13:15 - 15:00

10:15-12:00
13:00 — 15:00

{8%)) UNIVERSITY OF GOTHENBURG

Schedule

Lecture
Introduction & Organization
Architecting Process & Views

<< Supervision/As
Requirements & Quality Attributes

<< Supervision/As

Architectural Tactics & Roles and Responsibilities

<< Supervision/Assignment>>
Functional Decomposition & Architectural Styles P1
Architectural Styles P2

<< Supervision/Assignment>>
Architectural Styles P3
Guest Lecture: Scaling DevOps — GitHub’s Journey
from 500+ to 1500+ People

<< Supervision/Assignment>>
Current Industrial SW Architecture Issues: Software
Architectures of Blockchain with Case Study
Design Principles

<< Supervision/Assignment>>
Guest Lecture: Architecture changes at Volvo
Truck’s Application System (TAS)
Architecture Evaluation

Reverse Engineering & Correspondence
To be determined (exam practice?)

Truong Ho
Truong Ho
TAs

Sam Jobara

Johannes
Nicolai

TAs
Sam Jobara

Truong Ho
TAs

Anders
Magnusson

Truong Ho

Truong Ho
Teachers

CHALMERS |

UNIVERSITY OF TECHNOLOGY

(%) UNIVERSITY OF GOTHENBURG

Assignment schedule

Task 1 (A1T1 Task 2 (A1T2

E L1 Wed, 2 Sept
L2 Wed, 9 Sept

S1 Thu, 10 Sept
m L3 Wed, 16 Sept
EEB S2 Thu, 17 Sept
EEB L4 Fri, 18 Sept
EEB S3 Wed, 23 Sept
EEBl L5 Thu, 24 Sept
EEB L6 Fri, 25 Sept
ET sS4 Wed, 30 Sept
EIP L7 Thu, 1 Oct
m L8 Fri, 2 Oct
EZB S5 Wed, 7 Oct
Lo Thu 80ct
EYA L10 Wed, 14 Oct
EPB S6 Thu, 15 Oct
EP3 111 Fri, 16 Oct
“ L12 Wed, 21 Oct
FEEl L13 Thu, 22 Oct
“ Fri, 23 Oct
44

Introduction & Organization
Architecting Process & Views

<< Supervision/Assignment>>
Requirements & Quality Attr.

<< Supervision/Assignment>>

Tactics & Roles

<< Supervision/Assignment>>
Decomposition & Style P1
Architectural Styles P2

<< Supervision/Assignment>>
Architectural Styles P3
Industrial lecture 1

<< Supervision/Assignment>>
Industrial lecture 2
Design Principles

<< Supervision/Assignment>>

Industrial lecture 3
Architecture Evaluation

Reverse Engineering
Exam practice

A1T1 released
Planing A1T1

Work A1T1

Work A1T1
Hand-in A1T1

Feedback A1T1

A1T2 released
Planing A1T2

Work A1T2 A2 released

Work A1T2 Work A2

Hand-in A1T2
Feedback
A1T2
Hand-in A2
Tue, 27 Oct:
Feedback A2

CHALMERS |

Assignment schedule
Week| | pae | e | Almens | g ment
ecture Task 1 (A1T1 2

EFL1 Wed, 2Sept Introduction & Organization We are
L2 Wed, 9 Sept Architecting Process & Views A1T1 released H E RE '
W,

(%)) UNIVERSITY OF GOTHENBURG

S1 Thu, 10 Sept << Supervision/Assignment>> Planing A1T1
m L3 Wed, 16 Sept Requirements & Quality Attr.

S2 Thu, 17 Sept
38 L4 Fri, 18 Sept
39 3 Wed, 23 Sept << Supervision/Assignment>>
39 LS Thu, 24 Sept Decomposition & Style P1
39 0 rl, ep Architectural Styles P
ET sS4 Wed, 30 Sept << Supervision/Ass
EZB L7 Thu,10ct Architectural Styles

mLS Fri, 2 Oct /~ _ _
Bl sswed7o¢ First hand-in
B> Thy80c _
EPB L0 Wed, 14 C in 6 dayS

<< Supervision/Assignment>> Work A1T1

Tactics & Roles

Work A1T1
Hand-in A1T1

- releasead

ent>> Feedback A1T1 Planing A1T2

> Work A1T2 A2 released

EYA S6 Thu, 150¢ > Work A1T2 Work A2
EPA L1 Fri, 16 Oct Industrial lecture 3 Hand-in A1T2
- L12 Wed, 21 Oct Architecture Evaluation Feedback
A1T2
L13 Thu,22 Oct Reverse Engineering Hand-in A2
Fri, 23 Oct Exam practice Tue, 27 Oct:

Feedback A2

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Supervision sessions are mandatory

If you cannot attend a supervision session (with a valid reason):

« Inform your team members
* Inform your supervisors prior to the session
« Catch up with your team members!

CHALMERS |

{8%)) UNIVERSITY OF GOTHENBURG

Voluntary student representatives

Drop me an email by Monday, Sept. 21 if you want to become a student
representative of this course.

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Recap of previous lectures

- L1: What, Why, How? SW Architecture

.- L2: Architecting process, stakeholders,
Views

- L3: Requirements - Quality attributes

Part I:
Architectural Tactics

Objectives

* In this lecture you will learn:
* What is an architectural tactic
 How to address quality requirements through tactics
* A catalogue of tactics

Tactics

e A tactic is a design decision that influences the
achievement of a quality attribute response
 Different tactics for each quality attribute

* The same tactic could be relevant to many quality
attributes

* No consideration of tradeoffs
 Building blocks of archiectural styles

Example Quality Attributes

"y
Availability ’7 >«
u Interoperability

Performance

8

Security

Modifiability

11

Availability

e Definition:

The ability of a system to mask or repair faults such as the cumulative
service outage period does not exceed a required value over a

specified time interval.

d A

Tactics
P to Control >
Fault Availability Fault Mgsked
or Repair Made

A 4

12

Availability Tactics

* Recall: A failure occurs when the system no longer
delivers a service that is consistent with its
specification;

* Possibly a fault or a combination of faults has/have
the potential to cause a failure

* Recall: also that Recovery and Repair are also an
important aspect of availability.

* The tactics we discuss in this lecture will keep faults
from becoming failures or at least bound the effect
of faults and make repair possible.

Approaches to maintaining
availability

It may involve some type of:

* Redundancy

* Health monitoring to detect a failure
* Recovery when a fault is detected

* The monitoring and recovery can either be
automatic or manual

From Lecture 3

Availability General Scenario

Portion of Possible Values

Scenario

Source Internal/external: people, hardware, software, physical infrastructure,
physical environment

Stimulus Fault: omission, crash, incorrect timing, incorrect response

Artifact Processors, communication channels, persistent storage, processes

Environment Normal operation, startup, shutdown, repair mode, degraded operation,
overloaded operation

Response Prevent the fault from becoming a failure
Detect the fault:
* Log the fault
* Notify appropriate entities (people or systems)
Recover from the fault:
* Disable source of events causing the fault
* Be temporarily unavailable while repair is being effected
* Fix or mask the fault/failure or contain the damage it causes
* Operate in a degraded mode while repair is being effected

Response Time or time interval when the system must be available

Measure Availability percentage (e.g., 99.999%)
Time to detect the fault
Time to repair the fault
Time or time interval in which system can be in degraded mode
Proportion (e.g., 99%) or rate (e.g., up to 100 per second) of a certain
class of faults that the system prevents, or handles without failing

15

From Lecture 3.
Availability Concrete Scenario

Stimulus: Process Response:
Server Inform

Unresponsive Environment: Operator

Source: Continue Response
Normal .

Heartbeat Ot to Operate Measurg.

Monitor No Downtime

16

Availability Tactics

Fault

Detect Faults

Monitor
Heartbeat
Timestamp

Sanity
Checking

Condition
Monitoring

Voting

Exception
Detection

Self-Test

Availability Tactics

Recover from Faults

VN

Preparation Reintroduction
and Repair

Active
Redundan
Redundal

Exception
Handling

Software
Upgrade

tate
Resynchronization

Escalating
Restart

Non-Stop
Forwarding

Retry

Ignore Faulty
Behavior

Degradation

Reconfiguration

Prevent Faults

Removal from
ervice
ransactions

Predictive
Model

Exception
Prevention

Increase
Competence Set

Fault
Masked
or
Repair
Made

17

Availability tactic: Fault Detection

Ping/Echo

* One component issues a ping and expects to receive back an echo within a
predefined time

* May be used with a single or group of components

* Clients use it to ensure that server object and communication path to server
are operating within expected performance bounds

* Organized in hierarchy (higher level fault detector pings lower levels ones and
vice versa)

Component 1 Ping/Echo, Component 2
Heartbeat

FaillurePoint

(a) Ping/Echo and Heartbeat Modeling

Ping(response: 20ms, src: Componentl, dest: Component2);
Heartbeat(pooling:5sec, src: Componentl, dest: Component2)

Availability tactic: Fault Detection

Heartbeat(dead man timer)
* One component emits a heartbeat message periodically and other component listens for it.

* If heartbeat fails, the originating component assumed to have failed and a fault correction
component is notified

* A heartbeat can also carry data e.g. ATM
Exception
* Raised when one of the faults classes execute

* The exception handler typically executes in the same process that introduced exception

[https://www.digitalocean.com]

Availability tactic: Fault Recovery
(Preparation & Repair)

Voting
* Processes running on redundant processors

* Each take equivalent input and a simple output value that is sent to the
voter

 If the voter detects the deviate behavior from a single processor, it fails it

e The voting algorithm can be
* Majority rules
* Preferred component :
* Or some other Primary Path E;?tcessmg

* This method is used to correct
* Faulty operation of algorithm
* Failure of processor Redundant Path Comparison ——

Remedial Action

https://www.edn.com/redundancy-for-safety-compliant-automotive-other-devices/

1SO26262 Specs — Road vehicles — Functional safety

https://www.edn.com/redundancy-for-safety-compliant-automotive-other-devices/
http://www.iso.org/

Availability tactic: Fault Recovery
(Preparation & Repair)

Active redundancy (Hot restart)
* All redundant components respond to events in parallel
Passive redundancy (Warm restart/ dual redundancy/ triple redundancy)

* One component (the primary) responds to events and inform the other components (the
standbys) of state updates they must make

Spare
* A standby spare computing platform is configured to replace many different failed components

* It must be rebooted to appropriate s/w configuration and have its state initialized when a failure
occurs.

* Making a checkpoint of the system state to a persistent device periodically- resume to that
persistent state afterwards

Input 1
—»{ Component1 P p_u’ Component 1

Input Output Input 2 Output
e — -

Voter

Voter | Component 2

#{ Component 2

YvYy
YYY

Wu, W. and Kelly, T., 2004, September. Safety tactics for —_—
software architecture design. In Proceedings of the 28th ~»{ Component3 |— —=| Component3 f—
Annual International Computer Software and Applications
Conference, 2004. COMPSAC 2004. (pp. 368-375). IEEE.

Figure 1. A TMR pattern and a variation

Availability tactic: Fault Recovery
(Recovery-reintroduction)

Shadow operation
* A previously failed component may be run in “shadow-mode” for a short time.
* |t mimics the behavior of working components before actual restore

State Synchronization

* Passive and active redundancy tactics require

the component being restored to have its state SCORE 408

upgraded before its return to service. TIME 0:45 4
RINGS 569

* State updating may depends on

 Down time, size of update, number of messages to
update

* Single message to state-update is preferable

* Incremental state upgrades with periods of service
may lead to complicated s/w

Checkpoint/ roll back

* Itis a recording of consistent state created either
periodically or in response to specific events.

Question

i

Considering availability tactics, what
are the performance implications of
using these tactics?

23

Interoperability

e Definition:

The degree to which two or more systems can usefully exchange
meaningful information via interfaces in a particular context.

Tactics w >

Information to Control J Request

Exchange Interoperability | Correctly

Request Handled

24

From Lecture 3

Interoperability General Scenario

Portion of Scenario Possible Values

Source A system initiates a request to interoperate with another
system.

Stimulus A request to exchange information among system(s).

Artifact The systems that wish to interoperate.

Environment System(s) wishing to interoperate are discovered at runtime or
known prior to runtime.

Response One or more of the following:

* The request is (appropriately) rejected and appropriate
entities (people or systems) are notified.

* The request is (appropriately) accepted and information is
exchanged successfully.

* The request is logged by one or more of the involved
systems.

Response Measure One or more of the following:

* Percentage of information exchanges correctly processed
* Percentage of information exchanges correctly rejected

25

Interoperability Concrete Scenario

Artifact:
———————p| Traffic Monitoring
Stimulus: System
Current
Location
Source Sent Environment:

of Stimulus:

Qur Vehicle
Information
System

Systems known
prior to run-time

Response:
Traffic Monitor
Combines Current
Location with Other Response
Information, Measure:
Overlays on Google Our Information
Maps, and Included Correctly
Broadcasts 99.9% of the Time

26

Interoperability Tactics

Information
B

Exchange
Request

(Locate a service

through searching
a known directory

\ service.

Interoperability Tactics

Locate

|

Manage Interface

|

” coordinate and manage

and sequence the
invocation of particular

\

Discover

services)

/

Request

“Correctly
orrec
C Orchestrate > Handledy

Tailor Interface
\
\

adds or removes

y

capabilities to an interface
(e.g. to hide information

_from untrusted users) y
27

Question

How do competing technology vendors
achieve interoperability?

28

Modifiability

e Definition:

Modifiability is about change, and our interest in it centers on the cost
and risk of making changes.

Tactics
» to Control >
Change Modifiability | Change Made within

Arrives _ J Time and Budget

29

From Lecture 3

Modifiability General Scenario

Portion of Scenario Possible Values

Source End user, developer, system administrator

Stimulus A directive to add/delete/modify functionality, or change a
quality attribute, capacity, or technology

Artifacts Code, data, interfaces, components, resources, configurations,

Environment Runtime, compile time, build time, initiation time, design time

Response One or more of the following:

= Make modification
* Test modification
* Deploy modification

Response Measure Cost in terms of the following:

* Number, size, complexity of affected artifacts

Effort

Calendar time

Money (direct outlay or opportunity cost)

Extent to which this modification affects other functions or
quality attributes

* New defects introduced

30

From Lecture 3

Modifiability Concrete Scenario

L)

> értifact: >
Stimulus: ode Response:
Wishes Change Made

to Change and Unit Tested

Environment:
Source: the Ul Design anespons.e
Developer Time easure:
In Three
Hours

31

Modifiability Tactics

Flexibility of the system to

Change
—_—P
Arrives

/If the responsibilities
A and B in a module
do not serve the
same purpose, they
should be placed in
jSfferent modules

Reduce Size
of a Module

Y
Split Module

Modifiability Tactics

Increase
Cohesion

Increase
Semantic

Coherencé

Encapsulate

Use an
Intermediary

Restrict
Dependenci

Refactor

changes made in different

stages of sw
- development/deployment
%\ Y,
Defer
Binding

Change Made
within Time
and Budget

Encapsulation = Define an explicit

interface to a module.

Intermediary = Break a dependency

Restrict dependencies = control

‘visibility’ (layered architecture)

Refactor = reducing duplicate
Qode/responsibilities

Question

What could be a disadvantage of ‘split
module’ and ‘defer binding’ as tactics?

33

Performance

e Definition:

Performance is about time and the software system’s ability to meet
timing requirements.

4)
Tactics
»| to Control o
Event Performance | Response
Arrives Generated

\ ~/ within Time

Constraints

34

From Lecture 3

Performance General Scenario

Portion of Scenario Possible Values

Source Internal or external to the system

Stimulus Arrival of a periodic, sporadic, or stochastic event

Artifact System or one or more components in the system
Environment Operational mode: normal, emergency, peak load, overload
Response Process events, change level of service

Response Measure Latency, deadline, throughput, jitter, miss rate

35

From Lecture 3
Performance Concrete Scenario

0

Artifact:
Stimulus: Systen Response:
Initiate Transactions

Transactions Are Processed

Saiice: MG Response
Users ' Measure:
Operation Average
Latency
of Two
Seconds

36

Performance Tactics

Event
Arrives

Performance Tactics

Control Resource Demand

'

Manage Sampling Rate
Limit Event Response
Prioritize Events
Reduce Overhead
Bound Execution Times

Increase Resource
Efficiency

Manage Resources

'

Increase Resources
Introduce Concurrency

Maintain Multiple
Copies of Computations

Maintain Multiple
Copies of Data

Bound Queue Sizes

Schedule Resources

Response

Generated within
Time Constraints

37

Question

As developer, how would you ‘increase
resource efficiency’?

38

Security

e Definition:

Security is a measure of the system’s ability to protect data and
information from unauthorized access while still providing access to
people and systems that are authorized.

R

Tactics
» to Control =
Attack Security System Detects, Resists,
Reacts, or Recovers

\ /

39

Security General Scenario

Portion of
Scenario

Possible Values

From Lecture 3

Source

Stimulus

Artifact

Environment

Response

Response
Measure

Human or another system which may have been previously
identified (either correctly or incorrectly) or may be currently
unknown. A human attacker may be from outside the organization or
from inside the organization.

Unauthorized attempt is made to display data, change or delete
data, access system services, change the system’s behavior, or
reduce availability.

System services, data within the system, a component or resources
of the system, data produced or consumed by the system

The system is either online or offline; either connected to or
disconnected from a network; either behind a firewall or open to a
network; fully operational, partially operational, or not operational.
Transactions are carried out in a fashion such that

= Data or services are protected from unauthorized access.

Data or services are not being manipulated without authorization.

= Parties to a transaction are identified with assurance.
= The parties to the transaction cannot repudiate their
involvements.

* The data, resources, and system services will be available for
legitimate use.
The system tracks activities within it by

* Recording access or modification

* Recording attempts to access data, resources, or services

* Notifying appropriate entities (people or systems) when an
apparent attack is occurring

One or more of the following:

* How much of a system is compromised when a particular
component or data value is compromised

How much time passed before an attack was detected
How many attacks were resisted

How long does it take to recover from a successful attack
How much data is vulnerable to a particular attack

40

Security Concrete Scenario

S —
Stimulus:
Attempts to
Modify Pay
Rate

Source:

Disgruntled
Employee from
Remote Location

Artifact:
Data within
the System

Environment:

Normal
Operations

Response:

System
Maintains
Audit Trail

Response
Measure:

Correct Data Is
Restored within a
Day and Source
of Tampering
Identified

41

Security Tactics

Attack

,-»-"_-f T
o) .
Detect Attacks Resist Attacks React to Recover
4 Attacks from Attacks
l Identify ‘
Detect Actors ic?c\:lg:se Maintain Restore
Intrustion Authenticate Audit Trail .
Detect Service Actors Lock Rosists React -
Denial . Computer esists, Reacts,
" Authorize See or Recovers

Verify Message actors e Availability
Integrity o Actors
Detect Message -IMit Access
Delay Limit Exposure

Encrypt Data

Separate

Entities

Change Default
Settings

42

Summary Part |

e Definition of Architectural Tactic

 Well-known tactics for some of most common
quality attributes

* Tactics are building blocks of architectural styles
 Tactics can get outdated!

CHALMERS |

UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Part Il:
Roles & Responsibilities

-

7N
(; extends (51)

4

Interfacer

77 (9.88%) controls

(9)

notifies

uses (109) uses (22) 137)

<<INTERFACER>>
P, extends MessageContainerView
)’(N uses (13) (22)
e ends| Coordinator & Controller /N
{12) | 79 (10.14%) 20 (2.57%)
pZTY) returns (23) y
uses uses
(73) <<COORDINATOR>>
delegates IS MessageWebView
(63) (78)
extends
Service Provider uses Information Holder (90)
.46% 289 231 (29.65% g
323 (ata6%) |_(289) o {) \ <<INFORMATION <<SERVICE
‘ HOLDER>> PROVIDER>>
Theme AttachmentResolver
extends)
(206) uses (10 Grganizes
(69)

Structurer
49 (6.29%)

uses (30)

~--/ (21)

CHALMERS |) UNIVERSITY OF GOTHENBURG

Theme/Objective
of this lecture

-Understand the importance of being aware of role
when designing software.

- Build vocabulary for characterizing role/responsibility
-a set of six(6) common roles (role stereotypes)
- collaborations between role stereotypes

- Exploring impacts of role/stereotype in design quality
metrics in two realistic cases

45

g . UNIVERSITY OF GOTHENBURG

CHALMERS |

What is role & responsibility?

follow Marton

number
- hi?her conform i given
eople @
'*'Tr-.c"angf someone
Yy Ny W 9y programs Evelyn
standards

groups g edicine
behaviour regard

upo 7
conditions Gy

mteractlomst m
behavioural perso Nindividu3als
following f
‘;m
*at

education

place occupying
nderstandings:-
°o
- S

collaboration’

resesns-g.-.gsst\v

I life &
BEty
S a 773 c‘\".P

exempted
age Q \“0(
Genahc e* . g‘
rie
jce - sntuatlons

\
o
N
-O
assumes maet
personalo a
thl tes functionalist

normslnleldH‘?'mm

skills
ures Ty

;»
%

-practising C L.I
wnthout

behaviors
reprise editor r A-
requently
including
FEOVET complement
naturally
devoted

values

CHALMERS | UNIVERSITY OF GOTHENBURG
UNIVERSITY OF TECHNOLOGY G

Where to find role/responsibility?

= N /

GOS0 0

® Study.com:

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Why defining role is so important?

"0 establish working scope
0 seek agreement

"o facilitate communication/collaboration
when performing tasks

- Less waste

UNIVERSITY OF GOTHENBURG

CHALMERS | (&%)

Role & Responsibility in Software Design

- Software is a set of components that

- carry different roles
- collaborate with different components

- Being aware of component’s role when
designing would help to:
- achieve better distribution of responsibility

- manhage complexity/communication
- avoid redundancy

- increase mainteability

CHALMERS |

UNIVERSITY OF TECHNOLOGY

(&%) UNIVERSITY OF GOTHENBURG

Role Stereotypes

— Definition
— Relationships between role stereotypes

Stereotype
A conventional, formulaic, and oversimplified conception, opinion, or

image
(www.thefreedictionary.com)

CHALMERS | (&%) UNIVERSITY OF GOTHENBURG

Role Stereotypes

- The concept “role stereotype”

was introduced by Rebecca
Wirfs—-Brock.

- The concept indicates generic
roles that an software object
plays in the design.

Iulxu 1\\11[\ Iinxl\ ml Alan McKe. m

- It is recommended that each onis b . Jcobson and Job Vs

Object Des gn

Roles, Responsibilities, and Collaborations

object carries a single
Fo I e / res po ns | bl I |ty Rebecca Wirfs-Brock and él&l)’l?,McKean, Addison-Wesley,

« Service providers do things
Interfacers translate requests and convert from one level of abstraction to another
« Information holders know things
« Controllers direct activities
« Coordinators delegate work

« Structurers manage object relations or organize large numbers of similar objects

Role stereotypes

Service Provider (SP)

Information Holder (IH)

6-

Interfacer (IF)

Controller (CT)

. Coordinator (CO)

Structurer (ST)

fz

Information Holder (IH)

is a software element that

* keeps/knows information

L 04

* provides information to other elements

Example: An IH class might be characterized

by:

* The class may just contains attributes
 Methods, if any, could be

Getters and setter

Persistence methods, eg. saving to database or
implements Java’s Serializable interface

Methods that are only used within the class

© LocalKeyStore

oflString sKeyStoreLocation
OfFile mKeyStoreFile
OfKeyStore mKeyStore

ofint KEY STORE FILE VERSION ‘

@ void setKeyStoreLocation(String directory)
@ LocalKeyStore getinstance()

m LocalKeyStore()

o void setKeyStoreFile(File file)

@ voi crificate(String host, int port, X509Certificate certific:
m voidiwriteCertificateFile()
@ boo {Certificate certificate, String host, int |

m String getCertKey(String host, int port)

o void deleteCertificate(String oldHost, int oldPort)
m void upgradeKeyStoreFile()

m String getKeyStoreFilePath(int version)

Service Provider (SP) |-.
N

is a software element that
* performs specific works

e offers services to other elements on demand

A SP class can be characterized by:

* having name ended with “-er” (eg. Provider) or “-or” (eg. Creator,
Detector)

* has methods and attributes are easily accessed by other classes (often
static and public, or protected, not private)
* could be realization of a Interface

e decision making in methods should be at basic level, only to support
specific work

Service Provider Class - Example

© MimePartStreamParser

@ MimeBodyPart parse(FileFactory fileFactory, InputStream inputStream)

BOoAdviIinpuostr NPDULST

public MimeBodyPart processData(InputStream is) throws IOException {
try {
FileFactory fileFactory =

MimeConfig parserConfig = new MimeConfia(); - .);
parserConfig.setMaxHeaderLen(-1); 3
parserConfig.setMaxLinelen(-1); returnMimePartStreamParser.parse(fileFactory, is);
parserConfig.setMaxHeaderCount(-1); } catch (Messaglng Xceprion) 1

parser = ser(parserConfig); Timber.e(e, "Something went wrong while parsihg the decrypted MIME part");
parser.setContentHandler(new PartBuilder(fileFactory, parsedRootPart)); //T0D0: pass error to main thread and displa error message to user
parser.setRecurse();

return null;
try { }

throw new MessagingException("Failed to parse decrypted content", e);

}

return parsedRootPart;

) calls service

Coordinator (CO)

is a software element that
 does not make decisions
* delegates work to other objects

 forwards info/requests

Signs of a CO class:
* Holding connection between working objects (SP, CT)
* Forwarding information and requests

* itisimportant to define which classes are requester and requestee
* information: method parameters; variables ...

 When a Service Provider becomes too big, it evolves into Coordinator
* Results of refactoring god classes

Coordinator Class - Example

| | | |
public static String createStoreUrifServerSettings server)l{

if (Type.IMAP == server.type)
return ImapStore.createlri(server);

} else if (Type.POP3 == server.type) {
return Pop3Store.createlri(server);

} else if (Type.WebDAV == server.type) {
return WebDavStore.createUri(server);

} else {
throw new IllegalArgumentException("Not a valid store URI");

}

O int SOCKET_CONNECT_TIMEOUT

O int SOCKET_READ_TIMEOUT

> StoreConfig mStoreConfig

> TrustedSocketFactory mTrustedSocketFactory
0 Map <String,Store> sStores

© RemoteStore(StoreConfig storeConfig, TrustedSocketFactory trustedSocketFactory)
o Store getinstance(Context context, StoreConfig storeConfig)

o void removelnstance(StoreConfig storeConfig)

@ ServerSettings decodeStoreUri(String uri)

@ String createStoreUri(ServerSettings server)

coordinates the works to
ImapStore, Pop3Store,
WebDavStore

Controller (CT)

is a software element that
* make decisions

e control complex tasks

A CT class might be characterized by:
* having class name ended with “Controller”, “Manager”

e Should have access to information holders, coordinators, or service
provider

* Its main responsibility is to make decision to control the flow of the
application
* Should contain condition statements (e.g. IF, IF ELSE, SWITCH CASE, x : ?)

* The decision should be at the higher level than decision made at SP/CO.

Controller Class - Example

recipientMvpView.recipientlolryPerformCompletion
recipientMvpView. rec1p1enthTryPerformCompletlon(),
recipientMvpView.recipientBccTryPerformCompletion();

if (recipientMvpView.recipientToHasUncompletedText()) {
recipientMvpView.showToUncompletedError();
return true;

}

if (recipientMvpView.recipientCcHasUncompletedText()) {
recipientMvpView.showCcUncompletedError();
return true;

}

if (recipientMvpView.recipientBccHasUncompletedText()) {
recipientMvpView.showBccUncompletedError();
return true;

}

rec1p1entMvpV1ew showNoRecipientsError();
return true;

}

return false;

Delegating the work

Controller

Update

User Action!

Model

View

Structurer (ST)

is a software element that
* maintains relationships between software components

* pools/collects/arranges a set of elements

A ST class might be characterized by:
e extends Java’s Collections framework
* contains a collection of objects (of other classes)

* has methods that maintaining relationships between objects in the
collection

* methods that manipulate the collection such as sort(), compare(), validate(),
remove(), updates(), add(), delete() ...

* methods that give access to the objects such as get(index), next(), hasNext() ...

Structurer - Example

holds a collection .

© IdentityAdapter

tinflater

accessing to the Sl List<Object> mitems
collection @ IdentityAdapter(Context context)

@ int getCount()
@ _int getViewTypeCount()
int getitemViewType(int position)

@0verride
public int getItemViewType(int position) {

return (mItems.get(position) instanceof Account) ? @ : 1;
}

boolean isEnabled(int position)
Object getitem(int position)
long getitemld(int position)
@0verrid

publeiclbceaolean isEnabled(int position) { o b00|ean haSStab|e|ds()

return (mItems.get(position) instanceof IdentityContainer); @ View getView(int position, View convertView, ViewGroup parent)
! m String getldentityDescription(ldentity identity)

@0verride
public Object getItem(int position) {
return mItems.get(position);

}

@0verride
public long getItemId(int position) {
return position;

}

Interfacer

is a software element that

* transforms information or requests between distinct parts of the system
* User interfacer interacts with the users of the system, e.g. GUI components
* Internal interfacer exists between sub parts of the system, e.g. Data Management Tier

* External interfacer communicates with external systems, e.g. API, extension points of the
system

A ST class can be characterized by:

e Contains Java Swing, AWT, and other Ul components

* Manage user interface and handle user interaction

* In Android apps, this extends Activity classes

* Encapsulates functions or objects in the system by
providing an Interface or an abstract class that can be
used outside of the system

* If aninterface is created but never implemented: may be

this serves as an extension point for the system

Role stereotypes

A

Service Provider (SP)
* performs specific work

» offers services

-er’, -or’; public static
methods; might contains
some logics to do specific
tasks.

Information Holder (IH)
* knows/keeps information

* provides information

data encapsulation; get/set
methods; private/internal
methods

Interfacer (IF)

* transforms/converts
information and
requests btw SW layers

GUIl-related; storefront; API;
extension points

Controller (CT)
* makes decision
 control complex tasks

‘controller’, ’'manager’; logic
statements; knows IH, SP, CO

Z

Coordinator (CO)
* delegates works
- forwards info/requests

no/simple logic; knows
requester & requestee

> WD e

Structurer (ST)

» keeps/maintains
relationship

* pool, collects, arranges
objs

Collection; sort(); compare();
validate(); add(); remove(); ...

Relationship between s
role stereotypes

uses
uses otifies Ran?y
I Vextends
-y \]
P4 uses [/
extelcds Coordinator]< Controller
V- returns
delegates uses
63 78
(63) (78) extends
\ 4 \ 4 PN
uses A
Service Provider Information Holder ,'
am v
stores
extends

Structurer

]
_’/extends

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Analysing Responsibility and
Collaborations of Objects
using CRC Card

} . E UNIVERSITY OF GOTHENBURG

CRC Cards

Candidate, Responsibilities, Collaborators
T |

wge@w/der
Bewtds » £ O SEECLONS Messane

Cresonts GUELTES to waer Pregsester I

CHALMERS |

Zontrols the petavg
- MesgageBuwlder
Purpose: The Megsageluwlder 18 & hub of

activity in t/e apolicetion It coordmates te
tnwng the presentstion oF guesses, tie I

—

83396 c.avxs‘fma‘m T costralives contro
ard ‘5 a core elemert of e control
areatecture

CHALMERS | UNIVERSITY OF GOTHENBURG
CRC Card
Candidate: :
Name of the object Message Builder
(component) Builds message from selection Message
—UPresents guesses to users Presenter
Responsibility J/
Controls the pacing \
\
Corresponsing
/ collaborator
Message Builder

Purpose: The Message Builder is a hub of
activity in the application. It coordinates the
timing, the presentation of guesses, the
message construction. It centralizes control and
1s a core element of the control architecture

Example: ATM system

-

.

Display Screen

~

/

Cash Dispenser

Deposit Drawer

Special Normal Pad
Ke¥?ad
1(12]||3
1 [4][5][s
%::::% 7 8 9
Cancel 0
Key -
1 []
| Printer Bank Card
Reader

Example: ATM system

An automated teller machine (ATM) is a machine through
which bank customers can perform a number of financial
transactions. The machine consists of a display screen, a bank
card reader, input keys, a money dispenser slot, a deposit slot
and a receipt printer. The main menu contains a list of the
transactions that can be performed. These transactions
include:

e deposit funds to an account

* withdraw funds from an account

* transfer funds from one account to the other

e guery the balance of an account.

ATM class

The ATM class represents the teller machine. Its main

operations are to create and initiate transactions. This class
acts the following roles:

* a Controller role to both the Financial Subsystem and the
User Interface Subsystem.

ATM Class

Initiate Transaction User Interface

Execute Transaction User Interface

Financial Subsystem

* The Financial Subsystemimplements the financial
aspects of a customer's interaction with the ATM. Its main
operations are to execute the following financial
transactions; deposit (), withdraw (), transfer (),
and balance () on customer accounts. There is one
Financial Subsystem contractthat must execute all
the transactions. This subsystem acts as a Service Provider
which provides banking services for ATM Class.

Financial Subsystem

Deposit ATM Class
Withdraw ATM Class
Transfer ATM Class
Balance ATM Class

User Interface Subsystem

The User Interface Subsystemimplements the interface
between the ATM and the bank customer. The User Interface

Subsystem has three responsibilities 1)To get numeric values from
users. 2) Get users selection from menu. 3) To display messages and

wait for events.

This subsystem acts as an Interfacer role to receive and transform
requests from users to the system.

User Interface Subsystem

Get numeric values | ATM Class, Financial Subsystem

Get users selection | ATM Class, Financial Subsystem

Display messages ATM Class, Financial Subsystem

Does using role stereotype help
in improving design quality?

CHALMERS |

UNIVERSITY OF TECHNOLOGY

Boeing Brewery Case

BOEING

UNIVERSITY OF GOTHENBURG

I

Set Open

Valve) 4

s“p.?:;.: /"‘\ till Pumping
Pump Out l Ston

Pump

t Don't Check Temperature

FIGURE 7.3-10 TRANSFER A BATCH

System 1: Responsibility—-Focus

Case description: R. Sharble and S. Cohen “The Object-Oriented Brewery: A Comparison of
Two ObjectOriented Development Methods” Boeing Technical Report no. BC2-G4059,

October, 1992.

(1)

Pump

iz

Get next int

BOEING
Brewmaster
! Start Scheckded,
Trarsfers
process . (‘f
from D N List ¢
-
ot »
Get Aump from 1p 4
Scheduled
Transfer /..
1) s Done
,;“ oy A
'4 Get Vave D
o first Container 10
Get next Container D
Interconnect
o e]|
o e you s ope
with Container D %Wn

FIGURE 6.3-10 TRANSFER A BATCH
System 2: Data-Focus

CHALMERS |

UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Boeing Brewery (2) - Design Quality Facts

WAC |

LCOM |
CBO
NOC
DIT
WMC
(; 1(;0 200 300 400
Transfer Batch
Schedule Xfer

Record Reading
Monitor Match
Create Recip[e
Create Vat
Create Batch
Clean Containers
Bottle a Batch
Add Inventory

@ Responsibility-Driven
0 Data-Driven

(—— [

C-K metrics

Weighted Methods per Class (WMC)
Depth of Inheritance (DIT)

Number of Children (NOC)

Coupling between Objects (CBO)
Response For a Class (RFC)

Lack of Cohesion in Methods (LCOM)

=1l

m Responsibility Drive

- |

@ Data Driven

T

0 10 20 30 40

50 60 70

CHALMERS |) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

K9-Mail Case (1)
2 ;

e e | | | |
(Attachment,
. fragment.* widget.list i
user-interface g DR icallls, Adgautiiy | |

(1.1.) user-interface-logic (1.2.) content provider (2.1.) || intent provider (2.2.)

Presentation Layer (1.) Service Layer (2.)

controller.MessagingControllerCommand

controller.MessagingController

Business Fagade (3.1.)
[mal |
servie.”
API Scheduling (3.2.1.) Business Entity Components (3.4.)
e |_mailsl_|
mail.helper mailstore.migrations mailstore.migrations

il id (imap, pop2, webdav) mail filter power
— K
9

Talk with mail- MIME encoder |
providers (3.2.2.) decoder (3.2.3.) Other (3.2.4.)

.
o
-
o
o

=
3
©

AlarmManager

Business Components (3.3.)

Business Workflow (3.2.)

Business layer (3.)

Cross-cutting

(5.)

Data Access Layer (4.)

SQLiteDB

CHALMERS |

UNIVERSITY OF TECHNOLOGY

Relationship between

role stereotypes
K9-Mail Case (2)

uses (109)

{8%)) UNIVERSITY OF GOTHENBURG

an

I

\ extends (51)

ex(e’n;s
'(12)

N £
Interfacer | 4
77 (9.88%) controls
notifies (9)
uses (22) (37)
extends
Coordinator i (13) Controller (22)

79 (10.14%)

uses uses
144) (73)
delegates uses
(63) (78)
\ 4 extends
Service Provider uses Informatlon Holder (90)
323 (41.46%) 289 231 (29.65%) PN
extends)
(206) uses (10 storesqyOrganizes
(69)
Structurer '\
49 (6 29%)
|extends
N’ (21)

returns (23)

20 (2.57%)

o

K9-Mail Case (3)
Collaboration Patterns between Role Stereotypes

<<INTERFACER>>
MessageContainerView

|

<<COORDINATOR>>

MessageWebView
<<INFORMATION <<SERVICE
HOLDER>> PROVIDER>>

Theme AttachmentResolver

K9-Mail Case (4)
Design Metrics of Role Stereotypes

Echo BEwmc

40
35
30
25

20

| ﬁi an a -l #‘ Ii

< < <
03‘0 oﬂ\e’e ao®® ’&‘e o o

Summary Part [l

e Having a concrete view on role/responsibility is
vital to software design.

* Role stereotypes can be used as a tool for:
e assigning roles to software elements (in design phase)

 comprehending work breakdown and collaboration
patterns in existing system

» Using CRC card when discussing/thinking of
responsibilities and collaborations of an object (can
be a component/subsystem/class)

