
Dr. Sam Jobara

Software Architecture
DIT344

Sam Jobara Ph.D.
jobara@chalmers.se

Software Engineering Division
Chalmers | GU

mailto:jobara@chalmers.se

Dr. Sam Jobara

Architectural Styles
Part III

Dr. Sam Jobara

Learning Objectives

3

• Introduce three current distributed architecture styles

• Look at the relationships between style and attributes.

• Provide implementation tactics and cases for these styles

• Discuss these styles key selection criteria

Main Reference:

Fundamentals of Software Architecture, an engineering approach
by Neal Ford; Mark Richards Published by O'Reilly Media, Inc., 2020

Dr. Sam Jobara

Agenda

4

Warm up in Style

Peer-to-Peer Style

Microservices Style

Event-Driven Style

Choosing a Style

Dr. Sam Jobara

5

Dr. Sam Jobara

6

Architectural style defined
Architectural patterns/styles and tactics are ways of capturing proven good

design structures, so that they can be reused for similar projects context.

An Architecture style is a set of rules and constraints that prescribe

- vocabulary/metaphor:

which types of components, interfaces & connectors must/may be used
in a system. Possibly introducing domain-specific types

- structure:

How components and connectors may be combined

- behavior:

How the system behaves

- guidelines:

These support the application of the style
(how to achieve certain system properties)

Dr. Sam Jobara

7

Architectural style defined

• Architectural styles are design paradigms for a set of design dimensions

Some architectural styles emphasize different aspects
such as: Subdivision of functionality, Topology or
Interaction style

• Styles are open-ended; new styles will emerge

• A single architecture can use several architectural styles

• Architectural styles are not disjoint, they can exist in hybrid mix

• Reusability and use cases define popularity of certain styles

Dr. Sam Jobara

8

Architectural style types

Monolithic vs. Distributed Architectures

Architecture styles are two types: monolithic (single deployment unit of all code) and

distributed (multiple deployment units connected through access protocols).

Monolithic

• Layered architecture (n-tier or client-server architecture)

• Pipeline architecture

• Microkernel architecture

Distributed

• Peer-to-Peer architecture

• Microservices architecture

• Event-driven architecture

• Service-oriented architecture

Dr. Sam Jobara

9

Architectural style types

Distributed architectures all share a common set of challenges and issues not found
in the monolithic architecture styles Monolithic

1- The network is not reliable

2- Latency is not zero (microsecond vs. millisecond)

3- Bandwidth is not infinite

4- The network is not secure

5- The network topology always changes (unpredicted performance)

6- There are many network administrators, not just one

7- The network is not homogeneous or a pure style

Dr. Sam Jobara

10

TECHNIQUE FOR ARCHITECTURE DESIGN
This technique consists of five steps that are performed iteratively:

1. Identify architecture objectives.

Provide scope of design

2. Identify key scenarios.

Key scenarios represent architecture drivers, significant use cases, intersections
between quality attributes and functionality, or tradeoffs between quality attributes.

Dr. Sam Jobara

11

3. Create application overview.

This step is divided into the following set of activities:

a. Determining application type, b. Identifying deployment constraints, c. Identifying
important architecture design styles, d. Determining relevant technologies

4. Identify key issues.

Such as quality attributes and crosscutting concerns. Crosscutting concerns are
features of the design that may apply across all layers, components, and tiers, such
as the following:

a. Authentication and authorization, b. Caching, c. Communication,
d. Configuration management, e. Exception management, f. Validation and testing

5. Define candidate solutions.

Candidate architectures include an application type, deployment architecture,
architectural style, technology choices, quality attributes, and crosscutting
concerns.

Dr. Sam Jobara

Synch. vs. Asynch. & Decoupling

12

Synchronous calls between two distributed services have the caller wait for the
response from the callee (real-time chat) .

Asynchronous calls allow fire-and-forget (or choose when to respond like sensors)
semantics in event-driven architectures, allowing two different services to differ in
operational architecture

What does Decoupled Architecture mean?
It is a type of computing architecture that enables computing components or layers to
execute independently while still interfacing with each other.

Decoupled architecture is also used in software development to develop, execute, test
and debug application modules independently. Cloud computing architecture
implements decoupled architecture where the vendor and consumer independently
operate and manage their resources.

Decoupled architecture helps achieve higher computing performance, deployment,
reusability, and testability by isolating and executing individual components
independently and in parallel.

Dr. Sam Jobara

Agenda

13

Warm up in Style

Peer-to-Peer Style

Microservices Style

Event-Driven Style

Choosing a Style

Dr. Sam Jobara

P2P Architecture Style

• Peer-to-peer (P2P) is a distributed computing architecture
• Divides tasks or workloads across several computer systems (of nodes or peer).

• P2P networks can be used to share any kind of digital assets, such as data, or
smart contracts.

• The structure of a pure P2P network is sustained by its users, who can provide
governance and use resources.

• A single peer can be an

independent client-server

Servlet structure.

14

Dr. Sam Jobara

How P2P is different?

Decentralized Systems:
Every node makes its own decision.
The final behavior of the system is
the aggregate of the decisions of
the individual nodes. Note that
there is no single entity that
receives and responds to the
request. eg. blockchain,

💪 Fault tolerance:
•Low: Centralized systems
•Moderate: Decentralized systems
•High: Distributed systems

🔧Maintenance:
•Low: Centralized systems
•Moderate: Decentralized systems
•High: Distributed systems

🚀 Scalability:
•Low: Centralized systems
•Moderate: Decentralized systems
•High: Distributed systems

Distributed Systems:
Means that the processing is
shared across multiple nodes,
but the decisions may still be
centralized and use complete
system knowledge. eg. AWS,
Cloud Instances, Google,
Facebook, Netflix, etc.

Dr. Sam Jobara

Structured peer-to-peer networks

• In structured peer-to-peer networks the overlay is organized into a specific
topology, and the protocol ensures that any node can efficiently search the
network for a file/resource.

• The most common type of structured P2P networks implement a distributed
hash table (DHT), in which a variant of consistent hashing is used to assign
ownership of each file to a particular peer. This enables peers to search for
resources on the network using a hash table: that is, (key, value) pairs are
stored in the DHT.

• DHT distribute responsibility of storing & retrieve data in large network.

16

Dr. Sam Jobara

P2P Implementations

• Windows 10 updates are delivered both from Microsoft's servers and
through P2P (bandwidth sharing)

• The decentralized framework of P2P systems makes them highly
available and resistant to cyber attacks and also more scalable.

• The more users join it, the more resilient and scalable it gets. Bigger P2P
networks achieve high levels of security because there is no single point
of failure.

• The peer-to-peer architecture popular examples with varying use cases
include:
• BitTorrent (file-sharing)

• Tor* (anonymous communication software),

• Many more decentralized apps (See Blockchain lecture)

*The Onion routing is implemented by encryption in the application layer of a communication protocol stack, nested
like the layers of an onion. Tor encrypts the data, including the next node destination IP address, multiple times and
sends it through a virtual circuit comprising successive, random-selection Tor relays. 17

Dr. Sam Jobara

P2P Implementations

• Unstructured vs. Structured (public vs. private) MPLS Multi-protocol label switching

• Security, Resilience and Scalability concerns

• Controlling authority (pure vs. hybrid)

dApps can run on both a P2P network as well as a blockchain network.

It is challenging to achieve pure dApps network due to the need of some
governance (to be covered in blockchain)

18

Dr. Sam Jobara

P2P Architectural styles

19

*A comparison of peer-to-peer architectures
Peter Backx, Tim Wauters, Bart Dhoedt, Piet Demeester

Broadband Communication Networks Group (IBCN),
Department of Information Technology (INTEC), Ghent University, Belgium

We present here three popular P2P styles*

Dr. Sam Jobara

P2P Architectural styles

Pure peer-to-peer architecture
• Applications will not use a central server at all (except possibly for logging

onto the network).

• Queries for files can be flooded through the network or more intelligent
mechanisms can be used.

• Have become quite unpopular because they generate a lot of overhead
traffic to keep the network up and running.

• Some adopters still use this model because it offers an unprecedented
anonymity, not found in any other architecture.

20

Dr. Sam Jobara

P2P Architectural styles

Mediated architecture

Uses a client-server setup for its control operations. All peers log on to a
central server that manages the file and user databases.

Searches for a file are sent to the server and, if found, the file can be
downloaded directly from a peer.

In most cases the server will have a database of files shared by peers.
Afterwards the server functions as a proxy that distributes the searches
towards the peers.

21

Dr. Sam Jobara

P2P Architectural styles

Hybrid architectures

Hybrid architectures introduce two layers in the control plane:

one of “normal” peers connecting to ultrapeers in a client-server fashion
and one of ultrapeers connected with each other via a pure peer-to-peer
network.

Both pure and hybrid architectures build an overlay network over the
existing IP network.

22

Dr. Sam Jobara

P2P Architectural styles

The table below gives a broad overview of some distinguishing features
of several peer-to-peer file sharing applications.

23

BitTorrent (file-sharing)
Tor (anonymous
communication
software),

Dr. Sam Jobara

P2P Architectural styles

24

P2P style Advantages P2P style Disadvantages

Resilient, Highly available No central governance

Cost effective, less overhead Risk of data integrity

Less complex, easy to deploy Security exposure

Allow for bandwidth sharing Sensitive to network performance

Flexible and faster enquiries Less practical without central log

Flexible hybrid models May force you to upload files

Enable anonymity May include illegal content

Not suitable for small systemsSupport Decoupling

P2P implementation considerations

Dr. Sam Jobara

P2P Architectural styles

Learning Unit Obligation

- Understand the Architecture style of P2P
- Realise the different topologies and use of P2P

- Understand the strength and weaknesses of P2P

- Realise how to mitigate P2P shortcomings

25

Dr. Sam Jobara

Agenda

26

Warm up in Style

Peer-to-Peer Style

Microservices Style

Event-Driven Style

Choosing a Style

Dr. Sam Jobara

27

Microservices Style
Extremely popular architecture style that has gained significant momentum in
recent years due to mobile and cloud computing.

According to a recent
O’Reilly radar
survey on the growth
of cloud computing,
one of the more
interesting metrics
stated that 52 percent
of the 1,283
responses say they
use microservices
concepts, tools, or
methods for software
development.

https://www.oreilly.com/radar/cloud-adoption-in-2020/

Dr. Sam Jobara

Microservices Style-Features

• Microservices form a distributed architecture: each service runs in its own process,
which originally implied a physical computer but quickly evolved to virtual machines and
containers.

• Decoupling the services to this degree allows for a simple solution to a common
problem in architectures that heavily feature multitenant infrastructure for hosting
applications. Now, however, with cloud resources and container technology, teams can
reap the benefits of extreme decoupling, both at the domain and operational level.

• Granularity correct granularity for services in microservices, and often make the
mistake of making their services too small, which requires them to build communication
links back between the services to do useful work. The term “microservice” is a label, not
a description. Designing the right level of service component granularity is one of the
biggest challenges within a microservices architecture.

28

Dr. Sam Jobara

Microservices Style-Features

Performance is negative side effect of the distributed microservices. Network calls
take much longer than method calls, and security verification at every endpoint adds
additional processing time, requiring architects to think carefully about the implications of
granularity when designing the system.

Microservices is a distributed architecture. Architects advise against the use of
transactions across service boundaries, making determining the granularity of services the
key to success in this architecture.

Bounded Context. The driving philosophy of microservices is the notion of bounded
context: each service models a domain or workflow. Thus, each service includes everything
necessary to operate within the application, including classes, other subcomponents, and
database schemas.

Microservices adopt a domain-partitioned architecture to the extreme.
Each service is meant to represent a domain or subdomain; it is domain-driven design.

29

Dr. Sam Jobara

Microservices Style-Features

Data Isolation. Another requirement of microservices, driven by the bounded context
concept, is data isolation. Many other architecture styles use a single database for
persistence. However, microservices tries to avoid all kinds of coupling, including shared
schemas and databases used as integration points.

API Layer API layer is sitting between the consumers of the system. The API gateway will
handle a large amount of the communication and administrative roles, allowing the
microservices to remain lightweight. They can also authenticate, cache and manage
requests, as well as monitor messaging and perform load balancing as necessary.

CD of DevOps The evolutionary path from monolithic applications to a microservices architecture style
was prompted primarily through the development of continuous delivery, the notion of a continuous

deployment pipeline from development to production which streamlines the deployment of applications.

see A2

30

Dr. Sam Jobara

Microservices Style-Interface
A key concept within the microservices architecture style is that it is a distributed
architecture, all the components within the architecture are fully decoupled from one
other and accessed through some sort of remote access protocol. The distributed
nature of this style is behind its superior scalability and deployment characteristics.

31

Traditional web-based or fat-client business application

Web application remotely accesses separately deployed service.

lightweight centralized message broker to access remote service components

Rest: Remote access protocol

Dr. Sam Jobara

Microservices Style-Sidecar

When a common operational concerns appear within each service as a separate
component, the sidecar component can handle all the operational concerns that
teams benefit from coupling together. Thus, when it comes time to upgrade the
monitoring tool, the shared infrastructure team can update the sidecar, and each
microservices receives that new functionality. The common sidecar components
connect to form a consistent operational interface across all microservices

32

Dr. Sam Jobara

Microservices Style-Communication

Choreography: utilizes the same communication style as a broker event-driven
architecture. In other words, no central coordinator exists in this architecture, respecting
the bounded context philosophy. Thus, architects find it natural to implement decoupled
events between services.

Orchestration the developers create a service whose sole responsibility is
coordinating the call to get all information for a particular customer. The user calls
the ReportCustomerInformation mediator (light weight message broker). 33

Choreography
Orchestration

Dr. Sam Jobara

Microservices Style

34

Architecture Characteristics

Communications between services in a microservices architecture can be:
§ decentralized and synchronous
§ choreographed and asynchronous
§ orchestrated and synchronous/asynchronous.

In a decentralized and synchronous communications pattern, each service receives
flow control, makes subsequent synchronous calls to other services and passes
control to the next service.

In choreographed and asynchronous service communications, the service publishes
events to a central message queue that distributes those events.

The centralized orchestration, enables both synchronous and asynchronous
communication. The orchestrator sequences the various service calls based on a
defined workflow.

Figure 17-13. Ratings for microservices

Dr. Sam Jobara

Microservices Style

35

Architecture Characteristics

Offers high support for modern engineering practices such as automated
deployment, and testability.

Microservices couldn’t exist without the DevOps revolution and the relentless
march toward automating operational concerns.

Fault tolerance and reliability are impacted when too much interservice communication
is used. independent, single-purpose services generally lead to high fault tolerance.

High scalability, elasticity, and evolutionary systems utilized this style to great success.

The architecture relies heavily on automation and intelligent integration with
operations, developers can also build elasticity support into the architecture.

Figure 17-13. Ratings for microservices

Dr. Sam Jobara

Microservices Style

36

Architecture Characteristics

Favors high decoupling at an incremental level, it supports evolutionary change.

By building an architecture that has extremely small deployment units that are highly
decoupled, that can support a faster rate of change. Make many network calls to
complete work, which has high performance overhead, and also invoke security
checks to verify identity and access for each endpoint.

Many patterns/tactics exist in the microservices world to increase performance, including
intelligent data caching and replication to prevent an excess of network calls.

Performance is another reason that microservices often use choreography rather than
orchestration, as less coupling allows for faster communication and fewer bottlenecks.

Figure 17-13. Ratings for microservices

Dr. Sam Jobara

Microservices Style

37

MS style Advantages MS style Disadvantages

High scalability, & agility Overall high cost

High reliability Performance bottlenecks

High deployability/testability Can get complex

High Fault tolerance High overhead for security

Very high modularity Hybrid tactics needed

Automation & Integration

Microservices style implementation considerations

Dr. Sam Jobara

P2P Architectural styles

Learning Unit Obligation

- Understand the Architecture style of MS
- Realise the design features and properties of MS

- Understand Choreography & Orchestration designs

- Understand the strength and weaknesses of MS

- Understand the deployment envirnoment of MS

- Realise how to mitigate MS shortcomings

38

Dr. Sam Jobara

Agenda

39

Warm up in Style

Peer-to-Peer Style

Microservices Style

Event-Driven Style

Choosing a Style

Dr. Sam Jobara

Event-Driven Architecture Style

• The event-driven architecture style is a popular distributed asynchronous
architecture style used to produce highly scalable and high-performance
applications.

• It is also highly adaptable and can be used for small applications and as well as
large, complex ones.

• Event-driven architecture is made up of decoupled event processing
components that asynchronously receive and process events.

• It can be used as a standalone architecture style or embedded within other
architecture styles (such as an event-driven microservices architecture).

• Most applications follow what is called a request-based model as shown:

40

Dr. Sam Jobara

Event-Driven Architecture Style

Topology
There are two primary topologies within event-driven architecture:

Mediator topology: is commonly used when you require control over the workflow
of an event process, we shall discuss this later.

Broker topology: is used when you require a high degree of responsiveness and
dynamic control over the processing of an event. There is no central event
mediator. The message flow is distributed across the event processor components
in a chain-like broadcasting fashion through a lightweight message broker.

41

The event processor that accepted
the initiating event performs a specific
task associated with the processing
of that event, then asynchronously
advertises what it did to the rest of
the system by creating what is called
a processing event. This processing
event is then asynchronously sent to
the event broker for further
processing, if needed.

Broker topology

Dr. Sam Jobara

Event-Driven Architecture Style

42

Broker topology
A good practice within the broker topology for each event processor to advertise what
it did to the rest of the system, regardless of whether or not any other event processor
cares about what that action was. This practice provides architectural extensibility if
additional functionality is required for the processing of that event.

relay race & baton

Dr. Sam Jobara

Event-Driven Architecture Style

43

Broker topology

To illustrate how the broker topology works, consider the processing flow in a typical
retail order system as it is placed for an item.

In this example, the OrderPlacement event

processor receives the initiating event

(PlaceOrder), inserts the order in a

database table, and returns an order

ID to the customer. It then advertises

to the rest of the system that it created

an order through an order-created

processing event.

Dr. Sam Jobara

Event-Driven Architecture Style

44

Broker topology

While performance, responsiveness, and scalability are all great benefits of the broker
topology, there are also some negatives things:

• There is no control over the overall workflow associated with the initiating event

• Error handling is also a big challenge with the broker topology without mediator.

• The business process is unable to move without automated or manual intervention.

• All other processes are moving along without regard for the error. For example,
the Inventory event processor still decrements the inventory, and all other event
processors react as though everything is fine.

Dr. Sam Jobara

Event-Driven Architecture Style

45

Mediator Topology

The mediator topology of event-driven architecture addresses some of the
shortcomings of the broker topology.

Central to this topology is an event mediator, which manages and controls the workflow
for initiating events that require the coordination of multiple event processors.

The architecture components that make up the mediator topology are an initiating
event, an event queue, an event mediator, event channels, and event processors.

To reduces SPOF and
also increases overall
throughput and
performance, Event
Mediator are
redundant.

Dr. Sam Jobara

Event-Driven Architecture Style

46

Mediator delegation model

We recommend classifying events as simple, hard, or complex and having every event
always go through a simple mediator (such as Apache Camel or Mule). The simple
mediator can then interrogate the classification of the event, and based on that
classification, handle the event itself or forward it to another,

more complex, event mediator.

In this manner, all types of events

can be effectively processed by

the type of mediator needed for

that event. This mediator delegation

model is shown here.

Dr. Sam Jobara

Event-Driven Architecture Style

47

Mediator Topology

Notice that when the initiating event coming into the Simple Event Mediator is classified as
either hard or complex, it forwards the original initiating event to the corresponding
mediators (BPEL or BPM). To illustrate how the mediator topology works, consider the

same retail order entry system example

described in the prior broker topology

section, but this time using the mediator

topology.

Dr. Sam Jobara

Event-Driven Architecture Style

48

Mediator Topology

A hybrid model combining both the mediator and broker topologies can be used to
address the dynamic nature of complex event processing.

The table below shows the trade-offs for the mediator topology:

Dr. Sam Jobara

Event-Driven Architecture Style

49

MS style Advantages MS style Disadvantages

High scalability Testability challenge

High performance Can get complex

High Fault tolerance High overhead for security

Very high modularity Hybrid tactics needed

Highly evolutionary Complex workflow

Event-Driven style implementation considerations

Dr. Sam Jobara

Event-Driven Architecture Style

Learning Unit Obligation

- Understand the two styles of ED architecture
- Realise the design features and properties of ED style

- Understand Broker and Mediator ED strength and weakness

- Understand the difference in handling simple and complex events

- Understand the ED implementation considerations

50

Dr. Sam Jobara

Agenda

51

Warm up in Style

Peer-to-Peer Style

Microservices Style

Event-Driven Style

Choosing a Style

Dr. Sam Jobara

Choosing a Style

52

Choosing an architecture style represents the culmination of analysis about:

• Trade-offs for architecture characteristics (attributes)

• Domain considerations

• Strategic goals

• Optimization tactics,

• Business and market considerations

• Agility and CD considerations

However contextual the decision is, some general advice exists around choosing an
appropriate architecture style.

Dr. Sam Jobara

Choosing a Style

53

Decision Criteria
Architects should go into the design decision with the following things:

The domain (analysis & implementation)

Domain affects operational architecture attributes. Architects must have at least a good
general understanding of the major aspects of the domain features under design.

Attributes that impact Architecture

Architects must discover the architecture attributes needed to support the domain and
other external factors.

Data architecture

Architects and DBAs must collaborate on database, schema, and other data-related
design concerns.

Dr. Sam Jobara

Choosing a Style

54

Decision Criteria

Organizational factors

Many external factors may influence design. For example, the cost of a particular cloud
vendor, and TTM may prevent the ideal design.

Knowledge of process, teams, and operational concerns

Many specific project factors influence an architect’s design, such as the software
development process, interaction (or lack of) with operations, and the QA process.

For instance, an insurance company application consisting of multipage forms, each of
which is based on the context of previous pages, would be difficult to model in
microservices.

Dr. Sam Jobara

Choosing a Style

55

Decision Criteria
Monolith versus distributed

A single set implies that a monolith is suitable, whereas different architecture
characteristics imply a distributed architecture.

Where should data live?

If the architecture is monolithic, architects commonly assume a single relational
databases or a few of them. In a distributed architecture, the architect must decide
which services should persist data, which also implies thinking about how data must
flow throughout the architecture to build workflows.

Dr. Sam Jobara

Choosing a Style

56

Decision Criteria
What communication styles between services—synchronous or asynchronous?

Once the architect has determined data partitioning, their next design consideration is
the communication between services—synchronous or asynchronous?

Synchronous communication is more convenient in most cases, but it can lead to
scalability, reliability, and other undesirable characteristics.

Asynchronous communication can provide unique benefits in terms of performance and
scale but can present a host of headaches: data synchronization, deadlocks, race
conditions, debugging, and so on.

Architects should default to synchronous when possible and use asynchronous when
necessary.

Dr. Sam Jobara

Choosing a Style

57

Distributed Case Study: Going, Going, Gone

The requirements for GGG also explicitly state certain ambitious levels of scalability,
elasticity, performance, and a host of other tricky operational architecture
characteristics.

Of the candidate distributed architectures, either low-level event-driven or
microservices match most of the architecture characteristics.

Achieving the stated performance will provide a challenge in microservices, but
architects can often address any weak point of an architecture by designing to
accommodate it. For example, while microservices offers a high degrees of
scalability naturally, architects commonly have to address specific performance issues
caused by too much orchestration, too aggressive data separation, and so on.

Dr. Sam Jobara

Choosing a Style

58

microservices implementation of Going, Going, Gone

Dr. Sam Jobara

Choosing a Style

59

microservices implementation of Going, Going, Gone

Each identified component became services in the architecture, matching component
and service granularity. GGG has three distinct user interfaces:

Bidder

The numerous bidders for the online auction.

Auctioneer

One per auction.

Streamer

Service responsible for streaming video and bid stream to the bidders. Note that this is
a read-only stream.

Dr. Sam Jobara

Choosing a Style

60

microservices implementation of Going, Going, Gone

The following services appear in this design of the GGG architecture:

BidCapture

Captures online bidder entries and asynchronously sends them to Bid Tracker. This
service needs no persistence because it acts as a conduit for the online bids.

BidStreamer

Streams the bids back to online participants in a high performance, read-only stream.

BidTracker

Tracks bids from both Auctioneer Capture and Bid Capture. This is the component that
unifies the two different information streams, ordering the bids as close to real time as
possible. Note that both inbound connections to this service are asynchronous.

Dr. Sam Jobara

Choosing a Style

61

microservices implementation of Going, Going, Gone

Auctioneer Capture

Captures bids for the auctioneer.

Auction Session

This manages the workflow of individual auctions.

Video Streamer

Streams the auction video to online bidders.

Choosing microservices, then intelligently using events and messages, allows the
architecture to leverage the most out of a generic architecture pattern while still
building a foundation for future development and expansion.

Dr. Sam Jobara

Choosing a Style

Learning Unit Obligation

- Understand design analysis for selecting an architectural style
- Identify the decision criteria to select the best fit architecture style

- Understand the GGG architectural design drivers

62

