EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Software Design Principles

Michel R.V. Chaudron
Software Architecture 2020

CHALMERS |

UNIVERSITY OF TECHNOLOGY

m.chaudron@tue.nl

Outline

m Recap
Architectural Styles by

m Design Principles
m [actics

UNIVERSITY OF GOTHENBURG 5

EEEEEEEEE f"“"’%a
MRV Chaudron | U @ Uiversvor (&%)

OOOOOOOOOO 2 5,
Sheet 2 UNIVERSITY OF TECHNOLOGY 2

Learning Objectives

m Know/explain design principles
m Apply design principles
m Recognize violations of design principles

m Hint: try if you can think up a counter-
example for each design principle

EEEEEEEEE £
MRV Chaudron TU /e UNIVERSITY O g) UNIVERSITY OF GOTHENBURG

Sheet 3

3

:"'m""‘g
CHALMERS | &)
UNIVERSITY OF TECHNOLOGY w5

Advice on Design of Software

* Generic Design Principles
* Principles for Architectural Design %

* Principles for Design of Components

UNIVERSITY OF GOTHENBURG

* Principles for collaboration amongst Components

Design = trade-offs = gray area
=» Principles are heuristics

Not today: User Interface design, protocol design

4

General Software - Design Principles 1

Information Hiding:

Minimize Coupling

Coherence:

TU/e & CHALMERS

UNIVERSITY OF TECHNOLOGY

{8%)) UNIVERSITY OF GOTHENBURG

General Software Design Principles 2

Divide and Conquer

Separation of Concerns

Keep it Simple

TU/e ;EE%%\E:OF CHALM E Rs

GY
UNIVERSITY OF TECHNOLOGY

{8%)) UNIVERSITY OF GOTHENBURG

Software Architecture

Motivation:
Increasing amount of software in systems

45 -

40
35
30
25
20
15
10

Millions of Lines

Windows Complexity

/
yl
Z
e
//
-~
Win Win Win 95 NT4.0 Win88 NT 50 Win XP

3.1

NT

(1997) (1998) (1999) (2000)

Nb: logarithmic scale

The amount of software
increases 10 fold every 10 years

2K {2002)

10000

1000

100

in KLOC

KLOC in Avionics System

[EVED o8

A330/240

A320
A310

AUDFF

4008

1970 1980 1990 2005
Airplane type

TU/

EINDHOVEN
UNIVERSITY OF
TECHNOLOGY

CHALMEI

UNIVERSITY OF TECHNOL(

Kbytes

Code Size Evolution of High End TV Software

000000

00000

V:ﬁ‘@

Year of Market Introduction

Software Evolves ‘Organically’

terracotta pots.

UNIVERSITY OF GOTHENBURG

MRV Chaudron TU/ 5'3.3:;’;155‘ OF CHAL M E RS

TECHNOLOGY
Sheet 8 UNIVERSITY OF TECHNOLOGY

ananpd WOV UYL NOA uey] JapleH :juswdojansqg swen), [‘mo|g

)
| -
©
=
Y
@)
0]
Y
@)
>
by
X
o
Q.
&
@)
O
(@)
=
(/p
®©
)
| -
@
R

Software Architecture

Software Architecture

Complexity of Software

Slide by prof. Jurgen Vinju
If Kafka would write a book today...

This kind of software exists everywhere:

®* 10K to 25M lines of code

® 2to 10 programming languages and dialects

® 20 to 200 dependencies on library components and frameworks

10 to 1000 programmers

1to 1M users
Franz Kafka

10 to 40 years lifetime

Franz Kafka was a German-language writer of novels
and short stories, regarded by critics as one of the
most influential authors of the 20th century. Wikipedia

“IT happens”

Born: July 3, 1883, Prague, Czech Republic

having a nightmarishly complex,'
bizarre, or illogical quality

Sheet 10

Y Chaucron TU/e s CHALMERS @4

TECHNOLOGY
UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

10

The 5 Complexity Dimensions of Software

O O 00 E o
o, | o, E O Hglip! Y
o O O g miyn 2
D >f" / l \ N
N NG == R TSN =
O C o I K\

nechty Dynatics Refnamant

Complexity in this regard means complex for humans to understand and contribute to.

1. Scale. The larger the system, the more complex.
2. Diversity. The more frameworks, languages, integration techniques, tools, platforms,
and design patterns used, the more complex.

3. Connectivity. The more connections, the more complex. This relates to
4. Dynamics. The more number of states or the larger state space, the more complex.
5. Refinement. Over time every living piece of software is refined, optimized, and polished.

Corner cases are found and handled, and regression test suites grow. Refinement drives
complexity.

From : John Wilander http://appsandsecurity.blogspot.com/2011/03/5-complexity-dimensions-of-software.html

MRV Chaudron TU / UNIVERSITY OF CHALMERS UNIVERSITY OF GOTHENBURG

TECHNOLOGY
Sheet 11 UNIVERSITY OF TECHNOLOGY

11

http://en.wikipedia.org/wiki/Coupling_%28computer_programming%29

Generic Design Principles

m Decomposition
Break problem into independent smaller parts

VEI-IICLE
Independent? \
| POWERTRAIN

DRWELINE

12

MRV Chaudron TU/e RS or CHALMERS UNIVERSITY OF GOTHENBURG
UNIVERSITY OF TECHNOLOGY R

Sheet12 8 W¥J R» TECHNOLOGY

Single Responsibility

m What is a responsibility?
Rebecca Wirfs-Brock role-stereotypes
Depends on level of design
Relates to Parnas’ principle of Information Hiding:

m The responsibility relates to the secret
E.g. sorting
Viewer: way of displaying information
Model: storing & querying information

Alternative formulation (‘Uncle Bob’):
m A class should have only one reason to change

EEEEEEEEE
MRV Chaudron I U @ unversyor
rrrrrrrrrr

Sheet 13

5 UNIVERSITY OF GOTHENBURG

Design Principle : Divide and conquer

m Trying to deal with something big all at once is
harder than dealing with a set of smaller things

Each individual component is smaller, \ \

and therefore easier to understand

Parts can be replaced or changed
without having to replace or extensively

change other parts.
Separate people can work on separate parts

An individual software engineer can specialize

EEEEEEEEE SR
wvomsn TU e Bt CHALMERS &
UNIVERSITY OF TECHNOLOGY R %

Sheet14 B WFJ & TecHNOLOGY

UNIVERSITY OF GOTHENBURG

Ways of dividing a software system

A system can be divided up into

e Layers & subsystems

e A subsystem can be divided

up into one or more packages
e A package is divided up into classes

e Aclass is divided up into methods

UNIVERSITY OF GOTHENBURG

MRV Chaudron TU/e #te: CHALMERS
Sheet15 ~ § WF = TECHNOLOGY UNIVERSITY OF TECHNOLOGY 1’-:.. %

15

Subsystems vs Layering

Functional
Dimension

Layer 1

Layer 2

Layer 3

v

Abstraction/Implementation
Dimension

TU/e &% CHALMERS

OOOOOOOOOO
UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Software Architecture

Layering
Goals: Separation of Concerns, Abstraction, Modularity, Portability
Partitioning in non-overlapping units that g
— provide a cohesive set of services at an]
abstraction level 0

(while abstracting from their implementation)
- layer nis allowed to use services of layer n-7
(and not vice versa)
alternative:
bridging layers: layer 7 may use layers <n
enhances efficiency but hampers portability

MRV Chaudron TU /e UNIVERSITY OF CHALMERS

TECHNOLOGY
Sheet 17 UNIVERSITY OF TECHNOLOGY

5 UNIVERSITY OF GOTHENBURG

17

Software Architecture

>

d1}109ds

J119uU3xb

A Component-based Reference

Architecture for Computer Games

(E. Folmer, 2007)

Game DB = ¢= &
— Game logi€™ =——— GUI
<<database>> Game log
ﬁ : £ | : ciaf :
Network Graphics O | Sound Artificiaf | Physics
<<environ ment>> | Intelligence
| X \
k| ¥ 2 4 : A
| Network < Graphics 5 Input Audio - Hardware
i <<infrastructre>> <<infrastructure>> <<infrastructure>> <<infrastructure>> abstraction
|

>’\ ~ J. il

Fig. 1. A reference architecture for the games domain

Game
interface

Domain

Specific

Infra

structure

Platform
software

Software Architecture

<<|.ayer>> . «layer»
Presentation and Dialogue Layer Common Elements

Exa l I l p I e «subsystem» «subsystem»

Client / Browser Client Authentication

<<susbsystem>>
«subsystem» «subsystem>» «subsystem»
M P M
>
«subsystem» «subsystem>» «subsystem»
D F
«subsystem»
E
v
«layer»
Business Layer
«subsystem»
JR
«subsystem»» «subsystem» «subsystem»
M P M
A .
. >
ey
v
«subsystem» «subsystem» «subsystem»
o D CET—. F <<Subsystem>>
Apache
v
«subsystem» Persis?gecz Layer sisubsystem>
Data Security Y c
«subsystem» '::Isubsystem»
«subsystem» P
M >
«subsystem»
bsyst bsyst PL
«subsystem>» «su DSVS em> <<S|l:1 system»

UNIVERSITY OF GOTHENBURG

MRV Chaudron TU / UNIVERSITY OF CHALMERS

TECHNOLOGY
Sheet 21 UNIVERSITY OF TECHNOLOGY

What is a dependency? A
l A depends on B

- Component A requires B for it to work IRun-time
Functional coupling

- A change in module B requires a change in

module A I Development-time

Implementation coupling

Typically requires: re-testing A & B

UNIVERSITY OF GOTHENBURG

EEEEEEEEE SR
mvama T o B CHALMERS 5
UNIVERSITY OF TECHNOLOGY R

Sheet22 B WFJ N TECHNOLOGY

22

Dependency/Coupling

There is coupling between two classes A and B if:
A calls a service of an object B
A has a method which references B
(via return type or parameter)
A has an attribute that refers to B
A is of type (inherits from) B

- Ais a subclass of (or implements) class B

. .) . . A may depend on
This is not an exhaustive definition some assumption on

another component B

(&3 UNIVERSITY OF GOTHENBURG

23

Architecture Design Principles

m Dependencies direct in the direction of stability

A
B should be
l less likely to change
than A
B

EEEEEEEEE
MRV Chaudron e ||||||||||||
OOOOOOOOOO

Sheet 24

(&3 UNIVERSITY OF GOTHENBURG

24

Dependency: Coupling

Coupling is the degree of interdependence
between modules

S 1

high coupling low coupling

s < |

N
TU/e#5> CHALMERS {5
Chapter 9: Architecting and designing s8ftware -cHNOLOGY NS5

UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG 25

CHALMERS |

;i_:_.:".‘f; UNIVERSITY OF GOTHENBURG

Cohesion

Cohesion is concerned with the
relatedness within a module

Provide Ride Waiting Time

Convert Q-length || Count People
to WaitTime in Queue

GPS

Benefits of Low Coupling/Dependencies

1. Modules are easier to replace

2. fewer interconnections between modules reduce time
needed for understanding the modules and interactions

3. fewer interconnections between modules reduce the
chance that changes in one module cause problems in
other modules, which enhances reusability

4. fewer interconnections between modules reduce the
chance that a fault in one module will cause a failure in

other modules, which enhances robustness

Page-Jones, M. 1980. The Practical Guide to Structured Systems Design. New York, Yourdon Press, 1980.

EEEEEEEEE

I U e ||||||||||||
OOOOOOOOOO

Chapter 9: Architecting and designing software UNIVERSITY OF TECHNOLOGY

5 UNIVERSITY OF GOTHENBURG

27

Software Architecture

What to avoid: many dependencies

=
et []
Cre——— R
- e - e i
-~ RS L = a
co— B
~
N
P f—__] - i 2
OO .
v e : o
5 - CrE— famas—]
- " b
' 0 X - 1
oy o &
o
Aot /4 - —
treta . A -
[recne] et o 3
7 - r——sea | P
L L " »
3 i
n' o i)
' p ff L
st ﬁ 3 fa—]
wooks ® & sad
f -

s - -] - o
e — -] P k -
L = - - X & XET %

= =) '\ X) -
S L RS AR A | -
e =y » 3 7 oo i
- r t R N
» [l — e — "o
vaete 9 | 28 | oy e
Coremem—— f -
Y S - - -
- \ e
. - - x / -~ —_
oo <] 3
~ sl
vt . y e
Sonmyina
[]
o
L y [)
faema -]
- e

Only 25 classes!

MRV Chaudron

EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Sheet 29

CHALMERS

UNIVERSITY OF TECHNOLOGY

{8%)) UNIVERSITY OF GOTHENBURG

29

Reducing Coupling: Information Hiding

m Information Hiding:

Try to localize future change
Hide system details likely to change independently
Separate parts that are likely to have a different rate of change

In interfaces expose only assumptions unlikely to change

m \WWhy is information hiding a good idea?
which types of coupling are prevented/reduced?

MRV Chaudron TU /e ORVERSITY or 8%) UNIVERSITY OF GOTHENBURG 20

Sheet 30

Software Architecture

Information Hiding

Information Hiding is a means of avoiding dependencies.

m Minimize the information interfaces disclose about
the inner-workings of components
Balance with genericity

m Information hiding aims at avoiding dependencies on
implementation details

m Corollary:
Components typically encapsulate volatile technologies

TU/e &% CHALMERS

TECHNOLOGY
UNIVERSITY OF TECHNOLOGY

5 UNIVERSITY OF GOTHENBURG

31

David Parnas

m We propose that one begins with a list of:

difficult design decisions, or
design decisions which are likely to change
Each module is then designed to hide such a decision

from the other modules. David Parnas

m Goal: ISOLATE CHANGE 1941-...
m Means: Information hiding, minimizing dependencies

= = | advise students to pay more attention to the
2| == e e fundamental ideas rather than the latest technology.

The technology will be out-of-date before they
graduate. Fundamental ideas never get out of date.

UNIVERSITY OF GOTHENBURG 32

wvomen TUfe#55, CHALMERS ()

CHNOLO
Sheet 32 UNIVERSITY OF TECHNOLOGY

Design Principle: Information Hiding

what is inside, must stay inside.

MRV Chaudron
Sheet 33

33

WHAT versus HOW

m WHAT': think Responsibility, Declarative
m Mechanisms are about ‘'HOW’

*iﬁb F‘l WHAT: Build a house

AR

.) 49 2

== ‘H“" W

HOW: stone, sticks, straw

MRV Chaudron TU/e RS or CHALMERS UNIVERSITY OF GOTHENBURG
UNIVERSITY OF TECHNOLOGY R

Sheet3a % W¥j R TECHNOLOGY y

Example: Change implementation

Public Interface

Build_House() Sort() Cﬁ Store()
! .
Builder Sorter Database

straw Bubble

sort
Quick DB Cloud
sort

stone

)

Supports evolution and platform-independence

5 UNIVERSITY OF GOTHENBURG

35

Software Architecture

Example 1

m |[PrimeEncrypt(m,p)
m [CeasarEncrypt(m,s)
m |[Encrypt(m)

Information hiding guides the design of the interface

The interface should aim to be:

B generic
We can do this by stating ‘what’, but not ‘how’

We can do this by avoiding unnecessary parameters in the calling
of the component

5 UNIVERSITY OF GOTHENBURG

EEEEEEEEE
MRV Chaudron I U @ unversyor
rrrrrrrrrr

Sheet 36 36

Example 2

m Steer a vehicle

m [nterface
Option 1: Isteer = { TurnLeft, TurnRight }

Option 2: Isteer = { PressLeft, PressRight }
Option 3: Isteer = { Left, Right }

MRV Chaudron TU /e ORVERSITY or 8%) UNIVERSITY OF GOTHENBURG .

Sheet 37

Alternative Interfaces

m Traffic Light

What should the interface of the traffic light
look like?

Which secrets to hide? %
which abstraction to expose via the interface?

Take 3 minutes to design your own interface

UNIVERSITY OF GOTHENBURG

T EEEEEEEEE .,g"“"'%"
U e IIIIIIIIIIII E)
OOOOOOOOOO &) ¢: 3 8

UNIVERSITY OF TECHNOLOGY e

Traffic Light - Alternative Interfaces

Traffic Lightl Traffic Light2 Traffic Light3
e Reset() ¢ SetRed(On/Off):Exc e Halt()

— Postcondition: RED e SetOrange(On/Off):Exc e Warn()
e Run() e SetGreen(On/Off):Exc e Drive()

— Red—>Green—> e Blink/Disco()

Orange—> Red
e SetIntervalDuration(t)

e GetState(...)

‘Secrets’ ‘Secrets’ ‘Secrets’
— Actual colours — Initial state — Actual colours
— Initial state — Order of states — Initial state
— Order of lights — Order of states

(easy to change)

— ‘On’ is Mutual
exclusive Higher Level of
Synchronization/Timing? (lights not exclusive) abstraction

More Generic

Chest of drawers by Droog Design

Build from ‘modules’
But no stable architecture

Many dependencies from all
drawers on all other drawers

TU/e &% CHALMERS

OOOOOOOOOO
UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Simplicity

Simplicity is a great virtue but it requires hard work to
achieve it and education to appreciate it.
And to make matters worse:

Complexity sells better.

Source: Edsger W. Dijkstra

Turing Award (1972)

Sheet 48 48

CHALMERS

UNIVERSITY OF TECHNOLOGY

{8)) UNIVERSITY OF GOTHENBURG

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD896.html

Edsger Wybe Dijkstra

=

m 1930-2002

m Ph.D. in Physics
Leiden University, Netherlands

m Contributions to:

Algorithms, Concurrency, Distributed Systems,
Program Correctness, Discipline of Design:

Structured Programming (Go To considered Harmful)
Separation of Concerns
m Turing Award (1972)

0.-J. Dahl, E. W. Dijkstra, C. A. R. Hoare, Structured Programming, Academic Press, London, 1972

49

CHALMERS () UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Software Architecture

Generic Design Principle: Separation of Concerns

m Decomposition / Divide and Conquer Edsger W.
Dijkstra

m Issues that are not related should be handled in separate parts

m Single responsibility:
Assign a single responsibility to a single component/class
Typical responsibilities: to know something, to do something
E.g. to know an algorithm (worker)
to coordinate workers (coordination)
to manage student-records (information holder)

CI IAL M E Rs TS
MRV Chaudron .
9."' '¢

Sheet 50 UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG 5

Software Architecture

Example Separation of Concern Principle

Telecom Domain:

handle &
Telecom protocol: encode/
= decode1 ; handle1 ; decode2 ; decode
handle2 ; decode3
Separate the encoding/decoding of a nandle
message from the handling of a message:
decode1 ; decode2 ; decode3 ; encode/
handle1 ; handle2 decode

MRV Chaudron CHAL M E Rs

Sheet 51 UNIVERSITY OF TECHNOLOGY

5 UNIVERSITY OF GOTHENBURG

Software Architecture

Separation of Concerns in Interface Design

m Separate What from How

m The interface of a component exposes what it do, but
not how it does this.

m The ‘how’ is the information-hiding ‘secret’
- Details of the data representation
- Details of the algorithm

CHALMERS

e 2

MRV Chaudron 2‘_)5,
q'll‘ 52

Sheet 52 UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Design Principles

m Keep things that belong together at a single
place

e.g. in OO: data and
the operations on that data

m Don’t replicate
functionality, storage of data

(8%) UNIVERSITY OF GOTHENBURG

MRV Chaudron TU/e E'N".\'?E'r?sfﬁ?op CHAL M E Rs
UNIVERSITY OF TECHNOLOGY

Sheets4 8 ¥ R\e TECHNOLOGY

54

Summary

Information Hiding

m Design Principles

Minimize Coupling

Know them, Apply them Divide and Conquer

Recognize violations Separation of Concerns

Keep it Simple

MRV Chauron TU/e 2% CHALMERS {9}

TECHNOLOGY
Sheet 64 UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG 64

Questions?

EINDHOVEN
MRV Chaudron I U UNIVERSITY OF
TECHNOLOGY

Sheet 65

CHALMERS

UNIVERSITY OF TECHNOLOGY

7507
ST,
TN
~ \7)
= o]
)\ %)
3 75/
0

UNIVERSITY OF GOTHENBURG

65

Software Architecture

m Explain how layering relates to separation of
concerns?

UNIVERSITY OF GOTHENBURG

EEEEEEEEE .g"“"'%"
MRV Chaudron I U @ Unversmyor)
UNIVERSITY OF TECHNOLOGY ""':n %

Sheetég6 = ® W¥J R TECHNOLOGY “

Summary of key architecting practices

m Understand the drivers for the project (business, politics)

m Get stakeholder involvement early and often

m Understand the requirements incl. quality properties
SMART & prioritized

m Develop iteratively and incrementally

m Describe architecture using multiple views

abstract, but precise, design decisions & rationale
m Design for change (modularity, low coupling, inform. hiding)
m Analyze in an early stage (use maths! and scenarios)
m Simplify, simplify, simplify
m Regularly update planning and risk analysis

m Monitor that architecture is implemented

m Get good people, make them happy set them loose —

Online lecture 14 Oct 2020

o
From Truong Ho Quang to Everyone
: = i L/] @Clementine: you can also take a look
Truong Ho Quang) = il e=savd at Lecture 6, slides 79 - 81 - That's an
I 7R O I= example of layers in the software

W= % ; system in a truck.

Michel Chaudron "~ = % Shonaigh Douglas

From Clementine Jens... to Everyone
@Truong: That's great, | think | missed

them. Thank you so much! :)

Clementine Jens... Linus lvarsson Alexander

From Me to Everyone
questions anyone? Everything clear?

From Andreea Sulug... to Everyone:
until now, yeah

From Me to Andreea Sulug...

Andreea Sulugiu Christian O'Neill thanks

From Shonaigh Douglas to Everyone:
The third one

To: Everyone v

Ruthger Johan... simon engstrom Type message here...

(/]

o e A

14:27
o
14/10/2020

UNIVERSITY OF GOTHENBURG

MRV Chaudron TU/e UNIVERSITY OF CHAL M E RS

TECHNOLOGY
Sheet 68 UNIVERSITY OF TECHNOLOGY

68

