
Dr. Sam Jobara

Fundamentals of Software Architecture
DIT344

Sam Jobara Ph.D.
jobara@chalmers.se

Software Engineering Division
Chalmers | GU

mailto:jobara@chalmers.se

Dr. Sam Jobara

System Requirement

What is a requirement?

Definition:
a requirement is a statement (Scope of Work SOW) describing:
1. an aspect of what the system functions must do,
2. a constraint on the system’s development
3. adequately solving the stakeholders’ problem

Dr. Sam Jobara

System Requirement

The functional requirements: WHAT as follows:

• What I/O the system should expect
• What data structure and medium to use.
• What computations the system should perform
• What is the User and system admin functions

Non-Functional Requirement

The attributes “HOW”, to be covered later

Dr. Sam Jobara

System Requirement

Constraints
Constraints a set restrictions on how the user requirements are to be implemented.

• Interface APIs Requirements.

• Communication (protocols) Interfaces.

• Hardware Interfaces.

• Software compatibility & Interfaces.

• User Interfaces & experience

• Language, code, and reusability

• Testing and maintenance

Dr. Sam Jobara

Agile approaches to requirements

You do not develop large requirements documents. Instead, two approaches are
employed: user stories and test case.

User story: is similar to a use case, but has a looser structure; it describes some
proposed software feature from the perspective of how the user will use it and
should be limited to about three sentences. Development proceeds by choosing a
very small number of user stories to implement in the next iteration. Ideally each
iteration will take only a few days to develop.

Test case: The first stage of development in many agile approaches is to first
develop test cases. The series of test cases becomes the detailed specification of
how a user story should be implemented.

System Requirement

Dr. Sam Jobara

Use Case (how actors will use the system)

• Determine the types of users or systems that will use the system.

• It is a typical sequence of actions that an actor performs in order to complete a given task.

• An actor is a role that a user or some other system plays when interacting with system.

• Most of the actors will be users; a given user may be considered as several different actors

• A use case should include only actions in which the actor interacts with the system.

Use Cases Brief

Dr. Sam Jobara

How to describe a single use case
1. Name. Give a short, descriptive name to the use case.

2. Actors. List the actor or actors who can perform this use case.

3. Goals. Explain what the actor or actors are trying to achieve.

4. Preconditions. Describe the state of the system before the use case occurs.

5. Summary. Summarize what occurs as the actor or actors perform the use case.

6. Related use cases . List use cases that may be generalizations, specializations, extensions
or inclusions of this one.

7. Steps . Describe each step of the use case using a two-column format.

8. Postconditions . What state is the system in following the completion of the use case.

Use Cases Brief

Dr. Sam Jobara

Use case diagrams

Use case diagrams are UML’s notation for showing the relationships among a set of
use cases and actors.

They help a software engineer to convey a high-level picture of the functionality of a
system.

There are two main symbols in use case diagrams: an actor is shown as a stick
person and a use case is shown as an ellipse. Lines indicate which actors perform
which use cases.

Use Cases Brief

Dr. Sam Jobara

The use case modeler can use extensions , generalizations or inclusions to
represent different types of relationships among use cases.

Extensions are used to make optional interactions or handle exceptional cases.

Generalizations use triangle symbol: several similar use cases can be shown
along with a common generalized use case. Same like parent and child.

Inclusions allow you to express a part of a use case so that you can capture
commonality between several different use cases.

Use Cases Brief

Dr. Sam Jobara

Scenarios

A scenario is an instance of a use case

It can help to clarify the associated use case.

It is also often simply a use case instance .

Example: Describe a concrete scenario corresponding to the ‘Exit car park,
paying cash’ use case from Example 4.11.

Use Cases Brief

Dr. Sam Jobara

Quality Attributes

Systems are frequently redesigned not because they are functionally deficient.

Stakeholders decide value and priorities of functions and attribute.

It is the mapping of a system’s functionality onto software architecture that
determines the architecture’s quality attributes.

A quality requirement is a specification of the acceptable quality attribute.

A quality attribute is a measurable or testable property of a system.

Quality attributes should be communicated based on KPIs that are
agreeable across all stakeholders.

Dr. Sam Jobara

ISO/IEC 25010 Quality Model*

The quality of a system is the degree to which the system satisfies the stated and
implied needs of its various stakeholders.

The product quality model defined in ISO/IEC 25010 comprises the eight quality
characteristics shown in the following figure:

*https://iso25000.com/index.php/en/iso-25000-standards/iso-25010#:~:text=ISO%2FIEC%2025010&text=
The%20quality%20model%20determines%20which,stakeholders%2C%20and%20thus%20provides%20value.

Quality Attributes

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

Dr. Sam Jobara

Availability

Availability is the percentage of time when system it is operational.

Mean Time Between Failures (MTBF)

Number of hours that pass before a component fails

E.g. 2 failures per million hours: MTBF = 106 / 2 = 0,5 * 106 hr

Quality Attributes

Calculate MTTR by dividing
the total time spent on
unplanned maintenance
by the number of times an
asset has failed

Dr. Sam Jobara

Evaluating Quality Attributes

Quality attributes can be evaluated through:

• Scenario-based evaluation: eg. scenarios for assessing maintainability

• Simulation: a part of the architecture is implemented and executed in the actual
system context.

• Test Environment: Controlled nonproduction testing with similar environment

• Mathematical modeling: checking for potential deadlocks, and performance..

• Prototype or emulated concept design: Build a concept system, MVP (suitable
for large systems)

Quality Attributes

Dr. Sam Jobara

Evaluating Quality Attributes

Overlapping concerns
Performance: due to DDS attack or poor design
Security: due to poor layering or internal compromise

Untestable Concern
The quality attribute should be tested in all the circumstances. (stress condition)

Gathering Quality Attribute Information
Quality requirements and design constraints are enabled by two main techniques:
• Quality Attribute Scenario (QAS) and
• Quality Attribute Workshop (QAW).

Quality Attributes

Dr. Sam Jobara

We specify quality attribute requirements, we capture them formally as six parts of QAS:

1. Source of stimulus. (a human, or any other actuator) that generated the stimulus.

2. Stimulus. A condition that requires a response. For different quality it means something specific.

3. Environment. The system may be in an overload condition, test, or in normal operation.

4. Artifact. Some artifact is stimulated. This may be a collection or whole system, or pieces of it.

5. Response. The response is the activity undertaken as the result of the arrival of the stimulus.

6. Response measure. A response should be measurable so that the requirement can be tested.

Parts of a quality attribute scenario
(ex. web portal responsiveness).

QA Scenarios

Dr. Sam Jobara

There are two types of QAS: general and concrete:
- A General scenario do not belong to any system.
- A Concrete scenario belongs to a particular system under specific conditions.

QA Scenarios

Dr. Sam Jobara

We develop first the general quality attribute scenarios, for a specific attribute such
as availability.

Then we translate them to the specific requirement of the system under development
to get concrete scenarios, by specifying the source and the stimulus.

A general scenario for availability

QA Scenarios

Dr. Sam Jobara

Architectural Styles
Part III

Dr. Sam Jobara

20

Architectural style types

Monolithic vs. Distributed Architectures

Architecture styles are two types: monolithic (single deployment unit of all code) and

distributed (multiple deployment units connected through access protocols).

Monolithic

• Layered architecture (n-tier or client-server architecture)

• Pipeline architecture

• Microkernel architecture

Distributed

• Peer-to-Peer architecture

• Microservices architecture

• Event-driven architecture

• Service-oriented architecture

Dr. Sam Jobara

21

Architectural style types

Distributed architectures all share a common set of challenges and issues not found
in the monolithic architecture styles Monolithic

1- The network is not reliable

2- Latency is not zero (microsecond vs. millisecond)

3- Bandwidth is not infinite

4- The network is not secure

5- The network topology always changes (unpredicted performance)

6- There are many network administrators, not just one

7- The network is not homogeneous or a pure style

Dr. Sam Jobara

Synch. vs. Asynch. & Decoupling

22

Synchronous calls between two distributed services have the caller wait for the
response from the callee (real-time chat) .

Asynchronous calls allow fire-and-forget (or choose when to respond like sensors)
semantics in event-driven architectures, allowing two different services to differ in
operational architecture

What does Decoupled Architecture mean?
It is a type of computing architecture that enables computing components or layers to
execute independently while still interfacing with each other.

Decoupled architecture is also used in software development to develop, execute, test
and debug application modules independently. Cloud computing architecture
implements decoupled architecture where the vendor and consumer independently
operate and manage their resources.

Decoupled architecture helps achieve higher computing performance, deployment,
reusability, and testability by isolating and executing individual components
independently and in parallel.

Dr. Sam Jobara

P2P Architecture Style

• Peer-to-peer (P2P) is a distributed computing architecture
• Divides tasks or workloads across several computer systems (of nodes or peer).

• P2P networks can be used to share any kind of digital assets, such as data, or
smart contracts.

• The structure of a pure P2P network is sustained by its users, who can provide
governance and use resources.

• A single peer can be an

independent client-server

Servlet structure.

23

Dr. Sam Jobara

How P2P is different?

Decentralized Systems:
Every node makes its own decision.
The final behavior of the system is
the aggregate of the decisions of
the individual nodes. Note that
there is no single entity that
receives and responds to the
request. eg. blockchain,

💪 Fault tolerance:
•Low: Centralized systems
•Moderate: Decentralized systems
•High: Distributed systems

🔧Maintenance:
•Low: Centralized systems
•Moderate: Decentralized systems
•High: Distributed systems

🚀 Scalability:
•Low: Centralized systems
•Moderate: Decentralized systems
•High: Distributed systems

Distributed Systems:
Means that the processing is
shared across multiple nodes,
but the decisions may still be
centralized and use complete
system knowledge. eg. AWS,
Cloud Instances, Google,
Facebook, Netflix, etc.

Dr. Sam Jobara

P2P Implementations

• Windows 10 updates are delivered both from Microsoft's servers and
through P2P (bandwidth sharing)

• The decentralized framework of P2P systems makes them highly
available and resistant to cyber attacks and also more scalable.

• The more users join it, the more resilient and scalable it gets. Bigger P2P
networks achieve high levels of security because there is no single point
of failure.

• The peer-to-peer architecture popular examples with varying use cases
include:
• BitTorrent (file-sharing)

• Tor* (anonymous communication software),

• Many more decentralized apps (See Blockchain lecture)

*The Onion routing is implemented by encryption in the application layer of a communication protocol stack, nested
like the layers of an onion. Tor encrypts the data, including the next node destination IP address, multiple times and
sends it through a virtual circuit comprising successive, random-selection Tor relays. 25

Dr. Sam Jobara

P2P Architectural styles

Pure peer-to-peer architecture
• Applications will not use a central server at all (except possibly for logging

onto the network).

• Queries for files can be flooded through the network or more intelligent
mechanisms can be used.

• Have become quite unpopular because they generate a lot of overhead
traffic to keep the network up and running.

• Some adopters still use this model because it offers an unprecedented
anonymity, not found in any other architecture.

26

Dr. Sam Jobara

P2P Architectural styles

Mediated architecture

Uses a client-server setup for its control operations. All peers log on to a
central server that manages the file and user databases.

Searches for a file are sent to the server and, if found, the file can be
downloaded directly from a peer.

In most cases the server will have a database of files shared by peers.
Afterwards the server functions as a proxy that distributes the searches
towards the peers.

27

Dr. Sam Jobara

P2P Architectural styles

Hybrid architectures

Hybrid architectures introduce two layers in the control plane:

one of “normal” peers connecting to ultrapeers in a client-server fashion
and one of ultrapeers connected with each other via a pure peer-to-peer
network.

Both pure and hybrid architectures build an overlay network over the
existing IP network.

28

Dr. Sam Jobara

P2P Architectural styles

29

P2P style Advantages P2P style Disadvantages

Resilient, Highly available No central governance

Cost effective, less overhead Risk of data integrity

Less complex, easy to deploy Security exposure

Allow for bandwidth sharing Sensitive to network performance

Flexible and faster enquiries Less practical without central log

Flexible hybrid models May force you to upload files

Enable anonymity May include illegal content

Not suitable for small systemsSupport Decoupling

P2P implementation considerations

Dr. Sam Jobara

30

Microservices Style
Extremely popular architecture style that has gained significant momentum in
recent years due to mobile and cloud computing.

According to a recent
O’Reilly radar
survey on the growth
of cloud computing,
one of the more
interesting metrics
stated that 52 percent
of the 1,283
responses say they
use microservices
concepts, tools, or
methods for software
development.

https://www.oreilly.com/radar/cloud-adoption-in-2020/

Dr. Sam Jobara

Microservices Style-Features

• Microservices form a distributed architecture: each service runs in its own process,
which originally implied a physical computer but quickly evolved to virtual machines and
containers.

• Decoupling the services to this degree allows for a simple solution to a common
problem in architectures that heavily feature multitenant infrastructure for hosting
applications. Now, however, with cloud resources and container technology, teams can
reap the benefits of extreme decoupling, both at the domain and operational level.

• Granularity correct granularity for services in microservices, and often make the
mistake of making their services too small, which requires them to build communication
links back between the services to do useful work. The term “microservice” is a label, not
a description. Designing the right level of service component granularity is one of the
biggest challenges within a microservices architecture.

31

Dr. Sam Jobara

Microservices Style-Features

Performance is negative side effect of the distributed microservices. Network calls
take much longer than method calls, and security verification at every endpoint adds
additional processing time, requiring architects to think carefully about the implications of
granularity when designing the system.

Microservices is a distributed architecture. Architects advise against the use of
transactions across service boundaries, making determining the granularity of services the
key to success in this architecture.

Bounded Context. The driving philosophy of microservices is the notion of bounded
context: each service models a domain or workflow. Thus, each service includes everything
necessary to operate within the application, including classes, other subcomponents, and
database schemas.

Microservices adopt a domain-partitioned architecture to the extreme.
Each service is meant to represent a domain or subdomain; it is domain-driven design.

32

Dr. Sam Jobara

Microservices Style-Interface
The User Interface is critical to the performance of Microservice design.
There are 3 different designs to deal with the APIs. Mainly this is suitable for remote
web application environment.

33

Traditional web-based or fat-client business application

Web application remotely accesses separately deployed service.

lightweight centralized message broker to access remote service components

Rest: Remote access protocol

Dr. Sam Jobara

Microservices Style-Sidecar

When a common operational concerns appear within each service as a separate
component, the sidecar component can handle all the operational concerns that
teams benefit from coupling together. Thus, when it comes time to upgrade the
monitoring tool, the shared infrastructure team can update the sidecar, and each
microservices receives that new functionality. The common sidecar components
connect to form a consistent operational interface across all microservices

34

Dr. Sam Jobara

Microservices Style-Communication

Choreography: utilizes the same communication style as a broker event-driven
architecture. In other words, no central coordinator exists in this architecture, respecting
the bounded context philosophy. Thus, architects find it natural to implement decoupled
events between services.

Orchestration the developers create a service whose sole responsibility is
coordinating the call to get all information for a particular customer. The user calls
the ReportCustomerInformation mediator (light weight message broker). 35

Choreography
Orchestration

Dr. Sam Jobara

Microservices Style

36

Architecture Characteristics

Offers high support for modern engineering practices such as automated
deployment, and testability.

Microservices couldn’t exist without the DevOps revolution and the relentless
march toward automating operational concerns.

Fault tolerance and reliability are impacted when too much interservice communication
is used. independent, single-purpose services generally lead to high fault tolerance.

High scalability, elasticity, and evolutionary systems utilized this style to great success.

The architecture relies heavily on automation and intelligent integration with
operations, developers can also build elasticity support into the architecture.

Figure 17-13. Ratings for microservices

Dr. Sam Jobara

Microservices Style

37

MS style Advantages MS style Disadvantages

High scalability, & agility Overall high cost

High reliability Performance bottlenecks

High deployability/testability Can get complex

High Fault tolerance High overhead for security

Very high modularity Hybrid tactics needed

Automation & Integration

Microservices style implementation considerations

Dr. Sam Jobara

Event-Driven Architecture Style

• The event-driven architecture style is a popular distributed asynchronous
architecture style used to produce highly scalable and high-performance
applications.

• It is also highly adaptable and can be used for small applications and as well as
large, complex ones.

• Event-driven architecture is made up of decoupled event processing
components that asynchronously receive and process events.

• It can be used as a standalone architecture style or embedded within other
architecture styles (such as an event-driven microservices architecture).

• Most applications follow what is called a request-based model as shown:

38

Dr. Sam Jobara

Event-Driven Architecture Style

Topology
There are two primary topologies within event-driven architecture:

Mediator topology: is commonly used when you require control over the workflow
of an event process, we shall discuss this later.

Broker topology: is used when you require a high degree of responsiveness and
dynamic control over the processing of an event. There is no central event
mediator. The message flow is distributed across the event processor components
in a chain-like broadcasting fashion through a lightweight message broker.

39

The event processor that accepted
the initiating event performs a specific
task associated with the processing
of that event, then asynchronously
advertises what it did to the rest of
the system by creating what is called
a processing event. This processing
event is then asynchronously sent to
the event broker for further
processing, if needed.

Broker topology

Dr. Sam Jobara

Event-Driven Architecture Style

40

Broker topology
A good practice within the broker topology for each event processor to advertise what
it did to the rest of the system, regardless of whether or not any other event processor
cares about what that action was. This practice provides architectural extensibility if
additional functionality is required for the processing of that event.

relay race & baton

Dr. Sam Jobara

Event-Driven Architecture Style

41

Broker topology

To illustrate how the broker topology works, consider the processing flow in a typical
retail order system as it is placed for an item.

In this example, the OrderPlacement event

processor receives the initiating event

(PlaceOrder), inserts the order in a

database table, and returns an order

ID to the customer. It then advertises

to the rest of the system that it created

an order through an order-created

processing event.

Dr. Sam Jobara

Event-Driven Architecture Style

42

Broker topology

While performance, responsiveness, and scalability are all great benefits of the broker
topology, there are also some negatives things:

• There is no control over the overall workflow associated with the initiating event

• Error handling is also a big challenge with the broker topology without mediator.

• The business process is unable to move without automated or manual intervention.

• All other processes are moving along without regard for the error. For example,
the Inventory event processor still decrements the inventory, and all other event
processors react as though everything is fine.

Dr. Sam Jobara

Event-Driven Architecture Style

43

Mediator Topology

The mediator topology of event-driven architecture addresses some of the
shortcomings of the broker topology.

Central to this topology is an event mediator, which manages and controls the workflow
for initiating events that require the coordination of multiple event processors.

The architecture components that make up the mediator topology are an initiating
event, an event queue, an event mediator, event channels, and event processors.

To reduces SPOF and
also increases overall
throughput and
performance, Event
Mediator are
redundant.

Dr. Sam Jobara

Event-Driven Architecture Style

44

Mediator delegation model

We recommend classifying events as simple, hard, or complex and having every event
always go through a simple mediator (such as Apache Camel or Mule). The simple
mediator can then interrogate the classification of the event, and based on that
classification, handle the event itself or forward it to another,

more complex, event mediator.

In this manner, all types of events

can be effectively processed by

the type of mediator needed for

that event. This mediator delegation

model is shown here.

Dr. Sam Jobara

Event-Driven Architecture Style

45

MS style Advantages MS style Disadvantages

High scalability Testability challenge

High performance Can get complex

High Fault tolerance High overhead for security

Very high modularity Hybrid tactics needed

Highly evolutionary Complex workflow

Event-Driven style implementation considerations

Dr. Sam Jobara

Choosing a Style

46

Decision Criteria
Architects should go into the design decision with the following things:

The domain (analysis & implementation)

Domain affects operational architecture attributes. Architects must have at least a good
general understanding of the major aspects of the domain features under design.

Attributes that impact Architecture

Architects must discover the architecture attributes needed to support the domain and
other external factors.

Data architecture

Architects and DBAs must collaborate on database, schema, and other data-related
design concerns.

Dr. Sam Jobara

Choosing a Style

47

Decision Criteria

Organizational business factors

Many external factors may influence design. For example, the cost of a particular cloud
vendor, and TTM may prevent the ideal design.

Knowledge of process, teams, and operational concerns

Many specific project factors influence an architect’s design, such as the software
development process, interaction (or lack of) with operations, and the QA process.

For instance, an insurance company application consisting of multipage forms, each of
which is based on the context of previous pages, would be difficult to model in
microservices.

Dr. Sam Jobara

Choosing a Style

48

Decision Criteria
Monolith versus distributed

A single set implies that a monolith is suitable, whereas different architecture
characteristics imply a distributed architecture.

Where should data live?

If the architecture is monolithic, architects commonly assume a single relational
databases or a few of them. In a distributed architecture, the architect must decide
which services should persist data, which also implies thinking about how data must
flow throughout the architecture to build workflows.

Dr. Sam Jobara

Choose an Architectural Style

49

The 5-Keys process

1- Key Use Cases or Scenarios (identify main scenarios)

2- Key Stakeholders requirement (must have requirements)

3- Key Attributes (must have attributes)

4- Key Style drivers (identify candidate styles)

5- Key Advantages/Dis-advantages (of candidate style)

If step 5 revealed high-impact disadvantages, then repeat process.

Dr. Sam Jobara

Blockchain Terminology
Types of Nodes

Blockchain nodes are not the same, Validators are able to validate, and issue new blocks
(miners) with trustless consensus, while other basic nodes (users) who can initiate
transactions.

Dr. Sam Jobara

Blockchain Terminology
Properties
The following table provides a detailed comparison among these three blockchain systems:

Dr. Sam Jobara

Blockchain Terminology
Blocks Structure
Each blockchain block consists of certain data, the hash of the block, the hash from the
previous block, and some Transactions.

The Merkle root is the hash of all
the hashes of all the transactions
in the block.

Dr. Sam Jobara

Blockchain Architecture
What is the architecture behind the blockchain?

Blockchain is not just a distributed database; it includes advanced software and security
techniques to create a network of nodes (peers) that are always in sync.

Each node validates and verifies transactions and blocks redundantly, in order to reach
consensus, and it provides a platform to run decentralized applications.

To achieve this, the blockchain or digital ledger technology is built upon a layered
architecture.

In most cases, this contains four or five layers, namely the data layer, network layer,
consensus layer, incentive layer, and application layer.

Dr. Sam Jobara

Blockchain Architecture
The data layer

At the bottom layer of the stack is the data layer, which deals with the data structure and
the physical storage of data in the blockchain.
The diagram below shows the common capabilities that are part of this layer:

The capabilities of the data layer are:
This layer represent most data related artifacts, but not all. Blockchains are all about data
and processing of data in terms of IO and deliverables.

Dr. Sam Jobara

Blockchain Architecture
The data layer

The data model can be very simple and contain just one asset, such as a cryptocurrency
like Bitcoin, or a more complex model with multiple assets that can even have
relationships between them.

An asset(s) can be created or referenced in a transaction, which in essence transfers the
asset(s) between two parties who wish to exchange the data, for example, processing a
payment between two parties, placing an order on an online store, registering an
automobile, tracking diamonds around the world, or sharing your digital identity.

The chain structure is also related to transaction data. It describes the data structure in
which individual transactions are combined into a block and how these blocks are chained
to each other.

Dr. Sam Jobara

Blockchain Architecture
The network layer

The second layer up on the stack, just above the data layer, is the network layer. This layer
deals with the propagation or broadcast of transactions and block data among available
peers in the network, the reliability of the network, and local validation of data.

The network layer of a blockchain is similar to BitTorrent, and it is also managed by a peer-
to-peer network, which is an architecture for distributing data in a network. The following
diagram shows the common capabilities that are part of this layer:

The capabilities of the network nodes varies in attributes based on public vs. private,
permissioned or permissionless type.

Dr. Sam Jobara

Blockchain Architecture
The consensus layer

This layer deals with the enforcement of network rules that describe what nodes within the
network should do to reach consensus about the broadcasted transactions. It also deals
with the generation and verification of blocks.

The following diagram shows the common capabilities that are part of this layer:

This layer describes the rules for reaching consensus. The rules that need to be enforced
depend on the consensus mechanism that is chosen when the network is initially set up.

Dr. Sam Jobara

Blockchain Architecture
Sophisticated consensus mechanisms

The Proof of Work (PoW) mechanism is used for consensus.
PoW used in the Bitcoin white paper as it allows for trustless and distributed consensus.
PoW requires participating nodes to perform an intensive form of calculations (mining)

The mining of transactions is necessary for two reasons:
• Verifying the legitimacy of transactions and record it permanently
• Creating new digital currency to reward first finished miner

Verified blocks of transactions are permanently added to the public blockchain ledger, and
with every new block, the puzzle gets a bit more difficult.
This requires miners to work more efficiently over time, this process consumes lots of power.

Dr. Sam Jobara

Blockchain Architecture
The incentive layer

This 4th layer deals with the distribution of rewards (for mining) that are earned by nodes in
the network for the work they do to reach consensus. Whether this layer is implemented or
not depends on the consensus mechanism in use.

The following diagram shows the common capabilities that are part of this layer:

It includes capabilities that describe what kinds of incentives are given by the network, when
and how incentives can be earned by nodes, and the minimum amount of transaction fees
(gas) needed to perform actions on the blockchain.

Dr. Sam Jobara

Blockchain Architecture
The application layer

The fifth (top) layer of the stack is called the application layer. This layer deals with providing
the interfaces to access, program, and use the blockchain. The following diagram shows the
common capabilities that are part of this layer:

The capabilities of this layer, including the programmable smart contracts and APIs.

The capabilities describe how the digital ledger is implemented and exposed to the world,
how smart contracts can be built and run on the blockchain, and how third-party
applications can interact with the digital ledger and smart contracts.

Dr. Sam Jobara

Blockchain Functions
Distributed ledgers

• A DL is a database that is synchronized and accessible across different sites and
geographies by multiple P2P participants.

• The need for a central authority to keep a check against manipulation is eliminated by
the use of a distributed ledger.

• A DL can be described as a ledger of any transactions or contracts maintained in
decentralized form across different locations and nodes.

• Cyber attacks and financial fraud are reduced by the use of distributed ledgers.

• All the information on the ledger is securely and accurately stored using
cryptography and can be accessed using keys and cryptographic signatures.

• Once the information is stored, it becomes an immutable database, which the rules of
the network govern.

Dr. Sam Jobara

Blockchain Functions
Hyperledger Fabric

Hyperledger Fabric is an open-source community enterprise-grade, distributed ledger
platform that offers modularity and versatility for a broad set of industry use cases. The
modular architecture for Hyperledger Fabric accommodates the diversity of enterprise use
cases through plug and play components, such as consensus, privacy and membership
services.

The key features of Hyperledger Fabric

• Permissioned architecture
• Highly modular
• Pluggable consensus
• Open smart contract
• Low latency of finality/confirmation
• Flexible approach to data privacy

• Multi-language smart contract support:

Solidity, Golang, Java, Javascript

• Designed for continuous operations

• Governance and versioning of smart contracts

• Flexible endorsement model for achieving
consensus across required organizations

Dr. Sam Jobara

Blockchain Functions
Smart contract

Smart contracts can act as a complement, or substitute, for legal agreements.
They are computer code that directly control some aspects of condition-based transactions.
A smart contract also capable of automatically facilitating, executing, and enforcing the
negotiation or performance of an
agreement.
Smart contracts are immutable
and are enforced by the system
itself.

Dr. Sam Jobara

Blockchain Functions
Decentralized applications

A capability that is still a very new concept is a decentralized application.

A decentralized application (dApp) is a blockchain-enabled website that runs independently
on every node of the peer-to-peer network, rather than on a single serve.

They are comprised of both a frontend (web) application and a backend application, where
the smart contract (backend application) allows it to connect to the blockchain.

For example, a decentralized application includes the data model it uses (participants,
assets, and transactions), an authorization and permissions model, smart contracts
(backend), and a frontend web application.

Dr. Sam Jobara

Industrial Case

Blockchain-Based Smart Contract
E-Voting for National Elections*

Objective

A highly secured E-voting is one of the valid use cases of blockchain technology. This
research involves elicitation of the e-voting requirements, formulation of a blockchain e-
voting architecture, an architecture-based evaluation, the analysis of the results, and a
report of the findings.

* Architecture-Centric Evaluation of Blockchain-Based Smart Contract E-Voting for National Elections
Olawande Daramola, and Darren Thebus, Informatics, May 2020
Department of Information Technology, Cape Peninsula University of Technology, Cape Town

Dr. Sam Jobara

Smart Contract E-Voting Requirements

The following are the system key stakeholders requirements:

1- Trust: All stakeholders must have confidence and trust the SCE outcome

2- Transparency: System supports the casting of votes and tally of votes by all
stakeholders, as well as allow them to verify this easily.

3- Verifiability: The system must enable voters to check that their votes were cast and
recorded as valid votes.

4- Auditability: Support any process that may necessitate the rechecking

and recounting votes in the event of electoral disputes.

5- Availability: Backup system ensuring almost zero-down time.

6- Performance: Ensure that all operations are handled speedily and efficiently.

the identity of voters, and the choices made during voting.

7- Socio-political factors: The e-voting system should not be vulnerable to socio-
political manipulations that can compromise the integrity of the voting process.

Dr. Sam Jobara

BANES Architecture
Based on the identified requirements, a Blockchain-based Architecture for National
E-voting system (BANES) a Layered Architecture was proposed, as shown below in Fig.1

Blockchain
style within
Layered
Architecture
Style

Dr. Sam Jobara

BANES Architecture
Client Layer

This layer contains the various electronic devices and systems with which users interact with the
blockchain e-voting system. These devices are the peer nodes of the e-voting blockchain that
interact via smart contracts, referred to as "chaincode" in the Hyperledger Fabric.

(i) E-Voting nodes: enable voters authentication and casting of votes, and to ensure that all
blockchain transactions are recorded.

(ii) Administrator nodes: used to configure blockchain network channels, assign roles to the nodes
of the blockchain, and grant permissions.

(iii) Public nodes: enable public view-only to transactions of the e-voting blockchain.

(iv) Vote validation: responsible for vote validation. They are also used to ensure the
authenticity of transactions that are included in a block.

(v) Committing nodes: These are the nodes that validate and commit new blocks to the blockchain.

Dr. Sam Jobara

BANES Architecture

Application Service Layer
Consists of a set of services that are available in the e-voting system. The level of access
control and the defined permissions level determines the type of services that a node
can access in the blockchain.

Blockchain Layer
It is composed of the Hyperledger Fabric V2.0, which is a modular blockchain
architecture framework that facilitates blockchain information system solutions.

It supports the creation of permissioned blockchain networks that have built-in
properties such as security, and privacy protection.

The Hyperledger Fabric has “ordering nodes” which ensures consistency of the
blockchain by ensuring that only ordered blocks of an endorsed transaction are made
available to the committing peer nodes before they are added to the blockchain.
As we stated before,

Dr. Sam Jobara

BANES Architecture

As stated before, the use of Hyperledger fabric is motivated by:
• Permissioned architecture • Open smart contract
• Highly modular • Low latency of finality/confirmation
• Pluggable consensus • Flexible approach to data privacy

IEC* Data Storage Layer

It contains the relevant databases that store information on the profile of registered
voters. This database is used as the basis to authenticate and authorize voters to vote.

* ISO/IEC 27040 is to provide security guidance for storage systems and ecosystems as well as for protection of data in these systems.

