Chalmers/Gothenburg University Mathematical Sciences EXAM SOLUTION

TMA947/MAN280 OPTIMIZATION, BASIC COURSE

Date:16-04-05Examiner:Michael Patriksson

Question 1

(the simplex method)

- (1p) a) The modified problem is always feasible by construction. For example, a feasible solution is $x_i = 0$ for i = 1, 2, 3, 4 and $y_1 = 5$ and $y_2 = 3$. Assuming that the modified problem has optimal objective value bounded from below, the modified problem always has finite optimal solution. Let x^* and y^* denote the x-part and y-part of the optimal solution, respectively. Depending on the value of y^* , two cases are possible:
 - At optimality, $y_1^* = y_2^* = 0$. In this case, the original problem is feasible. In addition, x^* is an optimal solution to the original problem. It is obvious that x^* is feasible to the original problem. If there were some \tilde{x} feasible to the original problem with an objective value smaller than that of x^* , then \tilde{x} together with $y^* = 0$ form a better feasible solution to the modified problem. This contradicts the optimality of x^* and y^* for the modified problem.
 - At optimality, at least one of y_1^* and y_2^* is positive. In this case, the original problem is infeasible. If a vector $\tilde{\boldsymbol{x}}$ were feasible to the original problem, then $\tilde{\boldsymbol{x}}$ together with $\boldsymbol{y} = \boldsymbol{0}$ result in a better feasible solution of the modified problem than \boldsymbol{x}^* with \boldsymbol{y}^* (cf. the property of M). This would contradicts the optimality of \boldsymbol{x}^* and \boldsymbol{y}^* for the modified problem.
- (2p) b) We can start the simplex method with y_1 and y_2 being the basic variables. The non-basic variables are x_1 , x_2 , x_3 and x_4 .

$$B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad B^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \boldsymbol{c}_{N}^{\mathrm{T}} = \begin{pmatrix} 8 & 3 & 4 & 1 \end{pmatrix}, \quad \boldsymbol{c}_{B}^{\mathrm{T}} = \begin{pmatrix} M & M \end{pmatrix}$$
$$N = \begin{pmatrix} 2 & 1 & 3 & -1 \\ 1 & 1 & 2 & -1 \end{pmatrix}, \quad x_{B} = B^{-1}b = \begin{pmatrix} 5 \\ 3 \end{pmatrix}.$$

The reduced costs are

$$\boldsymbol{c}_{N}^{\mathrm{T}} - \boldsymbol{c}_{B}^{\mathrm{T}}B^{-1}N = \begin{pmatrix} 8 - 3M & 3 - 2M & 4 - 5M & 1 + 2M \end{pmatrix}.$$

We choose the third non-basic variable (i.e., x_3) to enter the basis, because it has the most negative reduced cost. The corresponding search direction for the basic variables are $d_B = -B^{-1}N_3 = (-3, -2)^{\mathrm{T}}$. The minimum ratio test indicates that

$$2 = \operatorname{argmin}\{\frac{5}{3}, \frac{3}{2}\},\$$

and hence the second basic variable (i.e., y_2) leaves the basis.

At iteration two, we have x_3 and y_1 being the basic variables. The non-basic variables are x_1 , x_2 , x_4 and y_2 .

$$B = \begin{pmatrix} 3 & 1 \\ 2 & 0 \end{pmatrix}, \quad B^{-1} = \begin{pmatrix} 0 & \frac{1}{2} \\ 1 & -\frac{3}{2} \end{pmatrix}, \quad \boldsymbol{c}_{N}^{\mathrm{T}} = \begin{pmatrix} 8 & 3 & 1 & M \end{pmatrix}, \quad \boldsymbol{c}_{B}^{\mathrm{T}} = \begin{pmatrix} 4 & M \end{pmatrix}$$
$$N = \begin{pmatrix} 2 & 1 & -1 & 0 \\ 1 & 1 & -1 & 1 \end{pmatrix}.$$

The reduced costs are

$$\boldsymbol{c}_{N}^{\mathrm{T}} - \boldsymbol{c}_{B}^{\mathrm{T}}B^{-1}N = \begin{pmatrix} 6 - \frac{M}{2} & 1 + \frac{M}{2} & 3 - \frac{M}{2} & -2 + \frac{3M}{2} \end{pmatrix}.$$

We choose the third non-basic variable (i.e., x_4) to enter the basis. The corresponding search direction for the basic variables are $d_B = -B^{-1}N_3 = (\frac{1}{2}, -\frac{1}{2})^{\mathrm{T}}$. Therefore, the second basic variable (i.e., y_1) leaves the basis.

At iteration three, we have basic variables being x_3 and x_4 . The non-basic variables are x_1 , x_2 , y_1 and y_2 .

$$B = \begin{pmatrix} 3 & -1 \\ 2 & -1 \end{pmatrix}, \quad B^{-1} = \begin{pmatrix} 1 & -1 \\ 2 & -3 \end{pmatrix}, \quad \boldsymbol{c}_N^{\mathrm{T}} = \begin{pmatrix} 8 & 3 & M & M \end{pmatrix}, \quad \boldsymbol{c}_B^{\mathrm{T}} = \begin{pmatrix} 4 & 1 \end{pmatrix},$$
$$N = \begin{pmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}, \quad x_B = B^{-1}b = \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

The reduced costs are

$$\boldsymbol{c}_{N}^{\mathrm{T}}-\boldsymbol{c}_{B}^{\mathrm{T}}B^{-1}N=\left(3\quad 4\quad M-6\quad M+7\right).$$

The reduced costs are all nonnegative. The simplex method terminates with optimal solution

$$x^* = (0, 0, 2, 1)^{\mathrm{T}}, \quad y^* = (0, 0), \quad z^* = 9$$

As explained in part a), x^* is also an optimal solution to the original problem with objective value 9.

Question 2

(true or false)

(1p) a) Impossible to say, since the original problem may lack optimal solutions.

- (1p) b) True—see Exercise 11.1.
- (1p) c) Impossible to say, since the function f may not be convex.

(3p) Question 3

(optimality conditions)

This is Theorem 10.10.

(3p) Question 4

(Frank-Wolfe)

We can only guarantee that the point obtained is stationary. If f however is concave, then we establish that the point obtained is optimal.

(3p) Question 5

(Lagrangian duality)

This is Theorem 6.8.

(3p) Question 6

(integer programming modeling)

A suggested integer programming formulation is as follows: each square is labeled with an i nteger index (e.g., $1, \ldots, n^2$). For each square *i*, we define the neighborhood N_i to be the set of all indices of squares that can be attacked if a queen is placed at square *i*. For each *i*, we define a 0-1 binary decision variable $x_i \in \{0, 1\}$ such that a queen is placed at square *i* if and only if $x_i = 1$. Then,

an integer program modeling t he desired queen configuration problem is

$$\begin{array}{ll} \underset{\boldsymbol{x}}{\text{minimize}} & \sum\limits_{i=1}^{n^2} x_i \\ \text{subject to} & x_i + \sum\limits_{j \in N_i} x_j \ge 1, \quad i = 1, \dots, n^2 \\ & (n^2 - 1)x_i + \sum\limits_{j \in N_i} x_j \le n^2 - 1, \quad i = 1, \dots, n^2 \\ & x_i \in \{0, 1\}, \quad i = 1, \dots, n^2. \end{array}$$

In the model above, the first constraint specifies that for each square *i* either there is a queen or the square can be attacked by a queen in the neighborhood N_i . The second constraint specifies that if a queen is placed at square *i*, then no queen can be placed at a ny square in the neighborhood N_i (we can replace $n^2 - 1$ by any constant larger than that). The two constraints model exactly the conditions required by the queen configuration pr oblem.

(3p) Question 7

(gradient projection algorithm)

At $\boldsymbol{x}^0 = (0,0)^{\mathrm{T}}$, the objective gradient vector is $\nabla f(\boldsymbol{x}^0) = (x_1 - 2, x_2 - \frac{3}{2})^{\mathrm{T}} = (-2, -\frac{3}{2})^{\mathrm{T}}$. Hence, the search direction is $\boldsymbol{p}^0 = -\nabla f(\boldsymbol{x}^0) = (2, \frac{3}{2})^{\mathrm{T}}$. Because of the form of the feasible set X (i.e., box constraints), projection on X can be expressed analytically. The projection arc is of the form (for $0 \le \alpha^0 \le 1$):

$$\operatorname{Proj}_{X}[\boldsymbol{x}^{0} + \alpha^{0}\boldsymbol{p}^{0}] = \begin{pmatrix} \min\{1, 0 + 2\alpha^{0}\} \\ \min\{1, 0 + \frac{3}{2}\alpha^{0}\} \end{pmatrix}.$$

Hence, the objective function (to be minimized) for exact line search is

$$f^{0}(\alpha^{0}) := \frac{1}{2} (\min\{1, 2\alpha^{0}\} - 2)^{2} + \frac{1}{2} (\min\{1, \frac{3}{2}\alpha^{0}\} - \frac{3}{2})^{2}$$
$$= \begin{cases} \frac{1}{2} \Big(4(\alpha^{0} - 1)^{2} + \frac{9}{4}(\alpha^{0} - 1)^{2} \Big) & 0 \le \alpha^{0} \le \frac{1}{2} \\ \frac{1}{2} \Big(1 + \frac{9}{4}(\alpha^{0} - 1)^{2} \Big) & \frac{1}{2} \le \alpha^{0} \le \frac{2}{3} \\ \frac{5}{8} & \frac{2}{3} \le \alpha^{0} \le 1 \end{cases}$$

Minimizing f^0 with $0 \le \alpha^0 \le 1$ yields the minimizing α^0 to be greater than or equal to 2/3. Hence, the next iterate is

$$oldsymbol{x}^1 = \operatorname{Proj}_X[oldsymbol{x}^0 + lpha^0oldsymbol{p}^0] = egin{pmatrix} 1 \ 1 \end{pmatrix}.$$

It is claimed that \boldsymbol{x}^1 is an optimal solution. First, note that the objective gradient a t $\boldsymbol{x}^1 = (1,1)^T$ is $\nabla f(\boldsymbol{x}^1) = (x_1 - 2, x_2 - \frac{3}{2})^T = (-1, -\frac{1}{2})^T$. At \boldsymbol{x}^1 the active constraints are $x_1 \leq 1$ and $x_2 \leq 1$ with constraint function gradients being $(1,0)^T$ and $(0,1)^T$, respectively. As a result, $-\nabla f(\boldsymbol{x}^1)$ is in the cone of the active constraint gradients. This implies that \boldsymbol{x}^1 is a KKT point. In addition, the optimization problem is convex with affine constraints. Hence, the KKT point \boldsymbol{x}^1 is indeed an optimal solution.