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Question 1

(the simplex method)

a) The modified problem is always feasible by construction. For example,(1p)
a feasible solution is xi = 0 for i = 1, 2, 3, 4 and y1 = 5 and y2 = 3.
Assuming that the modified problem has optimal objective value bounded
from below, the modified problem always has finite optimal solution. Let x∗

and y
∗ denote the x-part and y-part of the optimal solution, respectively.

Depending on the value of y∗, two cases are possible:

• At optimality, y∗
1
= y∗

2
= 0. In this case, the original problem is

feasible. In addition, x∗ is an optimal solution to the original problem.
It is obvious that x∗ is feasible to the original problem. If there were
some x̃ feasible to the original problem with an objective value smaller
than that of x∗, then x̃ together with y

∗ = 0 form a better feasible
solution to the modified problem. This contradicts the optimality of
x∗ and y

∗ for the modified problem.

• At optimality, at least one of y∗
1
and y∗

2
is positive. In this case, the

original problem is infeasible. If a vector x̃ were feasible to the original
problem, then x̃ together with y = 0 result in a better feasible solution
of the modified problem than x

∗ with y
∗ (cf. the property of M).

This would contradicts the optimality of x∗ and y
∗ for the modified

problem.

b) We can start the simplex method with y1 and y2 being the basic variables.(2p)
The non-basic variables are x1, x2, x3 and x4.

B =

(

1 0
0 1

)

, B−1 =

(

1 0
0 1

)

, c
T

N =
(

8 3 4 1
)

, c
T

B =
(

M M
)

N =

(

2 1 3 −1
1 1 2 −1

)

, xB = B−1b =

(

5
3

)

.

The reduced costs are

c
T

N − c
T

BB
−1N =

(

8− 3M 3− 2M 4− 5M 1 + 2M
)

.

We choose the third non-basic variable (i.e., x3) to enter the basis, because
it has the most negative reduced cost. The corresponding search direction
for the basic variables are dB = −B−1N3 = (−3,−2)T. The minimum ratio
test indicates that

2 = argmin{
5

3
,
3

2
},
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and hence the second basic variable (i.e., y2) leaves the basis.

At iteration two, we have x3 and y1 being the basic variables. The non-basic
variables are x1, x2, x4 and y2.

B =

(

3 1
2 0

)

, B−1 =

(

0 1

2

1 −3

2

)

, c
T

N =
(

8 3 1 M
)

, c
T

B =
(

4 M
)

N =

(

2 1 −1 0
1 1 −1 1

)

.

The reduced costs are

c
T

N − c
T

BB
−1N =

(

6− M
2

1 + M
2

3− M
2

−2 + 3M
2

)

.

We choose the third non-basic variable (i.e., x4) to enter the basis. The
corresponding search direction for the basic variables are dB = −B−1N3 =
(1
2
,−1

2
)T. Therefore, the second basic variable (i.e., y1) leaves the basis.

At iteration three, we have basic variables being x3 and x4. The non-basic
variables are x1, x2, y1 and y2.

B =

(

3 −1
2 −1

)

, B−1 =

(

1 −1
2 −3

)

, c
T

N =
(

8 3 M M
)

, c
T

B =
(

4 1
)

,

N =

(

2 1 1 0
1 1 0 1

)

, xB = B−1b =

(

2
1

)

.

The reduced costs are

c
T

N − c
T

BB
−1N =

(

3 4 M − 6 M + 7
)

.

The reduced costs are all nonnegative. The simplex method terminates
with optimal solution

x∗ = (0, 0, 2, 1)T, y
∗ = (0, 0), z∗ = 9

As explained in part a), x∗ is also an optimal solution to the original problem
with objective value 9.

Question 2

(true or false)

a) Impossible to say, since the original problem may lack optimal solutions.(1p)
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b) True—see Exercise 11.1.(1p)

c) Impossible to say, since the function f may not be convex.(1p)

Question 3(3p)

(optimality conditions)

This is Theorem 10.10.

Question 4(3p)

(Frank–Wolfe)

We can only guarantee that the point obtained is stationary. If f however is
concave, then we establish that the point obtained is optimal.

Question 5(3p)

(Lagrangian duality)

This is Theorem 6.8.

Question 6(3p)

(integer programming modeling)

A suggested integer programming formulation is as follows: each square is la-
beled with an i nteger index (e.g., 1, . . . , n2). For each square i, we define the
neighborhood Ni to be the set of all indices of squares that can be attacked if a
queen is placed at square i. For each i, we define a 0-1 binary decision variable
xi ∈ {0, 1} such that a queen is placed at square i if and only if xi = 1. Then,
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an integer program modeling t he desired queen configuration problem is

minimize
x

n2
∑

i=1

xi

subject to xi +
∑

j∈Ni

xj ≥ 1, i = 1, . . . , n2

(n2 − 1)xi +
∑

j∈Ni

xj ≤ n2 − 1, i = 1, . . . , n2

xi ∈ {0, 1}, i = 1, . . . , n2.

In the model above, the first constraint specifies that for each square i either
there is a queen or the square can be attacked by a queen in the neighborhood
Ni. The second con straint specifies that if a queen is placed at square i, then
no queen can be placed at a ny square in the neighborhood Ni (we can replace
n2−1 by any constant larger than tha t). The two constraints model exactly the
conditions required by the queen configuration pr oblem.

Question 7(3p)

(gradient projection algorithm)

At x
0 = (0, 0)T, the objective gradient vector is ∇f(x0) = (x1 − 2, x2 −

3

2
)T =

(−2,−3

2
)T. Hence, the search direction is p

0 = −∇f(x0) = (2, 3
2
)T. Because

of the form of the feasible set X (i.e., box constraints), projection on X can be
expressed analytically. The projection arc is of the form (for 0 ≤ α0 ≤ 1):

ProjX [x
0 + α0

p
0] =

(

min{1, 0 + 2α0}
min{1, 0 + 3

2
α0}

)

.

Hence, the objective function (to be minimized) for exact line search is

f 0(α0) := 1

2
(min{1, 2α0} − 2)2 + 1

2
(min{1, 3

2
α0} − 3

2
)2

=































1

2

(

4(α0 − 1)2 + 9

4
(α0 − 1)2

)

0 ≤ α0 ≤ 1

2

1

2

(

1 + 9

4
(α0 − 1)2

)

1

2
≤ α0 ≤ 2

3

5

8

2

3
≤ α0 ≤ 1

.

Minimizing f 0 with 0 ≤ α0 ≤ 1 yields the minimizing α0 to be greater than or
equal to 2/3. Hence, the next iterate is

x
1 = ProjX [x

0 + α0
p
0] =

(

1
1

)

.
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It is claimed that x1 is an optimal solution. First, note that the objective gradient
a t x

1 = (1, 1)T is ∇f(x1) = (x1 − 2, x2 −
3

2
)T = (−1,−1

2
)T. At x

1 the active
constraints are x1 ≤ 1 and x2 ≤ 1 with constraint function gradients being
(1, 0)T and (0, 1)T, respectively. As a result, −∇f(x1) is in the cone of the active
constraint gradients. This implies that x

1 is a KKT point. In addition, the
optimization problem is convex with affine constraints. Hence, the KKT point
x
1 is indeed an optimal solution.


