TMA947/MAN280 OPTIMIZATION, BASIC COURSE

Date: 16-04-05
Examiner: Michael Patriksson

Question 1

(the simplex method)
(1p) a) The modified problem is always feasible by construction. For example, a feasible solution is $x_{i}=0$ for $i=1,2,3,4$ and $y_{1}=5$ and $y_{2}=3$. Assuming that the modified problem has optimal objective value bounded from below, the modified problem always has finite optimal solution. Let \boldsymbol{x}^{*} and \boldsymbol{y}^{*} denote the x-part and y-part of the optimal solution, respectively. Depending on the value of \boldsymbol{y}^{*}, two cases are possible:

- At optimality, $y_{1}^{*}=y_{2}^{*}=0$. In this case, the original problem is feasible. In addition, \boldsymbol{x}^{*} is an optimal solution to the original problem. It is obvious that \boldsymbol{x}^{*} is feasible to the original problem. If there were some \tilde{x} feasible to the original problem with an objective value smaller than that of \boldsymbol{x}^{*}, then $\tilde{\boldsymbol{x}}$ together with $\boldsymbol{y}^{*}=\mathbf{0}$ form a better feasible solution to the modified problem. This contradicts the optimality of x^{*} and \boldsymbol{y}^{*} for the modified problem.
- At optimality, at least one of y_{1}^{*} and y_{2}^{*} is positive. In this case, the original problem is infeasible. If a vector $\tilde{\boldsymbol{x}}$ were feasible to the original problem, then $\tilde{\boldsymbol{x}}$ together with $\boldsymbol{y}=\mathbf{0}$ result in a better feasible solution of the modified problem than \boldsymbol{x}^{*} with \boldsymbol{y}^{*} (cf. the property of M). This would contradicts the optimality of \boldsymbol{x}^{*} and \boldsymbol{y}^{*} for the modified problem.
$(2 \mathbf{p}) \quad$ b) We can start the simplex method with y_{1} and y_{2} being the basic variables. The non-basic variables are x_{1}, x_{2}, x_{3} and x_{4}.

$$
\begin{aligned}
& B=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad B^{-1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \boldsymbol{c}_{N}^{\mathrm{T}}=\left(\begin{array}{llll}
8 & 3 & 4 & 1
\end{array}\right), \quad \boldsymbol{c}_{B}^{\mathrm{T}}=\left(\begin{array}{ll}
M & M
\end{array}\right) \\
& N=\left(\begin{array}{llll}
2 & 1 & 3 & -1 \\
1 & 1 & 2 & -1
\end{array}\right), \quad x_{B}=B^{-1} b=\binom{5}{3} .
\end{aligned}
$$

The reduced costs are

$$
\boldsymbol{c}_{N}^{\mathrm{T}}-\boldsymbol{c}_{B}^{\mathrm{T}} B^{-1} N=\left(\begin{array}{llll}
8-3 M & 3-2 M & 4-5 M & 1+2 M
\end{array}\right) .
$$

We choose the third non-basic variable (i.e., x_{3}) to enter the basis, because it has the most negative reduced cost. The corresponding search direction for the basic variables are $d_{B}=-B^{-1} N_{3}=(-3,-2)^{\mathrm{T}}$. The minimum ratio test indicates that

$$
2=\operatorname{argmin}\left\{\frac{5}{3}, \frac{3}{2}\right\},
$$

and hence the second basic variable (i.e., y_{2}) leaves the basis.
At iteration two, we have x_{3} and y_{1} being the basic variables. The non-basic variables are x_{1}, x_{2}, x_{4} and y_{2}.

$$
\begin{aligned}
B & =\left(\begin{array}{ll}
3 & 1 \\
2 & 0
\end{array}\right), \quad B^{-1}=\left(\begin{array}{cc}
0 & \frac{1}{2} \\
1 & -\frac{3}{2}
\end{array}\right), \quad \boldsymbol{c}_{N}^{\mathrm{T}}=\left(\begin{array}{llll}
8 & 3 & 1 & M
\end{array}\right), \quad \boldsymbol{c}_{B}^{\mathrm{T}}=\left(\begin{array}{ll}
4 & M
\end{array}\right) \\
N & =\left(\begin{array}{llll}
2 & 1 & -1 & 0 \\
1 & 1 & -1 & 1
\end{array}\right) .
\end{aligned}
$$

The reduced costs are

$$
\boldsymbol{c}_{N}^{\mathrm{T}}-\boldsymbol{c}_{B}^{\mathrm{T}} B^{-1} N=\left(\begin{array}{llll}
6-\frac{M}{2} & 1+\frac{M}{2} & 3-\frac{M}{2} & -2+\frac{3 M}{2}
\end{array}\right) .
$$

We choose the third non-basic variable (i.e., x_{4}) to enter the basis. The corresponding search direction for the basic variables are $d_{B}=-B^{-1} N_{3}=$ $\left(\frac{1}{2},-\frac{1}{2}\right)^{\mathrm{T}}$. Therefore, the second basic variable (i.e., y_{1}) leaves the basis.
At iteration three, we have basic variables being x_{3} and x_{4}. The non-basic variables are x_{1}, x_{2}, y_{1} and y_{2}.

$$
\begin{aligned}
B & =\left(\begin{array}{ll}
3 & -1 \\
2 & -1
\end{array}\right), \quad B^{-1}=\left(\begin{array}{ll}
1 & -1 \\
2 & -3
\end{array}\right), \quad \boldsymbol{c}_{N}^{\mathrm{T}}=\left(\begin{array}{llll}
8 & 3 & M & M
\end{array}\right), \quad \boldsymbol{c}_{B}^{\mathrm{T}}=\left(\begin{array}{ll}
4 & 1
\end{array}\right), \\
N & =\left(\begin{array}{llll}
2 & 1 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right), \quad x_{B}=B^{-1} b=\binom{2}{1} .
\end{aligned}
$$

The reduced costs are

$$
\boldsymbol{c}_{N}^{\mathrm{T}}-\boldsymbol{c}_{B}^{\mathrm{T}} B^{-1} N=\left(\begin{array}{llll}
3 & 4 & M-6 & M+7
\end{array}\right) .
$$

The reduced costs are all nonnegative. The simplex method terminates with optimal solution

$$
x^{*}=(0,0,2,1)^{\mathrm{T}}, \quad \boldsymbol{y}^{*}=(0,0), \quad z^{*}=9
$$

As explained in part a), x^{*} is also an optimal solution to the original problem with objective value 9 .

Question 2

(true or false)
(1p) a) Impossible to say, since the original problem may lack optimal solutions.

EXAM SOLUTION
TMA947/MAN280 - OPTIMIZATION, BASIC COURSE
(1p) b) True - see Exercise 11.1.
$\mathbf{(1 p)}$ c) Impossible to say, since the function f may not be convex.

(3p) Question 3

(optimality conditions)
This is Theorem 10.10.

(3p) Question 4

(Frank-Wolfe)
We can only guarantee that the point obtained is stationary. If f however is concave, then we establish that the point obtained is optimal.

(3p) Question 5

(Lagrangian duality)
This is Theorem 6.8.

(3p) Question 6

(integer programming modeling)
A suggested integer programming formulation is as follows: each square is labeled with an i nteger index (e.g., $1, \ldots, n^{2}$). For each square i, we define the neighborhood N_{i} to be the set of all indices of squares that can be attacked if a queen is placed at square i. For each i, we define a $0-1$ binary decision variable $x_{i} \in\{0,1\}$ such that a queen is placed at square i if and only if $x_{i}=1$. Then,
an integer program modeling t he desired queen configuration problem is

$$
\begin{array}{cl}
\underset{\boldsymbol{X}}{\operatorname{minimize}} & \sum_{i=1}^{n^{2}} x_{i} \\
\text { subject to } & x_{i}+\sum_{j \in N_{i}} x_{j} \geq 1, \quad i=1, \ldots, n^{2} \\
& \left(n^{2}-1\right) x_{i}+\sum_{j \in N_{i}} x_{j} \leq n^{2}-1, \quad i=1, \ldots, n^{2} \\
& x_{i} \in\{0,1\}, \quad i=1, \ldots, n^{2} .
\end{array}
$$

In the model above, the first constraint specifies that for each square i either there is a queen or the square can be attacked by a queen in the neighborhood N_{i}. The second con straint specifies that if a queen is placed at square i, then no queen can be placed at a ny square in the neighborhood N_{i} (we can replace $n^{2}-1$ by any constant larger than tha t). The two constraints model exactly the conditions required by the queen configuration pr oblem.

(3p) Question 7

(gradient projection algorithm)

At $\boldsymbol{x}^{0}=(0,0)^{\mathrm{T}}$, the objective gradient vector is $\nabla f\left(\boldsymbol{x}^{0}\right)=\left(x_{1}-2, x_{2}-\frac{3}{2}\right)^{\mathrm{T}}=$ $\left(-2,-\frac{3}{2}\right)^{\mathrm{T}}$. Hence, the search direction is $\boldsymbol{p}^{0}=-\nabla f\left(\boldsymbol{x}^{0}\right)=\left(2, \frac{3}{2}\right)^{\mathrm{T}}$. Because of the form of the feasible set X (i.e., box constraints), projection on X can be expressed analytically. The projection arc is of the form (for $0 \leq \alpha^{0} \leq 1$):

$$
\operatorname{Proj}_{X}\left[\boldsymbol{x}^{0}+\alpha^{0} \boldsymbol{p}^{0}\right]=\binom{\min \left\{1,0+2 \alpha^{0}\right\}}{\min \left\{1,0+\frac{3}{2} \alpha^{0}\right\}} .
$$

Hence, the objective function (to be minimized) for exact line search is

$$
\begin{aligned}
f^{0}\left(\alpha^{0}\right) & :=\frac{1}{2}\left(\min \left\{1,2 \alpha^{0}\right\}-2\right)^{2}+\frac{1}{2}\left(\min \left\{1, \frac{3}{2} \alpha^{0}\right\}-\frac{3}{2}\right)^{2} \\
& = \begin{cases}\frac{1}{2}\left(4\left(\alpha^{0}-1\right)^{2}+\frac{9}{4}\left(\alpha^{0}-1\right)^{2}\right) & 0 \leq \alpha^{0} \leq \frac{1}{2} \\
\frac{1}{2}\left(1+\frac{9}{4}\left(\alpha^{0}-1\right)^{2}\right) & \frac{1}{2} \leq \alpha^{0} \leq \frac{2}{3} . \\
\frac{5}{8} & \frac{2}{3} \leq \alpha^{0} \leq 1\end{cases}
\end{aligned}
$$

Minimizing f^{0} with $0 \leq \alpha^{0} \leq 1$ yields the minimizing α^{0} to be greater than or equal to $2 / 3$. Hence, the next iterate is

$$
\boldsymbol{x}^{1}=\operatorname{Proj}_{X}\left[\boldsymbol{x}^{0}+\alpha^{0} \boldsymbol{p}^{0}\right]=\binom{1}{1} .
$$

It is claimed that \boldsymbol{x}^{1} is an optimal solution. First, note that the objective gradient a t $\boldsymbol{x}^{1}=(1,1)^{\mathrm{T}}$ is $\nabla f\left(\boldsymbol{x}^{1}\right)=\left(x_{1}-2, x_{2}-\frac{3}{2}\right)^{\mathrm{T}}=\left(-1,-\frac{1}{2}\right)^{\mathrm{T}}$. At \boldsymbol{x}^{1} the active constraints are $x_{1} \leq 1$ and $x_{2} \leq 1$ with constraint function gradients being $(1,0)^{\mathrm{T}}$ and $(0,1)^{\mathrm{T}}$, respectively. As a result, $-\nabla f\left(\boldsymbol{x}^{1}\right)$ is in the cone of the active constraint gradients. This implies that \boldsymbol{x}^{1} is a KKT point. In addition, the optimization problem is convex with affine constraints. Hence, the KKT point \boldsymbol{x}^{1} is indeed an optimal solution.

