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When you answer the questions

Use generally valid theory and methods.
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Question 1

(the simplex method)

Consider the following linear program:

maximize 3x1 + x2,

subject to 3x1 + 2x2 ≥ 1,
2x1 + x2 ≤ 2,

x1 ≥ 0,
x2 ∈ R.

a) Solve this problem using phase I and phase II of the simplex method.(2p)

Aid: Utilize the identity

(

a b

c d

)

−1

=
1

ad − bc

(

d −b

−c a

)

.

b) Is the solution obtained unique? Motivate your answer!(1p)

Question 2

(optimality conditions)

Suppose that for j = 1, . . . , n the functions fj : R → R are convex and differen-
tiable. Let b > 0. Our problem, called the resource allocation problem, has the
following general statement:

minimize
x

n
∑

j=1

fj(xj), (1a)

subject to

n
∑

j=1

xj = b, (1b)

xj ≥ 0, j = 1, . . . , n. (1c)

While this problem is exceptionally simple it has many applications, for example
in portfolio optimization, production economics, and stratified sampling.
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a) Introduce any necessary multipliers, and describe the necessary Karush–(2p)
Kuhn–Tucker conditions for a vector x∗ to be a local optimum in the prob-
lem (1). Are these conditions also sufficient for the global optimality of a
KKT-point x∗?

b) Based on the result in a), establish the following result on the character-(1p)
ization of optimal solutions to the problem (1), known as Gibbs’ Lemma:
Suppose that x∗ solves the problem (1). Then, there exists (at least one)
λ∗ ∈ R such that

f ′

j(x
∗

j )

{

= λ∗, if x∗

j > 0,

≥ λ∗, if x∗

j = 0,
j = 1, . . . , n, (2)

holds.

Question 3

(modeling)

A group of n people has decided to arrange a party for New Year’s Eve. Each
member of the group has purchased things to the party for di SEK, i ∈ {1, . . . , n}.
Your assignment is to decide how money should be transferred between the mem-
bers such that all members will have paid equally much.

a) Introduce the necessary variables and formulate a linear programming (LP)(1p)
model which minimizes the total amount of transfered cash between the
members.

b) In the solution to the first model, one of the participants is supposed to give(2p)
money to six other members; this is fairly impractical. Introduce additional
integer variables and extend your model to a linear mixed integer program-
ming model (i.e., the model should be linear if the integrality constraints
are relaxed) such that each member only needs to give money to at most
one other member.
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Question 4(3p)

(the Frank–Wolfe method)

Consider the problem to

minimize
x

f(x) := x2

1
+ x2

2
+ x1x2 − 3x1 − 6x2,

subject to







x1 + x2 ≤ 4,
−2x1 + x2 ≤ 0,

0 ≤ x2 ≤ 2.

Start at the point x0 = (0, 0)T and perform two iterations of the Frank–Wolfe
method. (Recall that the Frank-Wolfe method starts at some feasible point.
Given an iteration k and feasible iterate xk it produces a feasible search direction
pk through the minimization of the fist-order Taylor expansson of f at xk. The
next iterate is found through an exact line search in f along the search direction,
such that the resulting vector is also feasible.)

Give the upper and lower bounds of the optimal objective function value that
the algorithm generates in each iteration, and give a theoretical motivation for
them. If an optimum is found, motivate why it is an optimum.

Question 5

(Lagrangian duality)

Consider the problem to find the Euclidean projection of the origin in R
2 on

the polyhedral set defined by the three linear inequalities x1 ≤ 4, x2 ≤ 4, and
x1 + x2 ≥ 4.

a) State this projection problem as a convex quadratic optimization problem.(1p)

b) By Lagrangian relaxing the constraint that x1+x2 ≥ 4 must hold, formulate(1p)
the corresponding Lagrangian dual problem explicitly. Establish that the
Lagrangian dual problem is that of maximizing a concave function.

c) Solve this Lagrangian dual problem. Utilize the primal–dual relationships(1p)
between the primal and the dual problem to establish the solution to the
original problem. Confirm your answer graphically.
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Question 6(3p)

(optimality conditions)

Farkas’ Lemma can be stated as follows:

Let A be an m × n matrix and b an m × 1 vector. Then exactly one of the
systems

Ax = b, (I)

x ≥ 0n,

and

ATy ≤ 0n, (II)

bTy > 0,

has a feasible solution, and the other system is inconsistent.

Prove Farkas’ Lemma.

Question 7

(short questions)

Answer the following three short questions. You must motivate your answers in
order to receive any points.

a) Consider the following problem(1p)

minimize
x∈X

f(x),

where f : R
n → R is a convex function and X ⊂ R

n is a convex and
bounded set. Assume further that for some M ∈ R f(x) ≥ M for all
x ∈ X holds. Does an optimal solution always exist to this problem? If
not, give a counter-example!

b) Assume that the objective function f : R
2 → R is a convex function. Define(1p)

the constraint functions as

g1(x, y) :=











(x + 1)2 + (y + 1)2 − 1, for x < −1,

(y + 1)2 − 1, for − 1 ≤ x ≤ 1,

(x − 1)2 + (y + 1)2 − 1, for 1 < x,
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and

g2(x, y) := −y.

Consider the following problem:

minimize f(x),
subject to g1(x, y) ≤ 0,

g2(x, y) ≤ 0.

Answer the following two questions about the problem described above. If
a feasible point x satisifies the KKT conditions, does it then imply that the
point is optimal? If a feasible point x is optimal, does it then imply that it
satisfies the KKT conditions?

c) Consider the following set(1p)

X =







x ∈ R
n

∣

∣

∣

∣

∣

∣

n
∑

i=1

(xi − ai)
2 ≤ b, exp





√

√

√

√

n
∑

i=1

(xi − ci)2



 ≥ d







.

Assume that for the constants a ∈ R
n, c ∈ R

n, 0 < d ∈ R and 0 < b ∈ R

the following inequality holds

√

√

√

√

n
∑

i=1

(ai − ci)2 ≥
√

b + ln d.

Is the set X convex?

Good luck!


