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Question 1

(the simplex method)

a) We first rewrite the problem on standard form. We introduce slack variables(2p)
s1 and s2 and x1 = x+

1 − x−

1 . Consider the following linear program:

minimize z = 2x+
1 − 2x−

1 + x2

subject to −2x+
1 + 2x−

1 − x2 + s1 = 2,

2x+
1 − 2x−

1 + 5x2 + s2 = 6,

x+
1 , x−

1 , x2, s1, s2 ≥ 0.

Phase II

The Phase I does not have to be used in this case, the starting basis is
obviously (s1, s2).

Calculating the reduced costs, we obtain c̃N = (2,−2, 1)T, meaning that
x−

1 should enter the basis. From the minimum ratio test, we get that the
outgoing variable is s1. Updating the basis we now have (x−

1 , s2) in the
basis.

Calculating the reduced costs, we obtain c̃N = (0, 0, 1)T ≥ 0, meaning that
the current basis is optimal. The optimal solution is thus

x
∗ = (x+

1 , x−

1 , x2, s1, s2)
T = (0, 1, 0, 0, 8)T,

which in the original variables means x
∗ = (x1, x2)

T = (−1, 0)T with opti-
mal objective value f ⋆ = −2.

b) The reduced costs of for the optimal basis of the problem are c̃N = (0, 0, 1)T(1p)
meaning that the variable x2 can enter the basis and the optimal objec-
tive value will remain the same f ∗ = −2. The alternative optimal solu-
tion is then x̃∗ = (x1, x2)

T = (−2, 2)T. Hence, all points lying on the
line segment connecting the extreme points x∗ and x̃∗ are optimal, i.e.,
[x1,−2x1 − 2], ∀x1 ∈ [−2,−1] is the optimal solution.

Question 2(3p)

(KKT conditions) The objective function is convex, as can be seen by noting that
both terms are compositions of a convex function (i.e.,

∑

i aixi) and an increasing
convex function − log(.). Since the constraints are linear, the problem is a convex
one, and the KKT conditions are thus sufficient for global optimality.
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The KKT conditions become (with λ being the multiplier associated to the equal-
ity constraint, and µi being the multiplier associated to the i:th non-negativity
constraint)

ai
∑

i aixi

+
1/ai

∑

i xi/ai

+ µi = λ, i = 1, . . . , n, (1)

∑

i

xi = 1, (2)

xi ≥ 0, i = 1, . . . , n, (3)

µixi = 0, i = 1, . . . , n, (4)

µi ≥ 0, i = 1, . . . , n. (5)

Inserting x = (1/2, 0, . . . , 0, 1/2)T yields a feasible solution, and show the opti-
mality of x we must produce a solution (λ, µi) to the system

ai

a1 + an

+
ai

1
a1

+ 1
an

+ µi = λ, i = 1, . . . , n, (6)

µi ≥ 0, i = 1, . . . , n (7)

µ1 = µn = 0. (8)

We see that using the first equality for i = 1 yields that we must have

λ =
a1

a1 + an

+
1/a1

1
a1

+ 1
an

=
a1(1/a1 + 1/an) + 1/a1(a1 + an)

(a1 + an)(1/a1 + 1/an)

=
2 + a1/an + an/a1

(a1 + an)(1/a1 + 1/an)

(9)

And (due to the symmetry between a1 and an in the above we see that the first
equality is also satisfied for i = n with this λ. It only remains to show that

µi =
2 + a1/an + an/a1

(a1 + an)(1/a1 + 1/an)
−

ai

a1 + an

+
ai

1
a1

+ 1
an

≥ 0 (10)

For all i = 2, . . . , n − 1. But writing the above with a common denominator we
get
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2 + a1/an + an/a1

(a1 + an)(1/a1 + 1/an)
−

ai

a1 + an

+
ai

1
a1

+ 1
an

=
ai/a1 + ai/an + a1/ai + an/ai − 2 − a1/an − an/a1

(a1 + an)(1/a1 + 1/an)

≥ 0 (11)

Where the final follows since

ai/a1 ≥ 1, (12)

an/ai ≥ 1, (13)

a1/ai ≥ a1/an, (14)

ai/an ≥ a1/an (15)

Thus (1/2, 0, . . . , 0, 1/2)T is a KKT point, and hence optimal since the problem
is convex.

Question 3

(problem decomposition)

a) The Lagrangian subproblem separates into |I| independent subproblems of(2p)
the form

minimize
x i∈Xi

fi(xi) + µ
T
xi;

the value of the Lagrangian dual function q(µ) is the sum of these |I|
optimal values minus µ

T
u. Any such value is a lower bound on the optimal

valuem by the Weak Duality Theorem 6.5.

b) In this case fi(xi) = cixi +
qi

2
x2

i , where qi ≥ 0 for all i, hence the Lagrangian(1p)
term for index i has the form cixi + qi

2
x2

i + µixi. Its minimum over the
closed interval Xi is easily found by comparing objective values at the two
boundary points and potentially feasible stationary points.

Question 4(3p)

(Frank-Wolfe algorithm)
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Figure 1 shows the feasible set of the problem (i.e., the polyhedron with thick
black boundary lines) and some contours of the objective function. The optimal
solution is denoted by x⋆ (i.e., the red dot in the figure). x(k) for k = 0, 1, 2
denotes iterates visited by the Frank-Wolfe algorithm.
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Figure 1: Illustration of the Frank-Wolfe algorithm. The feasible set is a poly-
hedron with boundary denoted by the thick black lines. Some contours of the
objective function are shown. The optimal solution x

⋆ = (2.5, 0.5). The dotted
lines show the Frank-Wolfe iterations, with x

k, k = 0, 1, 2 denoting the iterates.

The details of the algorithm steps are as follows. Let X denote the feasible set.
Let f(x1, x2) denote the objective function. For any given iterate x

k = (xk
1, x

k
2).

The objective function gradient vector is

∇f(xk
1, x

k
2) =

[

12 4
4 18

] [

xk
1

xk
2

]

−

[

52
34

]

.

The search direction problem is

minimize
x∈X

∇f(xk
1, x

k
2)

T
x. (1)

If min
x∈X

∇f(xk
1, x

k
2)

T
x ≥ ∇f(xk

1, x
k
2)

T
xk, then by the optimality conditions (for

minimizing a convex function over a convex feasible set) x
k is optimal. Otherwise,

let y
k denote an optimal solution to the search direction problem. Then the exact

minimization line search problem can be expressed into

minimize
α∈[0,1]

f(αx
k + (1 − α)yk) ⇐⇒ minimize

α∈[0,1]
gα2 + hα,
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where

g =
(

x
k − y

k
)T
[

6 2
2 9

]

(

x
k − y

k
)

h =
(

x
k − y

k
)T
([

12 4
4 18

]

y
k −

[

52
34

])

.

(2)

The minimizing value of α, denoted by αk, can be found using the optimality
condition to be

αk =



















0 if − h
2g

< 0

− h
2g

if 0 ≤ − h
2g

≤ 1

1 if − h
2g

> 1

. (3)

The iterate update formula is

x
k+1 = αk

x
k + (1 − αk)yk. (4)

Now we begin applying the Frank-Wolfe algorithm. At the first iteration with
x

0 = (2.5, 0)T, the objective function gradient is

∇f(x0
1, x

0
2) =

[

12 4
4 18

] [

x0
1

x0
2

]

−

[

52
34

]

=

[

12 4
4 18

] [

2.5
0

]

−

[

52
34

]

=

[

−22
−24

]

.

To solve the search direction problem in (1), it is sufficient to restrict the feasible
set to the set of all extreme points. That is,

minimize
x∈V

∇f(x0
1, x

0
2)

T
x, (5)

where V is the set of all extreme points defined as

V =
{

(0, 0), (0, 2), (2, 1), (2.5, 0.5), (2.5, 0)
}

.

This amounts to finding the minimum among five numbers: 0, −48, −68, −67,
−55. The result is that y

0 = (2, 1). Applying the formula in (2) yields

g =

([

2.5
0

]

−

[

2
1

])T [

6 2
2 9

]([

2.5
0

]

−

[

2
1

])

= 8.5

h =

([

2.5
0

]

−

[

2
1

])T ([

12 4
4 18

] [

2
1

]

−

[

52
34

])

= −4

According to (3), α0 = 4
17

. Hence, by (4)

x
1 =

4

17
(
5

2
, 0) + (1 −

4

17
)(2, 1) = (

36

17
,
13

17
) ≈ (2.12, 0.76).
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This is shown in Figure 1.

At the next iteration with x1 = (36
17

, 13
17

), we have

∇f(x1
1, x

1
2) =

[

12 4
4 18

] [

x1
1

x1
2

]

−

[

52
34

]

=
1

17

[

−400
−200

]

≈

[

−23.53
−11.76

]

.

Solving (5) amounts to finding the minimum of 0, −4, −10, −11, −10. This leads
to y1 = (2.5, 0.5). Applying (2) leads to

g = 1275
1156

≈ 1.10

h = 125
34

≈ 3.68.

Thus, according to (3) α1 = 0, and from (4) x2 = y1 = (2.5, 0.5)T as shown in
Figure 1.

At the final iteration with x2 = (2.5, 0.5)T, we have

∇f(x2
1, x

2
2) =

[

−20
−15

]

.

Solving (5) leads to y
2 = x

2 = (2.5, 0.5)T. Thus, it holds that

min
x∈X

∇f(x2
1, x

2
2)

T
x ≥ ∇f(x2

1, x
2
2)

T
x2.

By the optimality conditions, x
2 = (2.5, 0.5)T is the optimal solution to our

problem.

Question 5

(true or false)

a) False. It is not necessarily so that any such rounding, up or down, of(1p)
individual variables, lead to a feasible solution.

b) False. In the non-convex case there may be “better points” outside of the(1p)
feasible set.

c) True. This is Proposition 4.26.(1p)
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Question 6(3p)

(the Relaxation Theorem)

This is Theorem 6.1.

Question 7(3p)

(modelling)

Let (xi, yi) be the coordinates of the center poitn of circle i = 1, . . . , n, and let
ri be the radius of cirlce i = 1, . . . , n. Then the optimization problem can be
formulated as the following:

maximize
n
∑

i=1

πr2
i ,

subject to
√

(xi − xj)2 + (yi − yj)2 ≥ ri + rj, i 6= j,

ri ≤ xi ≤ L − ri, i = 1, . . . , n,

ri ≤ yi ≤ L − ri, i = 1, . . . , n,

ri ≥ 0, i = 1, . . . , n.


