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Question 1

(the simplex method)

a)

b)

We first rewrite the problem on standard form. We introduce slack variables
51 and s, and z; = 27 — 27. Consider the following linear program:

minimize z = 2] —2r] + o
subject to =2z +227 — m + 5 =2,
207 —2x] +5To + 59 = 6,
xf,  x,  m, s, s9> 0.

Phase 1T
The Phase I does not have to be used in this case, the starting basis is
obviously (s1, s2).

Calculating the reduced costs, we obtain ¢y = (2,—2,1)T, meaning that
x7 should enter the basis. From the minimum ratio test, we get that the
outgoing variable is s;. Updating the basis we now have (x7,s3) in the
basis.

Calculating the reduced costs, we obtain ¢y = (0,0,1)T > 0, meaning that
the current basis is optimal. The optimal solution is thus

x" = (‘r1+7'r;7x2751752>T = (07 170,(), 8)T,

which in the original variables means &* = (z1,22)" = (=1,0)T with opti-
mal objective value f* = —2.

The reduced costs of for the optimal basis of the problem are ¢ = (0,0,1)T
meaning that the variable x5 can enter the basis and the optimal objec-
tive value will remain the same f* = —2. The alternative optimal solu-
tion is then x* = (z1,72)T = (=2,2)T. Hence, all points lying on the
line segment connecting the extreme points x* and x* are optimal, i.e.,
(21, =221 — 2], V; € [-2, —1] is the optimal solution.

(3p) Question 2

(KKT conditions) The objective function is convex, as can be seen by noting that
both terms are compositions of a convex function (i.e., Y-, a;x;) and an increasing
convex function — log(.). Since the constraints are linear, the problem is a convex
one, and the KKT conditions are thus sufficient for global optimality.



EXAM SOLUTION
TMA947/MMG621 — NONLINEAR OPTIMISATION 2

The KKT conditions become (with A being the multiplier associated to the equal-
ity constraint, and p; being the multiplier associated to the 7:th non-negativity
constraint)

a; 1/&2

i=A i=1,....,n, 1
2i AT - i Ti/a; M ' " (1)
d oz =1, (2)

x>0, i=1,...,n, (3)

wir; =0, i=1... n, (4)

>0, i=1,... n (5)

Inserting x = (1/2,0,...,0,1/2)T yields a feasible solution, and show the opti-
mality of x we must produce a solution (A, 11;) to the system

a; a;

=\ i=1,...,n, 6
a1+an+i+é+” ' ! (®)
1 = py = 0. (8)

We see that using the first equality for ¢ = 1 yields that we must have

o @ 1/a4
Cata L4 L
1 n a1 an
_ a(l/ay +1/an) 4+ 1/ar(a1 + an) (9)

(a1 + a,)(1/ay + 1/a,)
2+ a1/a, + an/ay
(a1 + an)(1/ay + 1/ay)

And (due to the symmetry between a; and a,, in the above we see that the first
equality is also satisfied for ¢« = n with this A. It only remains to show that

2 n n 7 7
_ +ai/a,+an/a  a o a >0 (10)
(a1 +an)(l/ar +1/an) a1 +an -+ o

7

For all i = 2,... ,n — 1. But writing the above with a common denominator we
get
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2+ a1/a, + ap/aq @ e _ a;/ay + a;/an + ar/a; + ap/a; — 2 — ay/a, — a,/a;
(a1 +a,)(1/ay + 1/a,) a1+ ay, a—ll + i B (a1 + an)(1/ay + 1/ay)
>0 (11)
Where the final follows since
ai/al 2 1, (12)
an/a; > 1, (13)
ai/a; > ai/ay, (14)
a;/an, > ar/ay (15)

Thus (1/2,0,...,0,1/2)T is a KKT point, and hence optimal since the problem
is convex.

Question 3

(problem decomposition)

(2p) a) The Lagrangian subproblem separates into |Z| independent subproblems of
the form
. . . ) ) T .
minirgize fi(zi) + p xi;
the value of the Lagrangian dual function ¢(p) is the sum of these |Z|
optimal values minus g u. Any such value is a lower bound on the optimal
valuem by the Weak Duality Theorem 6.5.

(Ip)  b) Inthis case f;(x;) = ciz; + %}, where ¢; > 0 for all i, hence the Lagrangian
term for index 7 has the form c¢;x; + %x? + p;x;. Its minimum over the
closed interval X; is easily found by comparing objective values at the two
boundary points and potentially feasible stationary points.

(3p) Question 4

(Frank-Wolfe algorithm)
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Figure 1 shows the feasible set of the problem (i.e., the polyhedron with thick
black boundary lines) and some contours of the objective function. The optimal
solution is denoted by 2* (i.e., the red dot in the figure). 2® for k = 0,1,2
denotes iterates visited by the Frank-Wolfe algorithm.

Figure 1: Illustration of the Frank-Wolfe algorithm. The feasible set is a poly-
hedron with boundary denoted by the thick black lines. Some contours of the
objective function are shown. The optimal solution * = (2.5,0.5). The dotted
lines show the Frank-Wolfe iterations, with ¥, & = 0, 1,2 denoting the iterates.

The details of the algorithm steps are as follows. Let X denote the feasible set.
Let f(z1,72) denote the objective function. For any given iterate % = (2%, 2%).

The objective function gradient vector is

k
Vf(at,25) = [142 148] W B B‘ﬂ |

The search direction problem is

minimize Vf(ah, xg)Ta: (1)
T

If Inl)I(l V f(zh, I’;)TCC > Vf(axk, xg)Txk, then by the optimality conditions (for
TE

minimizing a convex function over a convex feasible set) £* is optimal. Otherwise,

let y* denote an optimal solution to the search direction problem. Then the exact

minimization line search problem can be expressed into

L k k T, 2
1-— — h
minimize flax® + (1 —a)y”) minimize  go + ha,
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where

0= (@) o (v

B kT [12 4| 4 |52
ho= (2 -y) <[4 18| Y 7 |34] )
The minimizing value of «, denoted by oF, can be found using the optimality
condition to be

(2)

29
k _ hoos h
1 i -1
g
The iterate update formula is
2" = aFgh + (1 — byt (4)

Now we begin applying the Frank-Wolfe algorithm. At the first iteration with
2’ = (2.5,0)T, the objective function gradient is

euto- [t 18-B-[2 51-B -
To solve the search direction problem in (1), it is sufficient to restrict the feasible
set to the set of all extreme points. That is,
mir;ier‘x/lize V£ (2, :cg)Tzc, (5)
where V' is the set of all extreme points defined as
V= {(0, 0),(0,2),(2,1),(2.5,0.5), (2.5, 0)}.

This amounts to finding the minimum among five numbers: 0, —48, —68, —67,
—55. The result is that y° = (2,1). Applying the formula in (2) yields

- W EIE -
= (0 SRR -

According to (3), a® = ;=. Hence, by (4)

) 4 36 13

ol i(, 0)+ (1 -1 = (17

e - ) &~ (2.12,0.76).
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This is shown in Figure 1.

At the next iteration with 2! = (22, 22), we have

Loy (120 4] o] [52] 1 [—400] _ [-23.53
Ve 2s) = [4 18] [:z; 34| 17 |—200] T |-11.76| "

Solving (5) amounts to finding the minimum of 0, —4, —10, —11, —10. This leads
to y! = (2.5,0.5). Applying (2) leads to

1275 o
= 2 ~ 3.68.

34

Thus, according to (3) o' = 0, and from (4) z* = y' = (2.5,0.5)T as shown in
Figure 1.

At the final iteration with 2% = (2.5,0.5)T, we have
—20
Vit = | YY)
Solving (5) leads to y* = & = (2.5,0.5)™. Thus, it holds that
: 2 2\T 2 ,.2\T 2
Hél)r(l Vf<$1,x2) T Z vf(xh'rZ) z.

By the optimality conditions, x?> = (2.5,0.5)" is the optimal solution to our
problem.

Question 5

(true or false)

a) False. It is not necessarily so that any such rounding, up or down, of
individual variables, lead to a feasible solution.

b) False. In the non-convex case there may be “better points” outside of the
feasible set.

¢) True. This is Proposition 4.26.




(3p)

(3p)

EXAM SOLUTION
TMA947/MMG621 — NONLINEAR OPTIMISATION 7

Question 6
(the Relaxation Theorem)

This is Theorem 6.1.

Question 7

(modelling)
Let (z;,y;) be the coordinates of the center poitn of circle ¢ = 1,...,n, and let
r; be the radius of cirlce © = 1,...,n. Then the optimization problem can be

formulated as the following;:

n
maximize Z 7r7’i2,
=1

subject to \/(xZ — )2+ (yi —yj)? > i+, 0 F# g,
<z, <L-—r, 1=1...,n,
ri <y <L—r; 1=1,...,n,
r; >0, 1=1,...,n.




