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Question 1

(the simplex method)

a) We first rewrite the problem on standard form. We introduce slack variables(2p)
s1 and s2. Consider the following linear program:

minimize z = − 3 x1 − 5x2

subject to 2x2 + s1 = 12,

3 x1 + 2x2 + s2 = 18,

x1, x2, s1, s2 ≥ 0.

We start directly with phase II at the origin. The starting basis is (s1, s2)
T.

Calculating the reduced costs for the non-basic variables x1, x2 we obtain
c̃N = (−3,−5)T, meaning that x2 enters the basis. From the minimum
ratio test, we get that s1 leaves the basis.

Updating the basis we now have (x2, s2)
T in the basis. Calculating the

reduced costs, we obtain c̃N = (−12, 5/2)T, meaning that x1 enters the
basis. From the minimum ratio test we get that s2 leaves the basis.

Updating the basis we now have (x1, x2)
T in the basis. Calculating the

reduced costs, we obtain c̃N = (3/2, 2)T, meaning that the current basis is
optimal. The optimal solution is thus

x∗ = (x1, x2, s1, s2)
T = (2, 6, 0, 0)T,

with optimal objective value f ∗ = 36.

b) Since there is an optimal solution to the problem, Strong duality guarantees(1p)
the existence of a dual optimal solution. The dual optimal solution is
y∗T = cTBB

−1 = (−3/2,−1). The optimal basis is not degenerate. The
optimal solution is thus unique.

Question 2

(the KKT conditions)

a) See the Book, system (5.9).(1p)

b) The vector x1 satisfies the KKT conditions (5.9).(1p)
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c) Nothing. (Under the conditions given, there may be optimal solutions that(1p)
do not satisfy the KKT conditions.)

Question 3(3p)

(Lagrangian duality)

The Lagrange function is

L(x, µ) = −x1 − 2x2 + µ1(x
2
1 + x2

2 − 1) + µ2(x1 + 0.5x2 − 1)

= µ1x
2
1 + (µ2 − 1)x1

︸ ︷︷ ︸

q1(x1)

+µ1x
2
2 + (0.5µ2 − 2)x2

︸ ︷︷ ︸

q2(x2)

−µ1 − µ2.

When µ1 < 0, L(x, µ) is strictly concave with respect to x which makes minx1
q1(x1)

and minx2
q2(x2) unbounded from below. Similarly, when µ1 = 0, L(x, µ) is linear

and at least one of minx1
q1(x1) and minx2

q2(x2) is unbounded from below. Only
when µ1 > 0 is L(x, µ) strictly convex with respect to x, and minx L(x, µ) is
finite. In this case, the minimizers of q1 and q2 are, respectively,

x1(µ) =
1− µ2

2µ1

, x2(µ) =
2− 0.5µ2

2µ1

. (1)

Consequently, the dual function is

q(µ) =







− 1
4µ1

((1− µ2)
2 + (2− 0.5µ2)

2)− µ1 − µ2, when µ1 > 0

−∞, when µ1 ≤ 0
.

The dual problem is
minimize q(µ)

subject to µ1 > 0
.

The dual function q is differentiable as expressed. The dual problem is always
convex.

Since the primal problem is convex and the Slater constraint qualifications hold,
strong duality holds. Hence, the duality gap is zero and the optimal dual solution
is attained (which is the same as the Lagrangian multiplier).

There are multiple ways to obtain the optimal primal and dual solutions. An
approach is as follows: By graphically inspecting the primal problem, it can be
seen that (1, 0)T is the optimal primal solution. Then, by Theorem 6.9 in the
text, if x⋆ = (1, 0)T and µ⋆ = (µ⋆

1, µ
⋆
2)

T are the optimal primal and dual pair,
they must satisfy (1). This implies that µ⋆

1 = −3
2
and µ⋆

2 = 4.
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Question 4(3p)

(modelling)

Introduce the binary variables

xi =







1 if team i is in group 1

0 otherwise
, i = 1, . . . , 14.

The objective is to minimize the function

13∑

i=1

14∑

j=i+1

dij(xixj + (1− xi)(1− xj)).

The constraints are

14∑

i=1
xi = 7

x1 + x2 = 1

14∑

i=1
xipi =

14∑

i=1
(1− xi)pi + 0.2

14∑

i=1
pi

14∑

i=1
(1− xi)pi =

14∑

i=1
xipi + 0.2

14∑

i=1
pi

xi ∈ {0, 1}, i = 1, . . . , 14

The first constraint makes sure that there are 7 teams in each group. The second
constraint ensures that the two best teams are not in the same group. The
third and the fourth constraints ensure that the groups are arranged so that the
difference between the sum of points in the two groups are not bigger than 20%
of the total points.

Question 5

(true or false)

a) False – f may be discontinuous, for example.(1p)

b) False – there may be no rounding that is even feasible.(1p)
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c) True – the linear program describing the Phase I problem is a linear program(1p)
with an objective function that is bounded from below by zero. Since the
objective value is bounded the extreme point with the lowest objective value
is optimal.

Question 6(3p)

(global convergence of a penalty method)

See Theorem 13.4.

Question 7

(the KKT conditions)

a) The KKT conditions are(2p)

∇f(x) + λ∇h(x) + µ∇g(x) =








2x1 + λ
2x2 + λ
2x3 + λ

2x4 + λ+ µ








= 0, (1)

x1 + x2 + x3 + x4 = 1, (2)

x4 ≤ A, (3)

µ ≥ 0, (4)

µ(x4 − A) = 0, (5)

giving that x1 = x2 = x3 = −λ/2 and x4 = (−λ − µ)/2. From (1) we
then get that λ = (−2 − µ)/4 and thus x1 = x2 = x3 = 1/4 + µ/8 and
x4 = 1/4− 3µ/8.

From (2) we get that 3µ/8 ≥ 1/4 − A; we treat the following three cases
individually.

1. Assume that A > 1/4, implying that µ ≥ 0, x1 = x2 = x3 ≥ 1/4 and
x4 = 1− (x1 + x2 + x3) ≤ 1/4. From (4) it follows that µ = 0 and the
optimal solution hence is x1 = x2 = x3 = x4 = 1/4.

2. A = 1/4 leads to the same optimal solution as the case above.

3. Assume that A ≤ 1/4. Let x4 < A; then µ = 0 and x4 = 1/4 > A.
Therefore, x4 = A and x1 = x2 = x3 = 1/3(1 − A). Then, the
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original problem reduces to the minimization of 1/3(1 − A2) + A2 =
1/3(1− 2A+4A2) which is always ≥ 1/4 and 1/3(1−A2) +A2 = 1/4
for A = 1/4. The optimal solution is thus x1 = x2 = x3 = x4 = 1/4.

b) The objective function of the problem considered can be written as a func-(1p)
tion of the parameter A as

f(A) =







1
4

if A ≥ 1/4,
1
3
(1− 2A+ 4A2) otherwise.


