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Constrained optimization problem

» Consider the problem to find

f* = infimum f(x), (1a)
subject to x € X, (1b)

X C R" nonempty, closed & convex; f : R” — R is C! on X

» Solution idea: generalize unconstrained optimization methods
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Feasible-direction descent methods, overview

Step 0. Determine a starting point xqg € X. Set k :=0

Step 1. Find a feasible descent search direction p, € R",
such that there exists & > 0 satisfying
» xx +apg € X, Va € (0,a]
> f(Xk + ozpk) < f(Xk), Va € (0,0_t]

Step 2. Determine a step length ay > 0 such that
f(xk + akpy) < f(xk) and xx + axp, € X

Step 3. Let xky1 := Xk + axpy

Step 4. If a termination criterion is fulfilled, then stop!
Otherwise, let k := k 4+ 1 and go to Step 1
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Just as local as methods for unconstrained optimization

v

v

Search direction often of the form p, = y, — xx, where
yx € X solves an (easy) approximate problem

v

Line searches analogous to unconstrained case

» Termination criteria and descent based on first-order
optimality and/or fixed-point theory (p, ~ 0")
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Feasible-direction descent methods, polyhedral feasible set

» For general X, finding feasible descent direction and step length is
difficult (e.g., systems of nonlinear equations)

» X polyhedral = search directions and step length easy to find

> X polyhedral = local mininma are KKT points

> Methods (to be discussed) will find KKT points
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LP-based algorithm, I: The Frank—\Wolfe method Frank—Wolfe

» Frank—Wolfe method based on first-order approximation of f at x:

> First-order (necessary) optimality conditions:
x* local minimum of f on X = Vf(x*)T(x —x*) >0, xeX

x* local minimum of f on X = minierp(ize VIx)T(x—x*)=0
X

> Satisfying necessary conditions # x* local minimum

> Violate necessary conditions = can construct feasible descent dir.
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LP-based algorithm, I: The Frank—\Wolfe method Frank—Wolfe

» At iterate x, € X, if
minimize Vf(xx)"(y — xx) <0,
yeX
yi € argmin V£ (xx)T(y — xx)
yeX

Then,
Pk ‘= Yk — Xx is a feasible descent direction

> Solve LP to find yx (and pk), since X polyhedral
» Search direction towards an extreme point of X

» This is the basis of the Frank—Wolfe algorithm
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LP-based algorithm, I: The Frank—\Wolfe method Frank—Wolfe

» If LP has finite optimum y, = search direction py = yx — xx
> If LP obj. val. unbounded, simplex method still finds search dir.

» In this lecture, we assume X bounded for simplicity
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The search-direction problem Frank—Wolfe
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Algorithm description, Frank—Wolfe Frank—Wolfe

Step 0. Find xq € X (e.g. any extreme point in X). Set k :=0

Step 1. Find an optimal solution y, to the problem to

migier}}ize ze(y) == VF(xe) " (y — xx) (2)

Let p, := y, — Xk be the search direction

Step 2. Line search: (approximately) minimize f(xx + ap,) over
a € [0,1]. Let ay be the step length

Step 3. Let Xxkt+1 := Xk + aupy

Step 4. If, for example, zx(y,) or ay is close to zero, then
terminate! Otherwise, let k := k+ 1 and go to Step 1
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*Frank-Wolfe convergence Frank—Wolfe

» Suppose X C R" nonempty polytope; f in C* on X

> In Step 2 (line search), we either use an exact line search or the
Armijo step length rule

> Then: the sequence {xy} is bounded and every limit point (at least
one exists) is stationary;

> If f is convex on X, then every limit point is globally optimal

TMAO947 — Lecture 13 Feasible direction methods



Franke-Wolfe convergence Frank—Wolfe
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The convex case: Lower bounds Frank—Wolfe

> Suppose f is convex on X. Then for each k, Yy € X it holds that
fly) > f(xx) + V) (y — x) (since f convex)
> f(xk) + V)T (vk — x) (by definition of yx)

implying that
£ > ) + V) " (v — x)

lower bound of f*

> Keep the best lower bound (LBD) up to current iteration. That is,
LBD « max {LBD, f(xk)+ Vf(x)" (yx —x«)}

In step 4, terminate if f(xx) — LBD is small enough
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Notes Frank—Wolfe

» Frank—Wolfe uses linear approximations—works best for almost
linear problems

> For highly nonlinear problems, the approximation is bad—the
optimal solution may be far from an extreme point

» In order to find a near-optimum requires many iterations—the
algorithm is slow

> Extreme points in previous iterations forgotten; can speed up by
storing and using previous extreme points
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LP-based algorithm, II: Simplicial decomposition

> Representation Theorem (for polytopes):
» P={xeR"| Ax =b; x > 0"}, nonempty and bounded
» V ={v! ..., vk} be the set of extreme points of P
Then,
K

K
x€EP <— x:Za;v’, for some aq,...,a, >0, Za,-zl
i=1 i=1

» Simplicial decomposition idea: use some (hopefully few) extreme
points to describe optimal solution x*

x* = Za;vi, K| < K
i€
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LP-based algorithm, II: Simplicial decomposition

> Extreme points of feasible set v, ..., vK

v

At each iteration k, maintain “working set” P, C {v! v2, ... vK}

v

Check for stationarity of x, € Px (just like Frank-Wolfe)

> Xj stationary = terminate
> else, identify (possibly new) extreme pt. yx; Prsr1 = Pr U {yx}

v

Optimize f over conv(Pyi1 U {xk}) for xxi1
— restricted master problem, multi-dimensional line search, etc
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Algorithm description, Simplicial decomposition

Step 0. Find x¢ € X, for example any extreme point in X. Set
k:=0. Let Pp:=10

Step 1. Let y, be an optimal solution to the LP problem

minimize  zc(y) := Vf(xx) T (y — xk)
yeX

Let Pry1:=Pr U {yk}
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Algorithm description, Simplicial decomposition

Step 2. Min f over conv({xx} U Pks1). Let
(pkt1s Vir1) € R RIPestl minimizes restricted master
problem (RMP)

mi&im)ize f (MXk + 2P V(i)}’i)

[Prsal
subjectto  p+ > v(i)=1,
i=1

,UvV(")Zov i:1a27"'3|Pk+1|

[Pl

Step 3. Let x41 := pkrixk + > vi+1(i)y;
i=1

Step 4. If z(y,) =~ 0 or if Prj1 = Pk then terminate (why?)
Otherwise, let k := k + 1 and go to Step 1
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Algorithm description, Simplicial decomposition

> Basic version keeps adding extreme points: Pyi1 < Pr U {yk}

v

Alternative: drop members of Py with small weights in RMP;
or set upper bound on |Py]|

v

Special case: |Px| =1 = Frank-Wolfe (FW) algorithm!

v

Simplicial decomposition (SD) requires fewer iterations than FW

v

Unfortunately, solving RMP is more difficult than line search

» but RMP feasible set structured — unit simplex
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Simplicial decomposition illustration

Figure: Example implementation of SD. Starting at xo = (1,—1)7, and
with Py as the extreme point at (2,0)7, |Px| < 2.
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Simplicial decomposition illustration

Figure: Example implementation of SD. Starting at xo = (1,—1)7, and
with Py as the extreme point at (2,0)7, |Px| < 2.
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*Simplicial decomposition convergence SD

> It does at least as well as the Frank—Wolfe algorithm: line segment
[xk, y,] feasible in RMP

> SD converges in finite number of iterations if all of following hold

> x* unique
» RMP solved exactly
> |Px| large enough (to represent x*)

» Much more efficient than the Frank—Wolfe algorithm in practice
(consider example solved by FW and SD)

» Can solve the RMPs efficiently, since the constraints are simple
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The gradient projection algorithm Gradient projection

» The gradient projection algorithm based on:

x* € X stationary <= x* =Projx[x" —aVf(x")], Va >0

Nx(x) x5 — VF(x*)
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Gradient projection algorithms Gradient projection

> x not stationary; p = Projy[x — aVf(x)] — x # 0 for any & > 0

» p feasible descent direction
» A version of gradient projection method: xx11 = Xk + axp

> Another version: gradient projection method with projection arc:
X1 = Projx[xx — axVF(x)]

step size o, determined using Armijo rule

» X =R" = gradient projection becomes steepest descent
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Gradient projection, projection arc Gradient projection

X — OtVf(Xk)

Xk~ (8/2)VF(xe)

Xk — (d/4)Vf(xk)
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Gradient projection algorithms Gradient projection

> Bottleneck: how can we compute projections?

> In general, we study the KKT conditions of the system and apply a
simplex-like method.

» If we have a specially structured feasible polyhedron, projections
may be easier to compute.

» hypercube {x |0 < x; <1,i=1,...,n}
n

» unit simplex {x | >~ x; =1, x > 0} (cf. RMP in simplicial
i=1

decomposition)
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Easy projections Gradient projection

> Example: the feasible setis S={x e R" | 0< x; <1,i=1,...,n}.

> Then Projg(x) = z, where

0, x; < 0,
zi=¢x, 0<x<1
1 1< x;,

fori=1,...,n

> Exercise: prove this by applying the variational inequality (or KKT
conditions) to the problem

. 1
mmzeSEHX — z||2
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*Convergence, | Gradient projection

» X C R" nonempty, closed, convex; f € Ct on X;

> for the starting point xo € X it holds that the level set leve (f(xo))
intersected with X is bounded

> step length o is given by the Armijo step length rule along the
projection arc

> Then: the sequence {xy} is bounded;
> every limit point of {xx} is stationary;
> {f(xk)} descending, lower bounded, hence convergent

» Convergence arguments similar to steepest descent one
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*Convergence, |l Gradient projection

> Assume: X C R" nonempty, closed, convex;
> fe ClonX;f convex;
> an optimal solution x* exists

> In the algorithm (4), the step length c is given by the Armijo step
length rule along the projection arc

> Then: the sequence {x} converges to an optimal solution

> Note: with X = R"” = convergence of steepest descent for convex
problems with optimal solutions!
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An illustration of FW vs. SD, | Gradient projection

v

A large-scale nonlinear network flow problem which is used to
estimate traffic flows in cities

» Model over the small city of Sioux Falls in North Dakota, USA; 24
nodes, 76 links, and 528 pairs of origin and destination

> Three algorithms for the RMPs were tested—a Newton method and
two gradient projection methods. MATLAB implementation.

» Remarkable difference—The Frank—Wolfe method suffers from very
small steps being taken. Why? Many extreme points active = many
routes used
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An illustration of FW vs. SD, | Gradient projection

Sioux Falls network
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Figure: The performance of SD vs. FW on the Sioux Falls network
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