
Lecture 13

Feasible direction methods

Emil Gustavsson
Fraunhofer-Chalmers Centre
December 6, 2017

Constrained optimization problem

◮ Consider the problem to find

f ∗ = infimum f (x), (1a)

subject to x ∈ X , (1b)

X ⊆ R
n nonempty, closed & convex; f : Rn → R is C 1 on X

◮ Solution idea: generalize unconstrained optimization methods

TMA947 – Lecture 13 Feasible direction methods 2 / 34

Feasible-direction descent methods, overview

Step 0. Determine a starting point x0 ∈ X . Set k := 0

Step 1. Find a feasible descent search direction pk ∈ R
n,

such that there exists ᾱ > 0 satisfying

◮ xk + αpk ∈ X , ∀α ∈ (0, ᾱ]
◮ f (xk + αpk) < f (xk), ∀α ∈ (0, ᾱ]

Step 2. Determine a step length αk > 0 such that
f (xk + αkpk) < f (xk) and xk + αkpk ∈ X

Step 3. Let xk+1 := xk + αkpk

Step 4. If a termination criterion is fulfilled, then stop!
Otherwise, let k := k + 1 and go to Step 1

TMA947 – Lecture 13 Feasible direction methods 3 / 34

Notes

◮ Just as local as methods for unconstrained optimization

◮ Search direction often of the form pk = yk − xk , where
yk ∈ X solves an (easy) approximate problem

◮ Line searches analogous to unconstrained case

◮ Termination criteria and descent based on first-order
optimality and/or fixed-point theory (pk ≈ 0n)

TMA947 – Lecture 13 Feasible direction methods 4 / 34

Feasible-direction descent methods, polyhedral feasible set

◮ For general X , finding feasible descent direction and step length is
difficult (e.g., systems of nonlinear equations)

◮ X polyhedral =⇒ search directions and step length easy to find

◮ X polyhedral =⇒ local mininma are KKT points

◮ Methods (to be discussed) will find KKT points

TMA947 – Lecture 13 Feasible direction methods 5 / 34

LP-based algorithm, I: The Frank–Wolfe method Frank–Wolfe

◮ Frank–Wolfe method based on first-order approximation of f at xk :

◮ First-order (necessary) optimality conditions:

x∗ local minimum of f on X =⇒ ∇f (x∗)T (x − x∗) ≥ 0, x ∈ X

x∗ local minimum of f on X =⇒ minimize
x∈X

∇f (x∗)T (x − x∗) = 0

◮ Satisfying necessary conditions ; x∗ local minimum

◮ Violate necessary conditions ⇒ can construct feasible descent dir.

TMA947 – Lecture 13 Feasible direction methods 6 / 34

LP-based algorithm, I: The Frank–Wolfe method Frank–Wolfe

◮ At iterate xk ∈ X , if







minimize
y∈X

∇f (xk)
T (y − xk) < 0,

yk ∈ argmin
y∈X

∇f (xk)
T (y − xk)

Then,
pk := yk − xk is a feasible descent direction

◮ Solve LP to find yk (and pk), since X polyhedral

◮ Search direction towards an extreme point of X

◮ This is the basis of the Frank–Wolfe algorithm

TMA947 – Lecture 13 Feasible direction methods 7 / 34

LP-based algorithm, I: The Frank–Wolfe method Frank–Wolfe

◮ If LP has finite optimum yk =⇒ search direction pk = yk − xk

◮ If LP obj. val. unbounded, simplex method still finds search dir.

◮ In this lecture, we assume X bounded for simplicity

TMA947 – Lecture 13 Feasible direction methods 8 / 34

The search-direction problem Frank–Wolfe

−5 0 5 10
−5

0

5

10

15

20

xk

yk

pk

∇f (xk)

X

TMA947 – Lecture 13 Feasible direction methods 9 / 34

Algorithm description, Frank–Wolfe Frank–Wolfe

Step 0. Find x0 ∈ X (e.g. any extreme point in X). Set k := 0

Step 1. Find an optimal solution yk to the problem to

minimize
y∈X

zk(y) := ∇f (xk)
T (y − xk) (2)

Let pk := y k − xk be the search direction

Step 2. Line search: (approximately) minimize f (xk + αpk) over
α ∈ [0, 1]. Let αk be the step length

Step 3. Let xk+1 := xk + αkpk

Step 4. If, for example, zk(y k) or αk is close to zero, then
terminate! Otherwise, let k := k + 1 and go to Step 1

TMA947 – Lecture 13 Feasible direction methods 10 / 34

∗Frank-Wolfe convergence Frank–Wolfe

◮ Suppose X ⊂ R
n nonempty polytope; f in C 1 on X

◮ In Step 2 (line search), we either use an exact line search or the
Armijo step length rule

◮ Then: the sequence {xk} is bounded and every limit point (at least
one exists) is stationary;

◮ If f is convex on X , then every limit point is globally optimal

TMA947 – Lecture 13 Feasible direction methods 11 / 34

Franke-Wolfe convergence Frank–Wolfe

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

TMA947 – Lecture 13 Feasible direction methods 12 / 34

The convex case: Lower bounds Frank–Wolfe

◮ Suppose f is convex on X . Then for each k , ∀y ∈ X it holds that

f (y) ≥ f (xk) +∇f (xk)
T (y − xk) (since f convex)

≥ f (xk) +∇f (xk)
T (yk − xk) (by definition of yk)

implying that
f ∗ ≥ f (xk) +∇f (xk)

T (yk − xk)
︸ ︷︷ ︸

lower bound of f ∗

◮ Keep the best lower bound (LBD) up to current iteration. That is,

LBD← max
{
LBD, f (xk) +∇f (xk)

T (yk − xk)
}

In step 4, terminate if f (xk)− LBD is small enough

TMA947 – Lecture 13 Feasible direction methods 13 / 34

Notes Frank–Wolfe

◮ Frank–Wolfe uses linear approximations—works best for almost

linear problems

◮ For highly nonlinear problems, the approximation is bad—the
optimal solution may be far from an extreme point

◮ In order to find a near-optimum requires many iterations—the
algorithm is slow

◮ Extreme points in previous iterations forgotten; can speed up by
storing and using previous extreme points

TMA947 – Lecture 13 Feasible direction methods 14 / 34

LP-based algorithm, II: Simplicial decomposition SD

◮ Representation Theorem (for polytopes):

◮ P = { x ∈ R
n | Ax = b; x ≥ 0n}, nonempty and bounded

◮ V = {v1, . . . , vK} be the set of extreme points of P

Then,

x ∈ P ⇐⇒ x =
K∑

i=1

αiv
i , for some α1, . . . , αk ≥ 0,

K∑

i=1

αi = 1

◮ Simplicial decomposition idea: use some (hopefully few) extreme
points to describe optimal solution x∗

x∗ =
∑

i∈K

αiv
i , |K| ≪ K

TMA947 – Lecture 13 Feasible direction methods 15 / 34

LP-based algorithm, II: Simplicial decomposition SD

◮ Extreme points of feasible set v1, . . . , vK

◮ At each iteration k , maintain “working set” Pk ⊆ {v
1, v2, . . . , vK}

◮ Check for stationarity of xk ∈ Pk (just like Frank-Wolfe)

◮ xk stationary =⇒ terminate
◮ else, identify (possibly new) extreme pt. yk ; Pk+1 = Pk ∪ {yk}

◮ Optimize f over conv(Pk+1 ∪ {xk}) for xk+1

– restricted master problem, multi-dimensional line search, etc

TMA947 – Lecture 13 Feasible direction methods 16 / 34

Algorithm description, Simplicial decomposition SD

Step 0. Find x0 ∈ X , for example any extreme point in X . Set
k := 0. Let P0 := ∅

Step 1. Let y k be an optimal solution to the LP problem

minimize
y∈X

zk(y) := ∇f (xk)
T (y − xk)

Let Pk+1 := Pk ∪ {yk}

TMA947 – Lecture 13 Feasible direction methods 17 / 34

Algorithm description, Simplicial decomposition SD

Step 2. Min f over conv({xk} ∪ Pk+1). Let
(µk+1, νk+1) ∈ R× R

|Pk+1| minimizes restricted master
problem (RMP)

minimize
(µ,ν)

f
(

µxk +
∑

yi∈Pk+1
ν(i)y i

)

subject to µ+
|Pk+1|∑

i=1

ν(i) = 1,

µ, ν(i) ≥ 0, i = 1, 2, . . . , |Pk+1|

Step 3. Let xk+1 := µk+1xk +
|Pk+1|∑

i=1

νk+1(i)y i

Step 4. If zk(y k) ≈ 0 or if Pk+1 = Pk then terminate (why?)
Otherwise, let k := k + 1 and go to Step 1

TMA947 – Lecture 13 Feasible direction methods 18 / 34

Algorithm description, Simplicial decomposition SD

◮ Basic version keeps adding extreme points: Pk+1 ← Pk ∪ {yk}

◮ Alternative: drop members of Pk with small weights in RMP;
or set upper bound on |Pk |

◮ Special case: |Pk | = 1 =⇒ Frank–Wolfe (FW) algorithm!

◮ Simplicial decomposition (SD) requires fewer iterations than FW

◮ Unfortunately, solving RMP is more difficult than line search

◮ but RMP feasible set structured – unit simplex

TMA947 – Lecture 13 Feasible direction methods 19 / 34

Simplicial decomposition illustration SD

Figure: Example implementation of SD. Starting at x0 = (1,−1)T , and
with P0 as the extreme point at (2, 0)T , |Pk | ≤ 2.

TMA947 – Lecture 13 Feasible direction methods 20 / 34

Simplicial decomposition illustration SD

Figure: Example implementation of SD. Starting at x0 = (1,−1)T , and
with P0 as the extreme point at (2, 0)T , |Pk | ≤ 2.

TMA947 – Lecture 13 Feasible direction methods 21 / 34

Simplicial decomposition illustration SD

Figure: Example implementation of SD. Starting at x0 = (1,−1)T , and
with P0 as the extreme point at (2, 0)T , |Pk | ≤ 2.

TMA947 – Lecture 13 Feasible direction methods 22 / 34

Simplicial decomposition illustration SD

Figure: Example implementation of SD. Starting at x0 = (1,−1)T , and
with P0 as the extreme point at (2, 0)T , |Pk | ≤ 2.

TMA947 – Lecture 13 Feasible direction methods 23 / 34

Simplicial decomposition illustration SD

Figure: Example implementation of SD. Starting at x0 = (1,−1)T , and
with P0 as the extreme point at (2, 0)T , |Pk | ≤ 2.

TMA947 – Lecture 13 Feasible direction methods 24 / 34

∗Simplicial decomposition convergence SD

◮ It does at least as well as the Frank–Wolfe algorithm: line segment
[xk , y k] feasible in RMP

◮ SD converges in finite number of iterations if all of following hold

◮ x∗ unique
◮ RMP solved exactly
◮ |Pk | large enough (to represent x∗)

◮ Much more efficient than the Frank–Wolfe algorithm in practice
(consider example solved by FW and SD)

◮ Can solve the RMPs efficiently, since the constraints are simple

TMA947 – Lecture 13 Feasible direction methods 25 / 34

The gradient projection algorithm Gradient projection

◮ The gradient projection algorithm based on:

x∗ ∈ X stationary ⇐⇒ x∗ = ProjX [x
∗ − α∇f (x∗)], ∀α > 0

�
�
�
�

X

y

x∗ −∇f (x∗)

x∗

NX (x
∗)

TMA947 – Lecture 13 Feasible direction methods 26 / 34

Gradient projection algorithms Gradient projection

◮ x not stationary; p = ProjX [x − α∇f (x)]− x 6= 0 for any α > 0

◮ p feasible descent direction
◮ A version of gradient projection method: xk+1 = xk + αkp

◮ Another version: gradient projection method with projection arc:

xk+1 := ProjX [xk − αk∇f (xk)]

step size αk determined using Armijo rule

◮ X = R
n =⇒ gradient projection becomes steepest descent

TMA947 – Lecture 13 Feasible direction methods 27 / 34

Gradient projection, projection arc Gradient projection

X

xk

xk − ᾱ∇f (xk)

xk − (ᾱ/2)∇f (xk)

xk − (ᾱ/4)∇f (xk)

xk − α∇f (xk)

TMA947 – Lecture 13 Feasible direction methods 28 / 34

Gradient projection algorithms Gradient projection

◮ Bottleneck: how can we compute projections?

◮ In general, we study the KKT conditions of the system and apply a
simplex-like method.

◮ If we have a specially structured feasible polyhedron, projections
may be easier to compute.

◮ hypercube {x | 0 ≤ xi ≤ 1, i = 1, . . . , n}

◮ unit simplex {x |
n∑

i=1

xi = 1, x ≥ 0} (cf. RMP in simplicial

decomposition)

TMA947 – Lecture 13 Feasible direction methods 29 / 34

Easy projections Gradient projection

◮ Example: the feasible set is S = {x ∈ R
n | 0 ≤ xi ≤ 1, i = 1, . . . , n}.

◮ Then ProjS(x) = z , where

zi =







0, xi < 0,

xi , 0 ≤ xi ≤ 1

1, 1 < xi ,

for i = 1, . . . , n.

◮ Exercise: prove this by applying the variational inequality (or KKT
conditions) to the problem

minz∈S

1

2
‖x − z‖2

TMA947 – Lecture 13 Feasible direction methods 30 / 34

∗Convergence, I Gradient projection

◮ X ⊆ R
n nonempty, closed, convex; f ∈ C 1 on X ;

◮ for the starting point x0 ∈ X it holds that the level set levf (f (x0))
intersected with X is bounded

◮ step length αk is given by the Armijo step length rule along the
projection arc

◮ Then: the sequence {xk} is bounded;

◮ every limit point of {xk} is stationary;

◮ {f (xk)} descending, lower bounded, hence convergent

◮ Convergence arguments similar to steepest descent one

TMA947 – Lecture 13 Feasible direction methods 31 / 34

∗Convergence, II Gradient projection

◮ Assume: X ⊆ R
n nonempty, closed, convex;

◮ f ∈ C 1 on X ; f convex;

◮ an optimal solution x∗ exists

◮ In the algorithm (4), the step length αk is given by the Armijo step
length rule along the projection arc

◮ Then: the sequence {xk} converges to an optimal solution

◮ Note: with X = R
n =⇒ convergence of steepest descent for convex

problems with optimal solutions!

TMA947 – Lecture 13 Feasible direction methods 32 / 34

An illustration of FW vs. SD, I Gradient projection

◮ A large-scale nonlinear network flow problem which is used to
estimate traffic flows in cities

◮ Model over the small city of Sioux Falls in North Dakota, USA; 24
nodes, 76 links, and 528 pairs of origin and destination

◮ Three algorithms for the RMPs were tested—a Newton method and
two gradient projection methods. MATLAB implementation.

◮ Remarkable difference—The Frank–Wolfe method suffers from very
small steps being taken. Why? Many extreme points active = many
routes used

TMA947 – Lecture 13 Feasible direction methods 33 / 34

An illustration of FW vs. SD, I Gradient projection

0 10 20 30 40 50 60 70 80 90 100
10

−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Sioux Falls network

CPU time (s)

M
a
x
 r

e
la

ti
v
e
 o

b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 e

rr
o
r

SD/Grad. proj. 1
SD/Grad. proj. 2
SD/Newton
Frank−Wolfe

Figure: The performance of SD vs. FW on the Sioux Falls network

TMA947 – Lecture 13 Feasible direction methods 34 / 34

	Frank–Wolfe method
	Simplicial decomposition
	Gradient projection

