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Question 1

(the simplex method)

a) We first rewrite the problem on standard form. We introduce slack variables(2p)
s1 and s2. Consider the following linear program:

minimize z = 3x1 − x2 + x3

subject to x1 + 3x2 − x3 + s1 = 5,

2x1 − x2 + 2x3 − s2 = 2,

x1, x2, x3, s1, s2 ≥ 0.

Phase I

We introduce an artificial variable a and formulate our Phase I problem.

minimize z = a

subject to x1 + 3x2 − x3 + s1 = 5,

2x1 − x2 + 2x3 − s2 + a = 2,

x1, x2, x3, s1, s2, a ≥ 0.

We now have a starting basis (s1, a). Calculating the reduced costs we
obtain c̃N = (−2, 1,−2, 1)T, meaning that x1 or x3 should enter the basis.
We choose x3. From the minimum ratio test, we get that a should leave
the basis. This concludes Phase I and we now have the basis (s1, x3).

Phase II

Calculating the reduced costs, we obtain c̃N = (2,−1
2
, 1

2
)T. meaning that

x2 should enter the basis. From the minimum ratio test, we get that the
outgoing variable is s1. Updating the basis we now have (x2, x3) in the
basis.

Calculating the reduced costs, we obtain c̃N = (12
5
, 1

5
, 2

5
)T ≥ 0, meaning

that the current basis is optimal. The optimal solution is thus

(x1, x2, x3, s1, s2)
T = (0,

12

5
,
11

5
, 0, 0, 0)T,

which in the original variables means (x1, x2, x3)
T = (0, 12

5
, 11

5
)T with opti-

mal objective value f ⋆ = −1
5
.

b) Calculating the reduced costs of the modified problem for the optimal basis(1p)
of the original problem, we obtain c̃N = (12

5
, 1

5
, 2

5
, 7

10
)T ≥ 0 meaning that the

the optimal basis from the original problem gives the optimal solution of the
modified problem (x1, x2, x3, x4)

T = (0, 12
5
, 11

5
, 0)T with optimal objective

value f ⋆ = −1
5
.
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Question 2

(nonlinear programming)

a) As ∇f(x) = x − c, we have that ∇f(x)T
p = p

T(x − c). With x =(1p)
(−3, 4)T we hence have that descent is obtained whenever ∇f(x)T

p < 0,
i.e. whenever p1(−3−c1)+p2(4−c2) < 0. Further if p 6= 0 and f(x)T

p ≥ 0,
by strict convexity of f we have, for any δ > 0, that f(x + δp) > f(x) +
δ∇f(x)T

p ≥ f(x), so p is a descent direction to f at x = (−3, 4)T precisely
when p1(−3 − c1) + p2(4 − c2) < 0.

b) With the set-up considered we will, for a given penalty parameter value(2p)
k (a non-negative integer) consider the following penalty function to be
minimized over R:

Pk(x) :=







x2 + k(1 − x), x < 1,

x2, x ≥ 1,

The minimizer x∗

k of Pk is at x = 1
2

for k = 1 and at x = 1 for all positive
integers k ≥ 2. The latter is also the optimal solution to the problem.

Question 3(3p)

(characterization of convexity in C1)

This is Theorem 3.61(a).

Question 4

(modelling)

a) Let xt denote the number of units purchased from the producer on day t,(2p)
and let yt denote the number of units in the storage at the beginning of
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time t. Then the model is

minimize
7

∑

t=1

(ctxt + gyt) ,

subject to xt + yt ≥ dt, t = 1, . . . , 7,

yt+1 = yt + xt − dt, t = 1, . . . , 6,

y1 = 0,

yt ≤ M, t = 1, . . . , 7,

xt, yt ≥ 0, t = 1, . . . , 7.

b) We now introduce variables x
high
t denoting the number of units purchased(1p)

on day t for the higher price c
high
t , and xlow

t denoting the number of units
purchased on day t for the lower price ct. Now the model is

minimize
7

∑

t=1

(

c
high
t x

high
t + ctx

low
t + gyt

)

,

subject to xt + yt ≥ dt, t = 1, . . . , 7,

yt+1 = yt + xt − dt, t = 1, . . . , 6,

y1 = 0,

yt ≤ M, t = 1, . . . , 7,

xt = x
high
t + xlow

t , t = 1, . . . , 7,

xlow
t ≤ K, t = 1, . . . , 7,

xt, yt ≥ 0, t = 1, . . . , 7.

Question 5

(true or false)

a) False. Counter example: f = |x|, x = 0, and p = 1. Then p is a subgradient(1p)
to f at x = 0, but it is not a descent direction.

b) True. The claim follows directly from weak duality.(1p)

c) True. For all x ∈ S, we can choose y = x in the minimization, implying(1p)
that the value of the infimum must be smaller than or equal to zero.
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Question 6

(KKT conditions)

a)(2p)

Notice that the constraint (x1 + x2 − 4)2 ≥ 1 is active precisely when
x1 + x2 − 4 = ±1. The feasible set can thus be drawn as two disjoint
triangles with extreme points in (0, 0), (0, 3), (3, 0) and (4, 4), (4, 1), (1, 4),
respectively.

The level curves of the objective function are circles centred in (2, 2), so the
negative gradient of the objective function at x lies along the line from (2, 2)
to x. This allows us to draw the figure 1. Searching for points where the
negative objective function lies in the normal cone, i.e., −∇f(x) ∈ NS(x),
we graphically find the KKT-points indicated in the figure. Thus the KKT
points are {(0, 0), (2, 0), (3, 0), (4, 1), (4, 2), (4, 4), (2, 4), (1, 4), (0, 3), (0, 2)}.

b) To motivate logically we need to establish two claims.(1p)
Claim 1: The problem has some optimal solution.
Claim 2: Any (locally) optimal solution is a KKT-point.

To establish Claim 1, we note that the objective function and all constraint
functions are continuous, so the feasible set S is closed. Further S is clearly
bounded, due to the constraints 0 ≤ xi ≤ 4. Hence Weierstrass’ Theorem
establishes the claim.

To establish Claim 2, we recall that any locally optimal is a KKT-point
if some constraint qualification holds. Looking at figure 1, we can note
that the gradients of the active constraints are linearly independent in each
point, hence LICQ holds.

Question 7

(linear programming duality and optimality)

a) For problem a), let yij be the dual variable associated with constraint tj −(1p)
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Figure 1: Feasible set and level curves of the objective function. Green arrows
indicate the negative objective function gradient, red arrows indicate gradients
of active constraints. The normal cones are indicated in yellow.

ti ≥ Ti corresponding to edge (i, j), from node i to node j. Then the dual
problem can be written as

maximize
y12, y13, y23, y24, y34

T1y12 + T1y13 + T2y23 + T2y24 + T3y34

subject to − y12 − y13 = −1

y12 − y23 − y24 = 0

y13 + y23 − y34 = 0

+ y24 + y34 = 1
y12, y13, y23, y24, y34 ≥ 0.

b) For problem b), let t∗i be the optimal starting times in the primal problem.(1p)
The reason behind the given expressions for the primal optimal solutions is
as follows:

t∗2 = t∗1 + T1 = t∗1 + 1

t∗3 = max{t∗1 + T1, t
∗

2 + T2} = max{t∗1 + 1, t∗1 + 1 + 2} = t∗1 + 3

t∗4 = max{t∗2 + T2, t
∗

3 + T3} = max{t∗1 + 1 + 2, t∗1 + 3 + 1} = t∗1 + 4

Therefore, the optimal objective value of the primal problem is t∗4 − t∗1 = 4.
Notice that the precedence constraints associated with edges (1, 2), (2, 3), (3, 4)
are active but those with edges (1, 3) and (2, 4) are not active.
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For the dual problem, consider the 0−1 binary valued dual optimal solution
candidate according to the rule that y∗

ij = 1 if and only if edge (i, j) is on
the path from node 1 to node 4 with the maximum sum of edge weights.
This path is (1, 2) → (2, 3) → (3, 4). Thus, y∗

12 = y∗

23 = y∗

34 = 1 and
y∗

13 = y∗

24 = 0. These dual variables are feasible, and the corresponding
dual objective value is 4 which is the same as the optimal primal objective
value. Therefore, the weak duality theorem implies that y∗

ij are indeed dual
optimal.

For your information, the dual problem has the interpretation of a maxi-
mum cost flow problem where one unit of “flow” is shipped from the source
(node 1) to the sink (node 4). The total supply to node 1 is one unit (i.e.,
the first constraint in the dual problem), and the total demand at node
4 is one unit (i.e., the last constraint in the dual problem). In addition,
for node 2 and node 3, the total incoming flow is equal to the total outgo-
ing flow (i.e., flow is conserved). The dual problem seeks to route the one
unit of flow through the network in order to maximize the cost in the dual
objective function. Because of the integer-valued supply and demand, the
maximum cost flow problem amounts to finding the path of the maximum
sum of edge weights from the source to the sink.

c) For problem c), the primal and dual optimal solutions can be verified to(1p)
satisfy

y∗

ij(t
∗

j − t∗i − Ti) = 0, for all edges (i, j).

These are the complementary slackness optimality conditions. In particular,
for edges (1, 2), (2, 3) and (3, 4) where y∗

ij = 1, the corresponding primal
precedence constraints are active (i.e., t∗j − t∗i −Ti = 0). On the other hand,
for edges (1, 3) and (2, 4) where the primal precedence constraints are not
active, the corresponding dual variables must be zero.


