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Question 1

(Simplex method)

(0.5p) a) The problem on standard form is:

minimize —x; + Ty
subject to 2x1 + x5 — 51 =2
1 — T2 + 89 = 2

i, T2, S1, S2 Z 0

(1.5p) b) Utilizing that so can be for the initial BFS, the phase I problem is

minimize +ay
subject to 2x1 + 19 — 51 +a; =2
1 — To + So =2

T, T2, S1, S2, W Z 0

Our basic variables are (aq, s2) and our non-basic are (z1, x9, $1), we get

L1 (10 121 -1 |1 _ |2
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The reduced costs for the non-basic variables are

2 1 —1}:[_2 1),
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by the minimum reduced cost rule, z; enter the basis. We have that B~!N; =
1

2 . ) .
{ 1 , the minimum ratio test is thus

. (IB)Z' o .
argmin —————— = argmin

i|(B—1N1);>0 (B~1N1); i|(B=1N1);>0
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And thus a; leaves the basis and Phase I is complete.

Our basic variables are (z1, s2) and our non-basic are (za,s1), we get

R A O P [P | B

The reduced costs for the non-basic variables are

A=t ] T)en

by the minimum reduced cost rule, s; enter the basis. We have that B~!N, =

_1
{ 12|, the only positive denominator in the minimum ratio test corresponds to

|

S9, which leaves the basis.



(1p)

(2p)
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Our basic variables are (x1, s1) and our non-basic are (xs, s2), we get

e = [8 3or= [ o[ e B

The reduced costs for the non-basic variables are

e S| R | I B O

/

=[0 —1]

since the reduced costs are all non-negative, we conclude that the current basis
is optimal, and the values of the original variables are = (2,0).

Since the reduced costs of s, is strictly positive we deduce that s = 0. We let x4

. . . -1 .
enter the basis and do the minimum ratio test. Note that B~1N; = [_ 31 imply
that the entire ray

t5 =B —vB Ny, 25 =", 55 =0,v>0,

is feasible. Since the reduced costs of x5 is zero we yield that the ray is a set of
optimal solutions. Returning to the original variables we get that = (24 v, 7)
is an optimal solution for each v > 0. Noting that this is precisely the set for
which sy = 0 and thus it equals the set of optimal solutions.

Question 2

(Representation theorem)

a)

Let x;, ¢ € I be the extreme points and d;, j € J be the extreme directions of P,
respectively. Then we have by the representation theorem that

icl jeJ il

Now, consider the optimal solution x* € P that exists by assumption, i..e, f(z*) <
f(z),z € P.

First we will show that pu* = 0 or that such a choice exists. Let 7 € J be
such that p5 > 0 and consider the line segment between pj = 0,45 = 247,
and let 2!, 22 be the corresponding points, by the concavity of f we have that
f(x')/2+ f(2?)/2 < f(x*). Hence, by the optimality of z* we yield that f(z') =
f(z?) = f(z*), showing that p; = 0 is also a optimal choice.

Similarly assume that z* is an optimal solution but not an extreme point. By
the concavity of f we have that

f(z*) = f(z i) > Z Aif ()

jel jel
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However, since f(z;) > f(z*), we get that \; = 0if f(z;) > f(2*) and for A\; > 0,
f(x") = f(z*). Thus, z* is a convex combination of optimal extreme points.

(1p) b) Consider the counter-example, f(x) = 2%, P = [—1,1], the extreme-points are
clearly non-optimal.
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(3p) Question 3

(Convexity)

(1.5p) a) Consider 7 = Az' + (1 — \)z?%
f(@) = max{f1(z), fa(T), ..., fu(T)}

since f;(x) convex

< max{Afi(z') + (1= A fi(a®), ... Afu(@') + (1= ) fu(@®)}
< dmax{fy(z),..., fu(z")} + (1 = Nmax{fi(z?), ..., fr(x*)}
=M (@) + (1= \)f(2?)

By the definition of a convex function, f is convex.

(1.5p) b) Let g1,92,...,9x: R" — R be concave functions. Consider the function g defined
by g(x) = min{g;(x), g2(x), ..., gr(x)}. ¢ is a concave function.

Proof: Set f1 = —g1,..., fx = —gx. We get f = —g. Since g1, 92,...,gr are
concave functions, fi, fo, ..., fi are convex functions. From above, we know f is
convex, so ¢ is concave.

(3p) Question 4

(Linear programming) Use Strong duality to realize that the dual problem to (1) also
must have an optimal solution, and hence, a feasible solution.

This feasibility does not change if b is perturbed to b+ db, independently of §b. Which,
by using Weak duality, implies that the perturbed problem cannot be unbounded.

(3p) Question 5

(modeling) Using the variables and parameters introduced in the question but extending
to also include vy and z,, we yield that the problem is to

K
minimize lkavk (1)
k=1
subject to 2k — Zp—1 = lug, k=1,....K (2)
m
T(Uk_vk—l):fk_mga k:177K (3)
fi<b, F=1. K ()
fk?ZkZOJ k:]-??K (5>
2K =Z (6>
(7)

U():Z():O
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Question 6

(true or false)

a) False. The Simplex method is used for linear optimization problems.

b) True. See theorem regarding sufficiency of the KKT conditions for convex opti-
mization problems in the textbook.

¢) True. See theorem in the textbook regarding subgradients.

Question 7

(Exterior penalty method)

Using the quadratic penalty function, the penalty problem is given as follows:
minimize F,(x) = 2¢™ + 327 + 22179 + 423 + v[371 + 229 — 6]°

VFy(w):[ze + 621 + 229 + 61/[37; + 279 — 6] }

2z + 8x9 + 4v[3x1 + 229 — 6]

Since the penalty parameter v = 10, we get

F () = 2™ + 32% + 2wy + 425 + 10[3z; + 275 — 6)?

B 2e™ 4+ 186x1 + 12229 — 360
VE,(z) = [ 1222 + 88wy — 240 }

Apply steepest descent method with exact line search,

2e — 52 52 — 2e
1 T 1
' =(1,1)", VE,(x) = { a0 } ,d'=—=VEF,(x)= [ 20 } :

Solve the minimization problem min F, (' + \d'), we get the step length \* = 0.004,
SO
x® =x' + \d' = [1.86,1.12)7




