TMA947/MMG621 NONLINEAR OPTIMISATION

Date:
20-08-18
Time:
Aids:
Number of questions: 7; passed on one question requires 2 points of 3 .
Questions are not numbered by difficulty.
To pass requires 10 points and three passed questions.

Examiner: Ann-Brith Strömberg

Note:
It is not possible to "plus" (retaking an exam in a course you have already passed, to raise its grade). Students who have not yet passed the exam can attend this re-exam.

Exam instructions

When you answer the questions

Use generally valid theory and methods. State your methodology carefully.

Only write on one page of each sheet. Do not use a red pen. Do not answer more than one question per page.

Question 1

(Simplex method) Consider the problem

$$
\begin{array}{lc}
\operatorname{maximize} & x_{1}-x_{2} \\
\text { subject to } & 2 x_{1}+x_{2} \geq 2 \\
& x_{1}-x_{2} \leq 2 \\
& x_{1}, \quad x_{2} \geq 0
\end{array}
$$

(0.5p) a) Convert the problem to standard form.
$(1.5 p)$ b) Solve the problem using Phase I and Phase II of the simplex method. Use you calculations to provide an optimal solution or a unbounded ray in the original variables.
(1p) c) Derive the set of optimal solutions by analysing the reduced costs of the final iteration and conducting another minimum ratio test.

Question 2

(Representation theorem)
Consider the problem to minimize $\boldsymbol{x}_{\in P} f(\boldsymbol{x})$, where P is a non-empty polyhedron.
(2p) a) Assume that f is a concave function and that the problem has an optimal solution. Does the set of optimal solutions contain an extreme point of P ? Prove or provide a counter example.
(1p) b) Assume that f is a convex function. Does the set of optimal solutions always contain an extreme point of P ? Prove or provide a counter example.

(3p) Question 3

(Convexity)
Let $f_{1}, f_{2}, \ldots, f_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex functions. Consider the function f defined by $f(\boldsymbol{x})=\max \left\{f_{1}(\boldsymbol{x}), f_{2}(\boldsymbol{x}), \ldots, f_{k}(\boldsymbol{x})\right\}$.
(2p) a) Show that f is convex.
$(1 \mathrm{p})$ b) State and prove a similar result for concave functions.

(3p) Question 4

(Linear programming)

Consider the problem to

$$
\begin{array}{ll}
\operatorname{minimize} & \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x} \\
\text { subject to } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \tag{1}\\
& \boldsymbol{x} \geq \mathbf{0}
\end{array}
$$

and the perturbed version of the problem where the right-hand-side is changed from \boldsymbol{b} to $\boldsymbol{b}+\delta \boldsymbol{b}$. Show that if the original problem (1) has an optimal solution then the perturbed version cannot be unbounded, independently of $\delta \boldsymbol{b}$.

(3p) Question 5

(Modelling)

A rocket launching problem. Suppose that we are to send a rocket to the altitude of \bar{z} $[\mathrm{m}]$ in time $T[\mathrm{~s}]$. Let $z(t)[\mathrm{m}]$ denote its height above the ground at time t and $f(t)$ $[\mathrm{N}]$ be the non-negative upward force of the rocket thrusters at time t. Let the mass of the rocket be $m[\mathrm{~kg}]$, the maximal thrust of the rocket be $b[\mathrm{~N}]$, an let $v(t)=z^{\prime}(t)$ [m / s] denote the upward velocity.

Formulate an optimization problem, with a quadratic objective function and affine constraints, that minimizes the energy required for the rocket to reach the desired altitude at time T.

Hints: The amount of energy required can be computed by

$$
\int_{0}^{T} f(t) v(t) d t
$$

and the equation of motion is

$$
m v^{\prime}(t)+m g=f(t), \quad t \in[0, T] .
$$

Assume that the time interval is divided into K periods of length $l:=T / K$ and let $f_{k}:=f(l k), z_{k}:=z(l k), v_{k}:=v(l k), k=1, \ldots K$. Then approximate the velocity and acceleration using finite differences, e.g., $v_{k}=\left(z_{k}-z_{k-1}\right) / l, k=1, \ldots, K$. Similarly, approximate the integral as a Riemann sum.

Question 6

(true or false)
Indicate for each of the following three statements whether it is true or false. Motivate your answers!
(1p) a) Claim: The Simplex method is a suitable solution method for problems where a convex objective function should be optimized over a polytope.
$(1 \mathbf{p}) \quad$ b) Claim: For a convex optimization problem, every KKT-point is a global optimal solution.
(1p) c) Consider a convex function $f: \mathbb{R}^{n} \mapsto \mathbb{R}$.
Claim: If f is differentiable at a point $\overline{\boldsymbol{x}} \in \mathbb{R}^{n}$, then the identity $\partial f(\overline{\boldsymbol{x}})=$ $\{\nabla f(\overline{\boldsymbol{x}})\}$ holds.

(3p) Question 7

(Exterior penalty method)
Consider the following problem:

$$
\begin{aligned}
\operatorname{minimize} & f(\boldsymbol{x}):=2 e^{x_{1}}+3 x_{1}^{2}+2 x_{1} x_{2}+4 x_{2}^{2} \\
\text { subject to } & 3 x_{1}+2 x_{2}-6=0
\end{aligned}
$$

Formulate a suitable exterior penalty function with the penalty parameter $\nu=10$. Starting at the point $(1,1)$, perform one iteration of a gradient method to solve the unconstrained penalty problem.

