Chalmers/GU Mathematics sciences \mathbf{EXAM}

TMA947/MMG621 NONLINEAR OPTIMISATION

Date:	20-08-18
Time:	$8^{30} - 13^{30}$
Aids:	All aids are allowed, but cooperation is not allowed
Number of questions:	7; passed on one question requires 2 points of 3.
	Questions are <i>not</i> numbered by difficulty.
	To pass requires 10 points and three passed questions.
Examiner:	Ann-Brith Strömberg
Note:	It is not possible to "plus" (retaking an exam in a course you have already passed, to raise its grade). Students who have not yet passed the exam can attend this re-exam.

When	you	answer	the	questions

Use generally valid theory and methods. State your methodology carefully.

Only write on one page of each sheet. Do not use a red pen. Do not answer more than one question per page.

Question 1

(Simplex method) Consider the problem

maximize
$$x_1 - x_2$$

subject to $2x_1 + x_2 \ge 2$
 $x_1 - x_2 \le 2$
 $x_1, \quad x_2 \ge 0$

- (0.5p) a) Convert the problem to standard form.
- (1.5p) b) Solve the problem using Phase I and Phase II of the simplex method. Use you calculations to provide an optimal solution or a unbounded ray in the original variables.
- (1p) c) Derive the set of optimal solutions by analysing the reduced costs of the final iteration and conducting another minimum ratio test.

Question 2

(Representation theorem)

Consider the problem to minimize $\boldsymbol{x} \in P f(\boldsymbol{x})$, where P is a non-empty polyhedron.

- (2p) a) Assume that f is a concave function and that the problem has an optimal solution.Does the set of optimal solutions contain an extreme point of P? Prove or provide a counter example.
- (1p) b) Assume that f is a convex function. Does the set of optimal solutions always contain an extreme point of P? Prove or provide a counter example.

(3p) Question 3

(Convexity)

Let $f_1, f_2, \ldots, f_k : \mathbb{R}^n \to \mathbb{R}$ be convex functions. Consider the function f defined by $f(\boldsymbol{x}) = \max\{f_1(\boldsymbol{x}), f_2(\boldsymbol{x}), \ldots, f_k(\boldsymbol{x})\}.$

- (2p) a) Show that f is convex.
- (1p) b) State and prove a similar result for concave functions.

(3p) Question 4

(Linear programming)

Consider the problem to

minimize
$$c^{\mathrm{T}}x$$
,
subject to $Ax = b$, (1)
 $x \ge 0$

and the perturbed version of the problem where the right-hand-side is changed from \boldsymbol{b} to $\boldsymbol{b} + \delta \boldsymbol{b}$. Show that if the original problem (1) has an optimal solution then the perturbed version cannot be unbounded, independently of $\delta \boldsymbol{b}$.

(3p) Question 5

(Modelling)

A rocket launching problem. Suppose that we are to send a rocket to the altitude of \bar{z} [m] in time T [s]. Let z(t) [m] denote its height above the ground at time t and f(t) [N] be the non-negative upward force of the rocket thrusters at time t. Let the mass of the rocket be m [kg], the maximal thrust of the rocket be b [N], an let v(t) = z'(t) [m/s] denote the upward velocity.

Formulate an optimization problem, with a quadratic objective function and affine constraints, that minimizes the energy required for the rocket to reach the desired altitude at time T.

Hints: The amount of energy required can be computed by

$$\int_0^T f(t)v(t)\,dt,$$

and the equation of motion is

$$mv'(t) + mg = f(t), \quad t \in [0, T].$$

Assume that the time interval is divided into K periods of length l := T/K and let $f_k := f(lk), z_k := z(lk), v_k := v(lk), k = 1, ..., K$. Then approximate the velocity and acceleration using finite differences, e.g., $v_k = (z_k - z_{k-1})/l$, k = 1, ..., K. Similarly, approximate the integral as a Riemann sum.

Question 6

(true or false)

Indicate for each of the following three statements whether it is true or false. Motivate your answers!

- (1p) a) Claim: The Simplex method is a suitable solution method for problems where a convex objective function should be optimized over a polytope.
- (1p) b) Claim: For a convex optimization problem, every KKT-point is a global optimal solution.

(1p) c) Consider a convex function $f : \mathbb{R}^n \to \mathbb{R}$. *Claim:* If f is differentiable at a point $\bar{x} \in \mathbb{R}^n$, then the identity $\partial f(\bar{x}) = \{\nabla f(\bar{x})\}$ holds.

(3p) Question 7

(Exterior penalty method)

Consider the following problem:

minimize
$$f(\boldsymbol{x}) := 2e^{x_1} + 3x_1^2 + 2x_1x_2 + 4x_2^2$$
,
subject to $3x_1 + 2x_2 - 6 = 0$.

Formulate a suitable exterior penalty function with the penalty parameter $\nu = 10$. Starting at the point (1, 1), perform one iteration of a gradient method to solve the unconstrained penalty problem.