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Riemann Integral

Loose idea: Take a very fine partition 0 = ag < a; < ... < aj of [0,1] use

the Riemann sum

Z f(a,-)(a,- — a,-_1)
i=1

to estimate [ f(x)dx.
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Riemann Integral

Loose idea: Take a very fine partition 0 = ag < a; < ... < aj of [0,1] use
the Riemann sum

Z f(a,-)(a,- — a,-_1)
i=1

to estimate [ f(x)dx.
e f is Riemann integrable (RI) if, as maxj—1 . n{|aj — aji—1|} of the
partitions goes to 0, all the Riemann sums should have a single limit.
e If Q are the rationals in [0, 1], then /g is not Riemann integrable.
® Calculus course: A continuous function on [0, 1] is Riemann integrable.
e More advanced theorem due to Lebesgue.

Theorem

If f is a bounded function, then f is Rl if and only if the set
{x : f is not continuous at x} has Lebesgue measure 0.
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|dea of the Lebesgue Integral (partition the y-axis!)

Instead of breaking up the x-axis, we break up the y-axis.

If £ takes values in [0, 1], we partition [0, 1] in the y-axis into
0=ag<a; <ay<...<a,=1 and approximate “the integral” by

n—1
Z aim({x : f(x) € [aj,ai11)})
i=0

where m is Lebesgue measure. The last interval is taken closed.

What happens with /g7 Only is the first term and the last term giving
om([0, 1\ Q) + an—1m(Q) = 0.

The structure of the domain is irrelevant which allows us to do this on a
general measure space.
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Measurable functions

Definition

If (X, M) is a measurable space, a mapping f : X — R is called
measurable if for all B € B (recall that B is the collection of Borel sets in
R), we have that (see picture)

f_l(B) — {XG X : f(x) € B} e M.
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Measurable functions

Definition

If (X, M) is a measurable space, a mapping f : X — R is called
measurable if for all B € B (recall that B is the collection of Borel sets in
R), we have that (see picture)

f_l(B) — {XG X : f(x) € B} e M.

f:(X,M)— R:=RU{—00,00} is measurability if for all B € B,
{xeX: f(x)e B} e M
and

{xeX:f(x)=o00} eM, {xeX:f(x)=—0o0}eM.
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Measurable functions

Proposition If (X, M) is a measurable space and f : X — R is a mapping,
Then f : X — R is measurable if for all open intervals /

F1(1) e M.
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Measurable functions

Proposition If (X, M) is a measurable space and f : X — R is a mapping,

Then f : X — R is measurable if for all open intervals /
f1(1) e M.
Proof:
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Measurable functions

Proposition If (X, M) is a measurable space and f : X — R is a mapping,
Then f : X — R is measurable if for all open intervals /

F1(1) e M.

Proof:
Let
F={EcB:fYE)e M}

The set of open intervals are contained in F by assumption.
If we show that F is a o-algebra , then 7 = B and done.

1. X,0e F.
2.

EcF-fYE)eM = (FYE)  eM = YE)e M s ESeF
noting that (f ~1(E))¢ = f~1(E€) (Check this!).
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Measurable functions

E B € F— FHE), FHE),...e M = | J(F(E)) e M

- f Y (JE)emM—|JEeF

noting that |J;(f~1(E;)) = f~}(U; Ei) (Check this!).
QED
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Measurable functions

Ey,Ep,... € F— fHE),fHE),...e M — | J(F 1(E)) e M

- f Y (JE)emM—|JEeF

noting that |J;(f~1(E;)) = f~}(U; Ei) (Check this!).

QED

The exact same proof shows that to show that f is measurable, it is
enough to check that for all ¢

fl(c,00) = {x: f(x) >c} e M.
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Measurable functions are closed under addition

Proposition If f, g : (X, M) :— R are measurable, then f + g is
measurable.
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Proposition If f, g : (X, M) :— R are measurable, then f + g is
measurable.

Proof:
For all a € R, we have

x:(f+e)x)>ay=J (x:f)>agtnfx:g(x)>a—q}). (1)

geR
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Measurable functions are closed under addition

Proposition If f, g : (X, M) :— R are measurable, then f + g is
measurable.

Proof:
For all a € R, we have

x:(F+8)(x) >a) = | (Ix: £ >} {x: g(x) > a—a}). (1)

geR

D is trivial. To see the opposite containment, if x € LHS, choose g € Q
so that
0<f(x)—qg<f(x)+g(x)—a.
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Measurable functions are closed under addition

Proposition If f, g : (X, M) :— R are measurable, then f + g is
measurable.

Proof:
For all a € R, we have

x:(F+8)(x) >a) = | (Ix: £ >} {x: g(x) > a—a}). (1)

geR

D is trivial. To see the opposite containment, if x € LHS, choose g € Q
so that
0<f(x)—qg<f(x)+g(x)—a.

Now, f, g being measurable implies each of the terms in the union are in
M and since we have a countable union, the RHS and hence the LHS
belongs to M. QED
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Measurable functions are closed under multiplication

Proposition If f,g : (X, M) :— R are measurable, then fg is measurable.
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Measurable functions are closed under multiplication

Proposition If f,g : (X, M) :— R are measurable, then fg is measurable.

Proof:
One first observes that

fg = 1/2[(f +g)* — f* — &°].

Using the first part, one just needs to show that if h is measurable, then h?

is measurable.
{x:h(x)>cl=Xifc<0

and
{x: R (x) > c} ={x:h(x) > MY U{x: h(x) < =c*?}if c > 0.

QED
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Sups are measurable

Proposition:
If fi,f,... is a sequence of measurable functions, then sup; f; is
measurable.
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Sups are measurable

Proposition:
If fi,f,... is a sequence of measurable functions, then sup; f; is
measurable. Of course

(Slj{p fi)(x) == Sljl_p(G(X))-

The same result holds for inf; f; defined in the obvious way.
Proof:
{x € X: (supf)(x) > a} = J{x € X : fi(x) > a}.
J .
J

QED
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Limsups are measurable

Proposition: If f, f>,... is a sequence of measurable functions, then
limsup; f; is measurable.

September 9, 2020 12/38
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Proposition: If f, f>,... is a sequence of measurable functions, then
lim sup; f; is measurable. Of course

(limsup f;)(x) := lim sup(f;(x)).
J J
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J J

In particular, if (fx) converges to the function fy, pointwise, then f, is
measurable.
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J J

In particular, if (fx) converges to the function fy, pointwise, then f, is
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Limsups are measurable

Proposition: If f, f>,... is a sequence of measurable functions, then
lim sup; f; is measurable. Of course

(limsup f;)(x) := lim sup(f;(x)).
J J

In particular, if (fx) converges to the function fy, pointwise, then f, is
measurable.

Proof:
One notes first that

Apply the previous proposition twice.
QED
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Simple functions

Definition
A simple function on (X, M) is a function of the form

f(X) = zn: C,'IE'.
i=1
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Simple functions

Definition
A simple function on (X, M) is a function of the form

f(X) = zn: CiIE,-
i=1

where ¢y, ..., ¢, are real numbers, Eq, ..., E, are disjoint sets in M and /g,
is the indicator function of E; which means it is 1 on E; and 0 otherwise.
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Simple functions

Definition

A simple function on (X, M) is a function of the form

f(X) = zn: CiIE,-
i=1

where ¢y, ..., ¢, are real numbers, Eq, ..., E, are disjoint sets in M and /g,
is the indicator function of E; which means it is 1 on E; and 0 otherwise.

Theorem

(Folland Theorem 2.10) If (X, M) is a measurable space and
f: X — [0, 00] is measurable,
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Simple functions

Definition

A simple function on (X, M) is a function of the form

f(X) = zn: CiIE,-
i=1

where ¢y, ..., ¢, are real numbers, Eq, ..., E, are disjoint sets in M and /g,
is the indicator function of E; which means it is 1 on E; and 0 otherwise.

Theorem

(Folland Theorem 2.10) If (X, M) is a measurable space and
f: X — [0,00] is measurable, then there exists a sequence (¢,,) of simple
functions such that 0 < ¢1 < ¢ < ... so that ¢, approaches f pointwise.
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The Lebesgue Integral
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LT((X, M, m)) := {f : X — [0, 00], f is measurable}
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The Lebesgue Integral
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Step 1: Definition of the integral for nonnegative simple functions
Definition
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The Lebesgue Integral
Definition
If ¢ is a simple function in L*((X, M, m)) and A€ M,
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The Lebesgue Integral
Definition
If ¢ is a simple function in L*((X, M, m)) and A€ M,

we define /Agb(x) dm(x) :== /qb(x)lA dm(x).
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The Lebesgue Integral
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Proposition (Proposition 2.13 in Folland)
Let ¢ and ¥ be simple nonnegative functions. Then the following hold.
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The Lebesgue Integral
Definition
If ¢ is a simple function in L*((X, M, m)) and A€ M,

we define /Agf)(X) dm(x) := /gb(x)lA dm(x).

Proposition (Proposition 2.13 in Folland)
Let ¢ and ¥ be simple nonnegative functions. Then the following hold.
a. [ co(x) dm(x) = c [ ¢(x) dm(x) Vc > 0.
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The Lebesgue Integral
Definition
If ¢ is a simple function in L*((X, M, m)) and A€ M,

we define /Agf)(X) dm(x) := /gb(x)lA dm(x).

Proposition (Proposition 2.13 in Folland)

Let ¢ and ¥ be S|mp|e nonnegative functions. Then the following hold.
.fcg[)() —cfgb ) dm( )VCZO.

b. [(¢(x)+ X) ) dm(x) = [ ¢(x) dm(x) + [(x) dm(x).
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The Lebesgue Integral

Definition
If ¢ is a simple function in L*((X, M, m)) and A€ M,

we define /Agf)(X) dm(x) := /gb(x)lA dm(x).

Proposition (Proposition 2.13 in Folland)
Let ¢ and ¥ be S|mp|e nonnegative functions. Then the following hold.

.fcgb() —cfgb ) dm( )VCZO.
b. [(¢(x)+ X) ) dm(x f¢ m(x) + [(x) dm(x).
c. p < w implies that fgb ) < [(x) dm(x).
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The Lebesgue Integral
Definition
If ¢ is a simple function in L*((X, M, m)) and A€ M,

we define /Agf)(X) dm(x) := /gb(x)lA dm(x).

Proposition (Proposition 2.13 in Folland)
Let ¢ and w be S|mp|e nonnegative functions. Then the following hold.

afcqb _cfgb ) dm( )VCZO.
b. [(¢ —|—¢x) ) dm(x f¢ x)+f¢(x) dm(x).
c. ¢<w implies that fqb <f¢ (x)-

d. The mapping from M to [0 oo] given by A — fA x) dm(x) is a
measure on M. (We call this measure ¢pm.).
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The Lebesgue Integral
Definition
If ¢ is a simple function in L*((X, M, m)) and A€ M,

we define /Agf)(X) dm(x) := /gf)(x)lA dm(x).

Proposition (Proposition 2.13 in Folland)
Let ¢ and w be simple nonnegative functions. Then the following hold.

afcqb —cfgb ) dm( )VCZO.
b. [(¢ —|—¢x) ) dm(x f¢ x)+f¢(x) dm(x).
c. ¢<w implies that fqb <f¢ (x)-

d. The mapping from M to [0 oo] given by A — fA x) dm(x) is a
measure on M. (We call this measure ¢pm.).

See the lecture notes for the proof.
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The Lebesgue Integral
Definition
If ¢ is a simple function in L*((X, M, m)) and A€ M,

we define /Agf)(X) dm(x) := /gf)(x)lA dm(x).

Proposition (Proposition 2.13 in Folland)
Let ¢ and w be simple nonnegative functions. Then the following hold.

afcqb _cfgb ) dm( )VCZO.
b. [(¢ +¢x) ) dm(x f¢ x)+f¢(x) dm(x).
c. ¢<w implies that fqb <f¢ (x)-

d. The mapping from M to [0 oo] given by A — fA x) dm(x) is a
measure on M. (We call this measure ¢pm.).

See the lecture notes for the proof. Part d takes one measure m and gives
us a new measure ym. Note that m(A) = 0 implies that ¢m(A) = 0.
IMPORTANT!
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The Lebesgue Integral

Step 2. Definition of the integral for nonnegative measurable functions
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The Lebesgue Integral
Step 2. Definition of the integral for nonnegative measurable functions

Definition
If f e LT((X, M,m)), we define

/ f(x)dm(x) :=
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The Lebesgue Integral
Step 2. Definition of the integral for nonnegative measurable functions
Definition

If f e LT((X, M,m)), we define

/f(x)dm(x) = sup{/¢dm :0< ¢ <f, ¢simple }.
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The Lebesgue Integral
Step 2. Definition of the integral for nonnegative measurable functions
Definition
If f e LT((X, M, m)), we define

/f(x)d’"(x) = 5UP{/¢dm :0< ¢ <f, ¢simple }.

This integral is certainly allowed to be oc.
Properties:

September 9, 2020

16 /38



The Lebesgue Integral
Step 2. Definition of the integral for nonnegative measurable functions
Definition
If f e LT((X, M, m)), we define

/f(x)d’"(x) = 5UP{/¢dm :0< ¢ <f, ¢simple }.

This integral is certainly allowed to be oc.
Properties:

° f<g— [fdm < [ gdm (immediate)

September 9, 2020

16 /38



The Lebesgue Integral
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Properties:

° f<g— [fdm < [ gdm (immediate)
® For ¢ >0, [ cfdm = c [ fdm (fairly easy)
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The Lebesgue Integral
Step 2. Definition of the integral for nonnegative measurable functions
Definition
If f e LT((X, M, m)), we define

/f(x)dm(x) = 5UP{/¢dm :0< ¢ <f, ¢simple }.

This integral is certainly allowed to be oc.
Properties:

° f<g— [fdm < [ gdm (immediate)
® For ¢ >0, [ cfdm = c [ fdm (fairly easy)

* [(f+g)dm= [ fdm+ [ gdm (requires some work and we will return
to)

September 9, 2020 16 /38



Monotone Convergence Theorem (MCT): Our first limit
theorem

September 9, 2020 17 /38



Monotone Convergence Theorem (MCT): Our first limit

theorem
Theorem

(Monotone Convergence Theorem) Let (f,) be in LT((X, M, m)) satisfying

0< fi < fh <f3...(meaning that these inequalities hold for every x)
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Monotone Convergence Theorem (MCT): Our first limit

theorem
Theorem

(Monotone Convergence Theorem) Let (f,) be in LT((X, M, m)) satisfying
0< fi < fh <f3...(meaning that these inequalities hold for every x)

and define f by
f(x) = ILm fa(x) = sup f(x).
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Monotone Convergence Theorem (MCT): Our first limit
theorem
Theorem

(Monotone Convergence Theorem) Let (f,) be in LT((X, M, m)) satisfying
0 < f < f, < f3...(meaning that these inequalities hold for every x)

and define f by
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Then
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0 < f < f, < f3...(meaning that these inequalities hold for every x)

and define f by
f(x) := lim f,(x) = sup fp(x).

n—o0 n

Then

fdm = lim /fndm.
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Proof:
| fadm is increasing and hence has a limit.
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Monotone Convergence Theorem (MCT): Our first limit
theorem
Theorem

(Monotone Convergence Theorem) Let (f,) be in LT((X, M, m)) satisfying

0 < f < f, < f3...(meaning that these inequalities hold for every x)

and define f by
f(x) := lim f,(x) = sup fp(x).

n—o0 n

Then

fdm = lim /f,,dm.

n—o0

Proof:
| fadm is increasing and hence has a limit. [ fdm > [ f,dm for every n
and so

fdm > lim /f,,dm.

n—oo September 9, 2020 17 /38
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For the reverse inequality, we need to show, for every simple function ¢

with 0 < ¢ < f,
/gbdmg Ii_)m /f,,dm. (2)
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For the reverse inequality, we need to show, for every simple function ¢

with 0 < ¢ < f,
/gbdmg Ii_)m /f,,dm. (2)
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For the reverse inequality, we need to show, for every simple function ¢

with 0 < ¢ < f,
/gbdm§ Ii_)m /f,,dm. (2)

Let a < 1 and let E, := {x : fo(x) > a¢(x)}.
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with 0 < ¢ < f,
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Let @ < 1 and let E, := {x : fo(x) > a¢(x)}. Note that E; C E; C E3...
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For the reverse inequality, we need to show, for every simple function ¢

with 0 < ¢ < f,
/gbdmg Ii_)m /f,,dm. (2)

Let @ < 1 and let E, := {x : fo(x) > a¢(x)}. Note that E; C E; C E3...
and X =, E,. We now have for every n

/f,,dm > /f,,lEndm > /agb/Endm:a ¢ dm.
En
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For the reverse inequality, we need to show, for every simple function ¢

with 0 < ¢ < f,
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Let @ < 1 and let E, := {x : fo(x) > a¢(x)}. Note that E; C E; C E3...
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Monotone Convergence Theorem: Our first limit theorem

For the reverse inequality, we need to show, for every simple function ¢

with 0 < ¢ < f,
/gbdmg Ii_)m /f,,dm. (2)

Let @ < 1 and let E, := {x : fo(x) > a¢(x)}. Note that E; C E; C E3...
and X =, E,. We now have for every n

/f,,dm > /f,,lEndm > /agb/Endm:a ¢ dm.
En

Let n — oo (using earlier proposition), we obtain

lim /f,,dmZa/gbdm.
n—oo
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Monotone Convergence Theorem: Our first limit theorem

For the reverse inequality, we need to show, for every simple function ¢

with 0 < ¢ < f,
/gbdmg Ii_)m /f,,dm. (2)

Let @ < 1 and let E, := {x : fo(x) > a¢(x)}. Note that E; C E; C E3...
and X =, E,. We now have for every n

/f,,dm > /f,,lEndm > /agblEndm =« ¢ dm.
Ep
Let n — oo (using earlier proposition), we obtain

lim /f,,dmZa/gbdm.
n—oo

Since this inequality holds for every a < 1, we obtain (2).
QED
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Corollary
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Corollary 1 of the MCT

Corollary
(Linearity) If fi and f, and in L*((X, M, m)), then

/(f+g)dm:/fdm+/gdm.
Proof:

. Choose ¢, and v, to be simple functions increasing upward to f; and f,
respectively.
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. Choose ¢, and v, to be simple functions increasing upward to f; and f,
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Corollary 1 of the MCT

Corollary
(Linearity) If fi and f, and in L*((X, M, m)), then

/(f—l—g)dmz/fdm—f—/gdm.
Proof:

. Choose ¢, and v, to be simple functions increasing upward to f; and f,
respectively. Then ¢, + 1, is a sequence of simple functions increasing
upward to f; + f.

/fl+f2dm= im /¢n+wndm= im /¢n+/wndm=/f1+/fz

where the MCT was used in the outer most equalities.
QED
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Corollary 2 of the MCT

Corollary
Iffi,fo...in LY((X, M, m)), then

> fydm = ([ am)
=1 =1
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Corollary 2 of the MCT

Corollary
If fi,fo...in LY((X, M, m)), then

> fydm = ([ am)
=1 =1

Proof:
By the previous corollary, we have that for every N,
N N
J O ydm =3 ([ fiam).
i=1 i=1
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Corollary 2 of the MCT

Corollary
If fi,fo...in LY((X, M, m)), then

/ (3 fam =3 [ fiam)

Proof:
By the previous corollary, we have that for every N,
N N
J O ydm =3 ([ fiam).
i=1 i=1

Let N — oo using MCT on LHS.
QED
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An elementary (believable) fact
Proposition If f € LT((X, M, m)), then

/fdm =0ifandonlyif f =0 a.e.
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N with m(En) > 0.
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U, En = {x : f(x) > 0}. By continuity from below yields that there exists
N with m(En) > 0.
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/fdm =0ifandonlyif f =0 a.e.

Proof (of only if):

By contradiction, we assume that m(x : f(x) > 0) > 0. Letting

E, :={x:f(x) >1/n}, we have E; C E, C E3... and

U, En = {x : f(x) > 0}. By continuity from below yields that there exists
N with m(En) > 0.

Now consider the nonnegative simple function

1
¢:: NIEN.
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September 9, 2020 21/38



An elementary (believable) fact
Proposition If f € LT((X, M, m)), then

/fdm =0ifandonlyif f =0 a.e.

Proof (of only if):

By contradiction, we assume that m(x : f(x) > 0) > 0. Letting

E, :={x:f(x) >1/n}, we have E; C E, C E3... and

U, En = {x : f(x) > 0}. By continuity from below yields that there exists
N with m(En) > 0.

Now consider the nonnegative simple function

1
¢ = NIEN.
We have ¢ < f and so

/fdm>/d>dmzlbm(EN) > 0.

QED September 9, 2020 21/38
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Theorem

(Fatou's Lemma)
Iffi,fo...in LY((X, M, m)), then

/Iiminf frdm < Iiminf/f,, dm.
n—o0 n—o0

® Very important in analysis.

® Very important in probability.
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Fatou's Lemma: Our second limit theorem

Theorem

(Fatou's Lemma)
Iffi,fo...in LY((X, M, m)), then

/Iiminf frdm < Iiminf/fn dm.
n—o0 n—o0

e \ery important in analysis.
e \ery important in probability.
® Even if all limits exist, one might have strict inequality.
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Fatou's Lemma: Our second limit theorem

Theorem
(Fatou's Lemma)

Iffi,fo...in LY((X, M, m)), then

/Iim inf f, dm < lim inf/ f, dm.

n—o0 n—o0

e \ery important in analysis.

e \ery important in probability.

® Even if all limits exist, one might have strict inequality. Recall our
example of functions which converge to 0 for all x but the integrals

are all 1.

September 9, 2020
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Fix an integer k.
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Since this is true for all j > k, we have
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Proof:
Fix an integer k. Now for all j > k, we have

inf £, < f
n>k

[t [

Since this is true for all j > k, we have

/inf fodm < Iiminf/f,,dm.
n>k n—o0

We have what we want on the RHS and now we take kK — oo.

and hence
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Fatou's Lemma: Our second limit theorem

Proof:
Fix an integer k. Now for all j > k, we have

inf £, < f
n>k

[t [

Since this is true for all j > k, we have

and hence

/inf f,dm < Iiminf/f,,dm. (3)

n>k n—o0

We have what we want on the RHS and now we take k — oo. Note that
inf,>x f, is an increasing sequence in k
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Fatou's Lemma: Our second limit theorem

Proof:
Fix an integer k. Now for all j > k, we have

inf £, < f
n>k

[t [

Since this is true for all j > k, we have

and hence

/inf f,dm < Iiminf/f,,dm. (3)

n>k n—o0

We have what we want on the RHS and now we take kK — oco. Note that
inf,> f, is an increasing sequence in k and converges to liminf f,.
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Fatou's Lemma: Our second limit theorem

Proof:
Fix an integer k. Now for all j > k, we have

inf £, < f
n>k

[t [

Since this is true for all j > k, we have

/inf fodm < Iiminf/f,,dm.
n>k n—o0

and hence

(3)

We have what we want on the RHS and now we take k — oco. Note that
inf,> fy is an increasing sequence in k and converges to liminf f,. Hence

by the MCT, the LHS converges, as k — oo, to f liminf,_ . fodm.

QED
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Definition of the Lebesgue Integral for all measurable

functions
Let
f(x) = max{f(x),0}, f~(x) = max{—f(x),0}

September 9, 2020 24 /38
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functions
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and note that both T, f~ are nonnegative, f = f* — f~ and
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Definition of the Lebesgue Integral for all measurable

functions
Let
fT(x) = max{f(x),0}, £ (x) = max{—f(x),0}

and note that both f*, f~ are nonnegative, f = f* — f~ and
Ifl=FfT4+f".
Definition

(Definition of the integral for general measurable functions)
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Definition of the Lebesgue Integral for all measurable

functions
Let
fT(x) = max{f(x),0}, f~(x) = max{—f(x),0}

and note that both f*, f~ are nonnegative, f = f* — f~ and
] =+ 4
Definition

(Definition of the integral for general measurable functions) If
f: (X, M,m)— R, define

/ F(x)dm(x) = / F+(x)dm(x) — / £~ (x)dm(x)
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Definition of the Lebesgue Integral for all measurable

functions
Let
fT(x) = max{f(x),0}, f~(x) = max{—f(x),0}

and note that both £, f~ are nonnegative, f = f — f~ and
= F+ 4 f.

Definition

(Definition of the integral for general measurable functions) If
f: (X, M,m)— R, define

/ F(x)dm(x) = / F+(x)dm(x) — / £~ (x)dm(x)

provided that at least one of the two terms on the RHS is finite.
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Definition of the Lebesgue Integral for all measurable

functions
Let
fT(x) = max{f(x),0}, f~(x) = max{—f(x),0}

and note that both £, f~ are nonnegative, f = f — f~ and
= F+ 4 f.
Definition

(Definition of the integral for general measurable functions) If
f: (X, M,m)— R, define

/ F(x)dm(x) = / F+(x)dm(x) — / £~ (x)dm(x)

provided that at least one of the two terms on the RHS is finite.
(Otherwise, the integral is not defined).
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Definition of the Lebesgue Integral for all measurable
functions
Definition

If [ fdm is defined and finite, we say that f is Lebesgue integrable. (This
is the same as having [ |f|dm being finite.)
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Definition of the Lebesgue Integral for all measurable
functions
Definition

If [ fdm is defined and finite, we say that f is Lebesgue integrable. (This
is the same as having [ |f|dm being finite.)

Notation: We let
LH(X, M, m)):={f: (X, M,m) = R: /]f\dm < oo}
and more generally, for p > 1, we let

LP((X, M, m)) = {f: (X, M,m) > R : /|f|”dm < oo}
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Definition of the Lebesgue Integral for all measurable
functions
Definition

If [ fdm is defined and finite, we say that f is Lebesgue integrable. (This
is the same as having [ |f|dm being finite.)

Notation: We let

LH(X, M, m)):={f:(X,M,m) = R: /]f\dm < 00}
and more generally, for p > 1, we let

LP((X, M, m)) :={f : (X,M,m) = R: /|f|”dm < 00}

(LP are Banach spaces and L2 is a Hilbert space.)
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o (Nsinx e .
lim ——dx exists and is finite (and even is 7/2).
N—o0 0 X

Does that answer our question?
No. (sinx)/x is not integrable on (0, c0) since one can check that

o -
/ |SmX|dx:oo.
0 X

Similar to the cancellation in a conditionally but not absolutely convergent
sequence such as
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n=1

September 9, 2020 27 /38



An illustrative example

Example: Is f(x) = (sin x)/x integrable on (0, 00) with Lebesgue measure?

o (Nsinx e .
lim ——dx exists and is finite (and even is 7/2).
N—o0 0 X

Does that answer our question?
No. (sinx)/x is not integrable on (0, c0) since one can check that

o -
/ |SmX|dx:oo.
0 X

Similar to the cancellation in a conditionally but not absolutely convergent
sequence such as

= (-1

>

n=1

This requires an order of the domain.
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Lebesgue Dominated Convergence Theorem: Our third limit
theorem
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Lebesgue Dominated Convergence Theorem: Our third limit
theorem

Theorem

(Lebesgue Dominated Convergence Theorem)
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Lebesgue Dominated Convergence Theorem: Our third limit
theorem

Theorem

(Lebesgue Dominated Convergence Theorem)

Let (f,) be a sequence of functions in L*((X, M, m)) which converges
pointwise to a function f.
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Theorem

(Lebesgue Dominated Convergence Theorem)

Let (f,) be a sequence of functions in L*((X, M, m)) which converges
pointwise to a function f. Assume that there exists g € L*((X, M, m))

such that for all n
|fn| <g
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Lebesgue Dominated Convergence Theorem: Our third limit

theorem

Theorem

(Lebesgue Dominated Convergence Theorem)

Let (f,) be a sequence of functions in L*((X, M, m)) which converges
pointwise to a function f. Assume that there exists g € L*((X, M, m))

such that for all n
|fn| <g

Then f € LY((X, M, m))
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Lebesgue Dominated Convergence Theorem: Our third limit
theorem

Theorem

(Lebesgue Dominated Convergence Theorem)
Let (f,) be a sequence of functions in L*((X, M, m)) which converges
pointwise to a function f. Assume that there exists g € L*((X, M, m))
such that for all n

|fa] < &.

Then f € LY((X, M, m)) and

/fdm: lim /f,,dm.
n—o00
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Lebesgue Dominated Convergence Theorem: Our third limit
theorem

September 9, 2020 29 /38



Lebesgue Dominated Convergence Theorem: Our third limit

theorem
Proof:
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Lebesgue Dominated Convergence Theorem: Our third limit

theorem
Proof:

Since |fp| < g for all nand f, — f, we also have |f| < g
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Lebesgue Dominated Convergence Theorem: Our third limit
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f € LY((X, M, m)). Observe that for all n

g+ f,>0and g —f, >0 and hence

g+f>0and g—f>0.
Applying Fatou's Lemma to (g + f,) (and using linearity twice), we get
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theorem
Similarly, we have

/gdm—/ fdmz/g—fdmﬁ liminf [ g—f, dm:/gdm—limsup/fnd
n—oo n—00

Subtracting | gdm from both sides gives

/fdm > |lim sup/fndm.
So we have

/fdmg Iiminf/f,,dm§ Iimsup/fndmg /fdm.

Hence the limit of | f,dm exists and is | fdm as claimed.
QED
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Lemma

If the sequence (f,) and f are measurable functions on (X, M, m), then

{x: fo(x) = f(x)} € M.

Proof:
Untangling what the definition of a limit is (and thinking a bit), it is not
hard to see that the set above is the same as

oo 0 0

Ny ﬂ fa(x) — £ < 1/m}.

m=1 k=1 n=k
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An example on how one shows a set is measurable

Lemma

If the sequence (f,) and f are measurable functions on (X, M, m), then

{x: fa(x) = f(x)} € M.

Proof:
Untangling what the definition of a limit is (and thinking a bit), it is not
hard to see that the set above is the same as

Y

This belongs to M since the events on the RHS do and then we are

applying countable set operations.
QED

x o |fa(x) = f(x)| < 1/m}.

||C8
||38
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Different notions of convergence

Definition

If the sequence (f,) and f are measurable functions on (X, M, m), then we
say

(i) f, converges to f a.e. if

m({x : fo(x) 5 F(x)}) = 0
(i) f, converges to f in measure if for every € > 0,

lim m({x :|f(x) — f(x)| > €})=0.

n—oo
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Different notions of convergence

m({x : fa(x) 7 F(x)}) = O,
for every e, n|l_>n<’l>o m({x : |[fa(x) — f(x)| > €}) =0.

There is an example where convergence a.e. occurs but not
convergence in measure.

Convergence a.e. implies convergence in measure if the measure space
is finite.

Convergence in measure, does not imply convergence a.e. even if the
measure space is finite.

Convergence in measure implies that there exists a subsequence for
which one has convergence a.e.
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Observe that E; D E; D Ez ... and that
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and hence by assumption m([, Ex) = 0. By continuity from above (which
requires that the measure space be finite!), we get
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Different notions of convergence

Proof:

1. On [0,00) with Lebesgue measure, let f, = fj; 541)- Check f, goes to 0
for every x but not in measure.

2. Fix e > 0. Let

En = {x: |fa(x) — f(x)| > € some n > N}.
Observe that E; D E; D Ez ... and that

(VEx € {x: falx) £ F(x)}
k

and hence by assumption m([, Ex) = 0. By continuity from above (which
requires that the measure space be finite!), we get

m({x : |fn(x) — f(x)| > €}) < m(Ey) — 0 as n — cc.

3. This is best described by a picture. See the (admittedly terrible) picture.
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Different notions of convergence

4. Assume (f,) converges to f in measure. Then for each integer k, we can
choose nj so that

m({x : [fp (x) = ()|_k})_2’<

and we can assume the nj's are increasing in k. Letting

B = {x: () — F0| = £,
we have

Z m(By) < oo and hence from the Borel-Cantelli Lemma, we have
k

m(By i.0.) = 0.
Now, if x is not in (B i.0.), meaning x € By for only finitely many k, then
|fae (x) — £(x)| > % for only finitely many k and hence

fr (x) = f(x).

QED September 9, 2020 36 /38
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Markov's inequality
Theorem

(Markov's Inequality) Let f be a nonnegative measurable function on
(X, M, m). Then for every o > 0, one has

f
m({x: f(x) > a}) < fdm

a v

Proof:

We have

/fdm: /fl{x:f(x)za}dm“l’/fl{x:f(x)<a}dm
> /a/{x:f(xpa}dm =am({x: f(x) > a}).
QED
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Chebyshev's Inequality

Theorem

(Chebyshev's Inequality) Let f be a measurable function on (X, M, m)
with [ |f]ldm < oo. Then for any o > 0, one has

(f — [ f dm)?dm

a2

llle s 66 —/fdm| >ap<d

Proof:
Apply Markov's inequality to the nonnegative function (f(x) — [ fdm)>2.
QED
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