Class Lectures (for Chapter 5)

Product measures

Product measures

Goal: Given two measure spaces (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν), define a product of them.

Product measures

Goal: Given two measure spaces (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν), define a product of them.
The set is $X \times Y$.

Product measures

Goal: Given two measure spaces (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν), define a product of them.
The set is $X \times Y$. The σ-algebra, called $\mathcal{M} \times \mathcal{N}$, is $\sigma(\mathcal{R})$ where

$$
\mathcal{R}:=\{A \times B: A \in \mathcal{M}, B \in \mathcal{N}\}
$$

\mathcal{R} stands for rectangles.

Existence of Product measures

Existence of Product measures

Theorem

(Existence of Product Measures) There exists a measure $\mu \times \nu$ on $(X \times Y, \mathcal{M} \times \mathcal{N})$ so that for all $A \times B \in \mathcal{R}$,

$$
(\mu \times \nu)(A \times B)=\mu(A) \nu(B)
$$

Moreover, $\mu \times \nu$ is the unique measure satisfying these properties if both μ and ν are σ-finite.

Proof of existence of Product measures: outline

Proof (read lecture notes)

Proof of existence of Product measures: outline

Proof (read lecture notes) The outline is as follows.

Proof of existence of Product measures: outline

Proof (read lecture notes) The outline is as follows.

1. \mathcal{A} is the algebra of finite unions of disjoint rectangles.

Proof of existence of Product measures: outline

Proof (read lecture notes) The outline is as follows.

1. \mathcal{A} is the algebra of finite unions of disjoint rectangles.
2. Define $(\mu \times \nu)_{0}$ on \mathcal{A} in the obvious way.

Proof of existence of Product measures: outline

Proof (read lecture notes) The outline is as follows.

1. \mathcal{A} is the algebra of finite unions of disjoint rectangles.
2. Define $(\mu \times \nu)_{0}$ on \mathcal{A} in the obvious way.

$$
(\mu \times \nu)_{0}\left(\bigcup_{i=1}^{n}\left(A_{i} \times B_{i}\right)\right):=\sum_{i=1}^{n} \mu\left(A_{i}\right) \nu\left(B_{i}\right) .
$$

Proof of existence of Product measures: outline

Proof (read lecture notes) The outline is as follows.

1. \mathcal{A} is the algebra of finite unions of disjoint rectangles.
2. Define $(\mu \times \nu)_{0}$ on \mathcal{A} in the obvious way.

$$
(\mu \times \nu)_{0}\left(\bigcup_{i=1}^{n}\left(A_{i} \times B_{i}\right)\right):=\sum_{i=1}^{n} \mu\left(A_{i}\right) \nu\left(B_{i}\right)
$$

3. One proves $(\mu \times \nu)_{0}$ is a premeasure.

Proof of existence of Product measures: outline

Proof (read lecture notes) The outline is as follows.

1. \mathcal{A} is the algebra of finite unions of disjoint rectangles.
2. Define $(\mu \times \nu)_{0}$ on \mathcal{A} in the obvious way.

$$
(\mu \times \nu)_{0}\left(\bigcup_{i=1}^{n}\left(A_{i} \times B_{i}\right)\right):=\sum_{i=1}^{n} \mu\left(A_{i}\right) \nu\left(B_{i}\right) .
$$

3. One proves $(\mu \times \nu)_{0}$ is a premeasure.
4. One uses our theorem on premeasures to obtain our measure.

Sections

Definition

If $E \subseteq X \times Y$, the x-section of E (see picture) is

$$
E_{x}:=\{y \in Y:(x, y) \in E\}
$$

Sections

Definition

If $E \subseteq X \times Y$, the x-section of E (see picture) is

$$
E_{x}:=\{y \in Y:(x, y) \in E\}
$$

and the y-section of E is

$$
E^{y}:=\{x \in X:(x, y) \in E\} .
$$

Sections

Definition

If $E \subseteq X \times Y$, the x-section of E (see picture) is

$$
E_{x}:=\{y \in Y:(x, y) \in E\}
$$

and the y-section of E is

$$
E^{y}:=\{x \in X:(x, y) \in E\}
$$

Definition

If $f: X \times Y \rightarrow R$, we let, for fixed $x \in X$,

$$
f_{x}: Y \rightarrow R \text { given by } f_{x}(y):=f(x, y)
$$

Sections

Definition

If $E \subseteq X \times Y$, the x-section of E (see picture) is

$$
E_{x}:=\{y \in Y:(x, y) \in E\}
$$

and the y-section of E is

$$
E^{y}:=\{x \in X:(x, y) \in E\}
$$

Definition

If $f: X \times Y \rightarrow R$, we let, for fixed $x \in X$,

$$
f_{x}: Y \rightarrow R \text { given by } f_{x}(y):=f(x, y)
$$

and for fixed $y \in Y$,

$$
f^{y}: X \rightarrow R \text { given by } f^{y}(x):=f(x, y)
$$

Sections

Sections

Proposition:
(i). If $E \in \mathcal{M} \times \mathcal{N}$, then for all $x \in X, E_{x} \in \mathcal{N}$.

Sections

Proposition:
(i). If $E \in \mathcal{M} \times \mathcal{N}$, then for all $x \in X, E_{x} \in \mathcal{N}$.
(ii). If $E \in \mathcal{M} \times \mathcal{N}$, then for all $y \in Y, E^{y} \in \mathcal{M}$.

Sections

Proposition:
(i). If $E \in \mathcal{M} \times \mathcal{N}$, then for all $x \in X, E_{x} \in \mathcal{N}$.
(ii). If $E \in \mathcal{M} \times \mathcal{N}$, then for all $y \in Y, E^{y} \in \mathcal{M}$.
(iii). If $f: X \times Y \rightarrow R$ is $\mathcal{M} \times \mathcal{N}$-measurable, then for all $x \in X, f_{x}$ is \mathcal{N}-measurable.

Sections

Proposition:
(i). If $E \in \mathcal{M} \times \mathcal{N}$, then for all $x \in X, E_{x} \in \mathcal{N}$.
(ii). If $E \in \mathcal{M} \times \mathcal{N}$, then for all $y \in Y, E^{y} \in \mathcal{M}$.
(iii). If $f: X \times Y \rightarrow R$ is $\mathcal{M} \times \mathcal{N}$-measurable, then for all $x \in X, f_{x}$ is \mathcal{N}-measurable.
(iv). If $f: X \times Y \rightarrow R$ is $\mathcal{M} \times \mathcal{N}$-measurable, then for all $y \in X, f^{y}$ is \mathcal{M}-measurable.

Sections

Proof of (i):

Sections

Proof of (i):
Let

$$
\mathcal{G}:=\left\{E \subseteq X \times Y: \text { for all } x \in X, E_{x} \in \mathcal{N}\right\} .
$$

Sections

Proof of (i):
Let

$$
\mathcal{G}:=\left\{E \subseteq X \times Y: \text { for all } x \in X, E_{X} \in \mathcal{N}\right\}
$$

If one shows that (1) $\mathcal{R} \subseteq \mathcal{G}$

Sections

Proof of (i):
Let

$$
\mathcal{G}:=\left\{E \subseteq X \times Y: \text { for all } x \in X, E_{X} \in \mathcal{N}\right\}
$$

If one shows that (1) $\mathcal{R} \subseteq \mathcal{G}$ and (2) \mathcal{G} is a σ-algebra,

Sections

Proof of (i):
Let

$$
\mathcal{G}:=\left\{E \subseteq X \times Y: \text { for all } x \in X, E_{x} \in \mathcal{N}\right\}
$$

If one shows that (1) $\mathcal{R} \subseteq \mathcal{G}$ and (2) \mathcal{G} is a σ-algebra, then $\mathcal{M} \times \mathcal{N} \subseteq \mathcal{G}$ and one is done.

Sections

Proof of (i):
Let

$$
\mathcal{G}:=\left\{E \subseteq X \times Y: \text { for all } x \in X, E_{X} \in \mathcal{N}\right\}
$$

If one shows that (1) $\mathcal{R} \subseteq \mathcal{G}$ and (2) \mathcal{G} is a σ-algebra, then $\mathcal{M} \times \mathcal{N} \subseteq \mathcal{G}$ and one is done.
(i) $\mathcal{R} \subseteq \mathcal{G}$ since

$$
(A \times B)_{x}= \begin{cases}B & \text { if } x \in A \\ \emptyset & \text { if } x \notin A\end{cases}
$$

Sections

Proof of (i):
Let

$$
\mathcal{G}:=\left\{E \subseteq X \times Y: \text { for all } x \in X, E_{X} \in \mathcal{N}\right\} .
$$

If one shows that (1) $\mathcal{R} \subseteq \mathcal{G}$ and (2) \mathcal{G} is a σ-algebra, then $\mathcal{M} \times \mathcal{N} \subseteq \mathcal{G}$ and one is done.
(i) $\mathcal{R} \subseteq \mathcal{G}$ since

$$
(A \times B)_{x}= \begin{cases}B & \text { if } x \in A \\ \emptyset & \text { if } x \notin A\end{cases}
$$

(ii) is an exercise. We do one part.

Sections

Proof of (i):
Let

$$
\mathcal{G}:=\left\{E \subseteq X \times Y: \text { for all } x \in X, E_{X} \in \mathcal{N}\right\} .
$$

If one shows that (1) $\mathcal{R} \subseteq \mathcal{G}$ and (2) \mathcal{G} is a σ-algebra, then $\mathcal{M} \times \mathcal{N} \subseteq \mathcal{G}$ and one is done.
(i) $\mathcal{R} \subseteq \mathcal{G}$ since

$$
(A \times B)_{x}= \begin{cases}B & \text { if } x \in A \\ \emptyset & \text { if } x \notin A\end{cases}
$$

(ii) is an exercise. We do one part.
$E \in \mathcal{G} \rightarrow \forall x, E_{x} \in \mathcal{N} \rightarrow \forall x,\left(E_{x}\right)^{c} \in \mathcal{N} \rightarrow \forall x,\left(E^{c}\right)_{x} \in \mathcal{N} \rightarrow E^{c} \in \mathcal{G}$.

Fubini's Theorem for Sets

Theorem
Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be σ-finite measure spaces.

Fubini's Theorem for Sets

Theorem

Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be σ-finite measure spaces. If $E \in \mathcal{M} \times \mathcal{N}$, then the maps

$$
x \rightarrow \nu\left(E_{x}\right) \text { and } y \rightarrow \mu\left(E^{y}\right) \text { (well defined by the previous result) }
$$

are measurable functions on X and Y respectively.

Fubini's Theorem for Sets

Theorem

Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be σ-finite measure spaces. If $E \in \mathcal{M} \times \mathcal{N}$, then the maps

$$
x \rightarrow \nu\left(E_{x}\right) \text { and } y \rightarrow \mu\left(E^{y}\right) \text { (well defined by the previous result) }
$$

are measurable functions on X and Y respectively.
Furthermore

$$
\mu \times \nu(E)=\int_{X} \nu\left(E_{X}\right) d \mu(x)=\int_{Y} \mu\left(E^{y}\right) d \nu(y)
$$

Fubini's Theorem for Sets

Theorem

Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be σ-finite measure spaces. If $E \in \mathcal{M} \times \mathcal{N}$, then the maps

$$
x \rightarrow \nu\left(E_{x}\right) \text { and } y \rightarrow \mu\left(E^{y}\right) \text { (well defined by the previous result) }
$$

are measurable functions on X and Y respectively.
Furthermore

$$
\mu \times \nu(E)=\int_{X} \nu\left(E_{X}\right) d \mu(x)=\int_{Y} \mu\left(E^{y}\right) d \nu(y)
$$

We will do the proof in the finite case and the first part of each of the two lines.

Fubini's Theorem for Sets

Proof of Fubini's Theorem for Sets

Let

$$
\begin{gathered}
\mathcal{C}:=\left\{E \in \mathcal{M} \times \mathcal{N}: x \rightarrow \nu\left(E_{x}\right)\right. \text { is measurable and } \\
\left.\mu \times \nu(E)=\int_{X} \nu\left(E_{x}\right) d \mu(x)\right\} .
\end{gathered}
$$

Proof of Fubini's Theorem for Sets

Let

$$
\begin{gathered}
\mathcal{C}:=\left\{E \in \mathcal{M} \times \mathcal{N}: x \rightarrow \nu\left(E_{x}\right)\right. \text { is measurable and } \\
\left.\mu \times \nu(E)=\int_{X} \nu\left(E_{x}\right) d \mu(x)\right\}
\end{gathered}
$$

The goal is to show that $\mathcal{C}=\mathcal{M} \times \mathcal{N}$.

Proof of Fubini's Theorem for Sets

Let

$$
\begin{gathered}
\mathcal{C}:=\left\{E \in \mathcal{M} \times \mathcal{N}: x \rightarrow \nu\left(E_{x}\right)\right. \text { is measurable and } \\
\left.\mu \times \nu(E)=\int_{X} \nu\left(E_{x}\right) d \mu(x)\right\}
\end{gathered}
$$

The goal is to show that $\mathcal{C}=\mathcal{M} \times \mathcal{N}$.
STEP 1: $\mathcal{R} \subseteq \mathcal{C}$.

Proof of Fubini's Theorem for Sets

Let

$$
\begin{gathered}
\mathcal{C}:=\left\{E \in \mathcal{M} \times \mathcal{N}: x \rightarrow \nu\left(E_{x}\right)\right. \text { is measurable and } \\
\left.\mu \times \nu(E)=\int_{X} \nu\left(E_{x}\right) d \mu(x)\right\} .
\end{gathered}
$$

The goal is to show that $\mathcal{C}=\mathcal{M} \times \mathcal{N}$.
STEP 1: $\mathcal{R} \subseteq \mathcal{C}$.

$$
\nu\left((A \times B)_{x}\right)= \begin{cases}\nu(B) & \text { if } x \in A \\ 0 & \text { if } x \notin A\end{cases}
$$

Proof of Fubini's Theorem for Sets

Let

$$
\begin{gathered}
\mathcal{C}:=\left\{E \in \mathcal{M} \times \mathcal{N}: x \rightarrow \nu\left(E_{x}\right)\right. \text { is measurable and } \\
\left.\mu \times \nu(E)=\int_{X} \nu\left(E_{x}\right) d \mu(x)\right\} .
\end{gathered}
$$

The goal is to show that $\mathcal{C}=\mathcal{M} \times \mathcal{N}$.
STEP 1: $\mathcal{R} \subseteq \mathcal{C}$.

$$
\nu\left((A \times B)_{x}\right)=\left\{\begin{array}{ll}
\nu(B) & \text { if } x \in A \\
0 & \text { if } x \notin A
\end{array}=I_{A}(x) \nu(B)\right.
$$

Proof of Fubini's Theorem for Sets

Let

$$
\begin{gathered}
\mathcal{C}:=\left\{E \in \mathcal{M} \times \mathcal{N}: x \rightarrow \nu\left(E_{x}\right)\right. \text { is measurable and } \\
\left.\mu \times \nu(E)=\int_{X} \nu\left(E_{x}\right) d \mu(x)\right\} .
\end{gathered}
$$

The goal is to show that $\mathcal{C}=\mathcal{M} \times \mathcal{N}$.
STEP 1: $\mathcal{R} \subseteq \mathcal{C}$.

$$
\nu\left((A \times B)_{x}\right)=\left\{\begin{array}{ll}
\nu(B) & \text { if } x \in A \\
0 & \text { if } x \notin A
\end{array}=I_{A}(x) \nu(B)\right.
$$

Hence $x \rightarrow \nu\left((A \times B)_{x}\right)$ is measurable.

Proof of Fubini's Theorem for Sets

Let

$$
\begin{gathered}
\mathcal{C}:=\left\{E \in \mathcal{M} \times \mathcal{N}: x \rightarrow \nu\left(E_{x}\right)\right. \text { is measurable and } \\
\left.\mu \times \nu(E)=\int_{X} \nu\left(E_{x}\right) d \mu(x)\right\} .
\end{gathered}
$$

The goal is to show that $\mathcal{C}=\mathcal{M} \times \mathcal{N}$.
STEP 1: $\mathcal{R} \subseteq \mathcal{C}$.

$$
\nu\left((A \times B)_{x}\right)=\left\{\begin{array}{ll}
\nu(B) & \text { if } x \in A \\
0 & \text { if } x \notin A
\end{array}=I_{A}(x) \nu(B)\right.
$$

Hence $x \rightarrow \nu\left((A \times B)_{x}\right)$ is measurable. In addition

$$
\mu \times \nu(A \times B)=\int_{X} I_{A}(x) \nu(B) d \mu(x)
$$

Proof of Fubini's Theorem for Sets

Let

$$
\begin{gathered}
\mathcal{C}:=\left\{E \in \mathcal{M} \times \mathcal{N}: x \rightarrow \nu\left(E_{X}\right)\right. \text { is measurable and } \\
\left.\mu \times \nu(E)=\int_{X} \nu\left(E_{x}\right) d \mu(x)\right\} .
\end{gathered}
$$

The goal is to show that $\mathcal{C}=\mathcal{M} \times \mathcal{N}$.
STEP 1: $\mathcal{R} \subseteq \mathcal{C}$.

$$
\nu\left((A \times B)_{x}\right)=\left\{\begin{array}{ll}
\nu(B) & \text { if } x \in A \\
0 & \text { if } x \notin A
\end{array}=I_{A}(x) \nu(B)\right.
$$

Hence $x \rightarrow \nu\left((A \times B)_{x}\right)$ is measurable. In addition

$$
\mu \times \nu(A \times B)=\int_{X} I_{A}(x) \nu(B) d \mu(x)=\int_{X} \nu\left((A \times B)_{x}\right) d \mu(x)
$$

Proof of Fubini's Theorem for Sets

Let

$$
\begin{gathered}
\mathcal{C}:=\left\{E \in \mathcal{M} \times \mathcal{N}: x \rightarrow \nu\left(E_{X}\right)\right. \text { is measurable and } \\
\left.\mu \times \nu(E)=\int_{X} \nu\left(E_{x}\right) d \mu(x)\right\} .
\end{gathered}
$$

The goal is to show that $\mathcal{C}=\mathcal{M} \times \mathcal{N}$.
STEP 1: $\mathcal{R} \subseteq \mathcal{C}$.

$$
\nu\left((A \times B)_{x}\right)=\left\{\begin{array}{ll}
\nu(B) & \text { if } x \in A \\
0 & \text { if } x \notin A
\end{array}=I_{A}(x) \nu(B)\right.
$$

Hence $x \rightarrow \nu\left((A \times B)_{x}\right)$ is measurable. In addition

$$
\mu \times \nu(A \times B)=\int_{X} I_{A}(x) \nu(B) d \mu(x)=\int_{X} \nu\left((A \times B)_{x}\right) d \mu(x)
$$

STEP 2: \mathcal{C} is a \mathcal{D}-system.
Exercise.

Proof of Fubini's Theorem for Sets

Step 3. Using the fact that \mathcal{R} is a π-system, Dynkin's $\pi-\lambda$ Theorem gives the second equality below and steps 1 and 2 give the containment.

$$
\mathcal{M} \times \mathcal{N}=\sigma(\mathcal{R})=\mathcal{D}(\mathcal{R}) \subseteq \mathcal{C}
$$

QED

Counterexample without σ-finiteness

Counterexample without σ-finiteness

Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) each be $[0,1]$ with the Borel sets with μ being Lebesgue measure and ν being counting measure.

Counterexample without σ-finiteness

Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) each be $[0,1]$ with the Borel sets with μ being Lebesgue measure and ν being counting measure.

Let $D:=\{(x, x): x \in[0,1]\}$ be the diagonal.

Counterexample without σ-finiteness

Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) each be $[0,1]$ with the Borel sets with μ being Lebesgue measure and ν being counting measure.

Let $D:=\{(x, x): x \in[0,1]\}$ be the diagonal.
Claim: $D \in \mathcal{M} \times \mathcal{N}$

Counterexample without σ-finiteness

Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) each be $[0,1]$ with the Borel sets with μ being Lebesgue measure and ν being counting measure.

Let $D:=\{(x, x): x \in[0,1]\}$ be the diagonal.
Claim: $D \in \mathcal{M} \times \mathcal{N}$
Proof D^{c} is open and so can be expressed as $\cup_{i}\left(I_{i} \times J_{i}\right)$ qed

Counterexample without σ-finiteness

Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) each be $[0,1]$ with the Borel sets with μ being Lebesgue measure and ν being counting measure.

Let $D:=\{(x, x): x \in[0,1]\}$ be the diagonal.
Claim: $D \in \mathcal{M} \times \mathcal{N}$
Proof D^{c} is open and so can be expressed as $\cup_{i}\left(I_{i} \times J_{i}\right)$ qed

Note $D_{x}=\{x\}$ for each $x \in X$ and $D^{y}=\{y\}$ for each $y \in Y$.

Counterexample without σ-finiteness

Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) each be $[0,1]$ with the Borel sets with μ being Lebesgue measure and ν being counting measure.

Let $D:=\{(x, x): x \in[0,1]\}$ be the diagonal.
Claim: $D \in \mathcal{M} \times \mathcal{N}$
Proof D^{c} is open and so can be expressed as $\cup_{i}\left(I_{i} \times J_{i}\right)$ qed

Note $D_{x}=\{x\}$ for each $x \in X$ and $D^{y}=\{y\}$ for each $y \in Y$.
Note that the map $x \rightarrow \nu\left(D_{x}\right)$ is the constant function 1

Counterexample without σ-finiteness

Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) each be $[0,1]$ with the Borel sets with μ being Lebesgue measure and ν being counting measure.

Let $D:=\{(x, x): x \in[0,1]\}$ be the diagonal.
Claim: $D \in \mathcal{M} \times \mathcal{N}$
Proof D^{c} is open and so can be expressed as $\cup_{i}\left(I_{i} \times J_{i}\right)$ qed

Note $D_{x}=\{x\}$ for each $x \in X$ and $D^{y}=\{y\}$ for each $y \in Y$.
Note that the map $x \rightarrow \nu\left(D_{x}\right)$ is the constant function 1 and $y \rightarrow \mu\left(D^{y}\right)$ is the constant function 0 .

Counterexample without σ-finiteness

Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) each be $[0,1]$ with the Borel sets with μ being Lebesgue measure and ν being counting measure.

Let $D:=\{(x, x): x \in[0,1]\}$ be the diagonal.
Claim: $D \in \mathcal{M} \times \mathcal{N}$
Proof D^{c} is open and so can be expressed as $\cup_{i}\left(I_{i} \times J_{i}\right)$ qed

Note $D_{x}=\{x\}$ for each $x \in X$ and $D^{y}=\{y\}$ for each $y \in Y$. Note that the map $x \rightarrow \nu\left(D_{x}\right)$ is the constant function 1 and $y \rightarrow \mu\left(D^{y}\right)$ is the constant function 0 .

$$
\int_{X} \nu\left(D_{x}\right) d \mu(x)=1 \neq 0=\int_{Y} \mu\left(D^{y}\right) d \nu(y)
$$

Counterexample without σ-finiteness

What happens with $(\mu \times \nu)(D)$?

Counterexample without σ-finiteness

What happens with $(\mu \times \nu)(D)$?
Before asking this, what is even the definition of $(\mu \times \nu)(D)$?

Counterexample without σ-finiteness

What happens with $(\mu \times \nu)(D)$?
Before asking this, what is even the definition of $(\mu \times \nu)(D)$?
One needs to look at how the product measure is defined.

Counterexample without σ-finiteness

What happens with $(\mu \times \nu)(D)$?
Before asking this, what is even the definition of $(\mu \times \nu)(D)$?
One needs to look at how the product measure is defined.
It involved using this theorem on premeasures which is proved, as is Lebesgue measure, by going through an outer measure.

Counterexample without σ-finiteness

What happens with $(\mu \times \nu)(D)$?
Before asking this, what is even the definition of $(\mu \times \nu)(D)$?
One needs to look at how the product measure is defined.
It involved using this theorem on premeasures which is proved, as is
Lebesgue measure, by going through an outer measure.

$$
(\mu \times \nu)(D)=\infty!!
$$

Counterexample without σ-finiteness

What happens with $(\mu \times \nu)(D)$?
Before asking this, what is even the definition of $(\mu \times \nu)(D)$?
One needs to look at how the product measure is defined.
It involved using this theorem on premeasures which is proved, as is Lebesgue measure, by going through an outer measure.

$$
(\mu \times \nu)(D)=\infty!!
$$

When the smoke clears, this comes down to showing that if the union of a countable set of rectangles $\left\{A_{i} \times B_{i}\right\}$ covers D, then

$$
\sum_{i} \mu\left(A_{i}\right) \times \nu\left(B_{i}\right)=\infty
$$

Counterexample without σ-finiteness

What happens with $(\mu \times \nu)(D)$?
Before asking this, what is even the definition of $(\mu \times \nu)(D)$?
One needs to look at how the product measure is defined.
It involved using this theorem on premeasures which is proved, as is Lebesgue measure, by going through an outer measure.

$$
(\mu \times \nu)(D)=\infty!!
$$

When the smoke clears, this comes down to showing that if the union of a countable set of rectangles $\left\{A_{i} \times B_{i}\right\}$ covers D, then

$$
\sum_{i} \mu\left(A_{i}\right) \times \nu\left(B_{i}\right)=\infty
$$

This is true but requires a little work. Details are in the lecture notes.

Tonelli's Theorem for Functions

Theorem
Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be σ-finite measure spaces. If $f \in L^{+}(X \times Y)$, then

$$
g(x):=\int_{Y} f_{x}(y) d \nu(y) \in L^{+}(X)
$$

Tonelli's Theorem for Functions

Theorem
Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be σ-finite measure spaces. If $f \in L^{+}(X \times Y)$, then

$$
g(x):=\int_{Y} f_{X}(y) d \nu(y) \in L^{+}(X)
$$

and

$$
\int_{X \times Y} f(x, y) d(\mu \times \nu)(x, y)=\int_{X} g(x) d \mu(x)
$$

Tonelli's Theorem for Functions

Theorem

Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be σ-finite measure spaces. If $f \in L^{+}(X \times Y)$, then

$$
g(x):=\int_{Y} f_{x}(y) d \nu(y) \in L^{+}(X)
$$

and

$$
\int_{X \times Y} f(x, y) d(\mu \times \nu)(x, y)=\int_{X} g(x) d \mu(x)
$$

- If f is the indicator function of some measurable set E, this is exactly Fubini's Theorem for finite sets.

Tonelli's Theorem for Functions

Theorem

Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be σ-finite measure spaces. If $f \in L^{+}(X \times Y)$, then

$$
g(x):=\int_{Y} f_{x}(y) d \nu(y) \in L^{+}(X)
$$

and

$$
\int_{X \times Y} f(x, y) d(\mu \times \nu)(x, y)=\int_{X} g(x) d \mu(x)
$$

- If f is the indicator function of some measurable set E, this is exactly Fubini's Theorem for finite sets.
- Since the same is true if we "first integrate with respect to x ", the two "iterated integrals" are the same.

Fubini's Theorem for Functions

Theorem

Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be σ-finite measure spaces. If $f \in L^{1}(X \times Y)$, then

$$
f_{x} \in L^{1}(Y, \mathcal{N}, \nu) \text { for } \mu \text {-a.e. } x \in X
$$

Furthermore,

$$
g(x):=\int_{Y} f_{x}(y) d \nu(y)\left(\text { which is defined } \mu \text {-a.e.) belongs to } L^{1}(\mu)\right.
$$

and

$$
\int_{X \times Y} f(x, y) d(\mu \times \nu)(x, y)=\int_{X} g(x) d \mu(x)
$$

Fubini's Theorem for Functions

- Although the theorem is still true if we reverse x and y, it is possible that the two iterated integrals are finite and differ. (See Exercise 48, Chapter 2, Folland).

Fubini's Theorem for Functions

- Although the theorem is still true if we reverse x and y, it is possible that the two iterated integrals are finite and differ. (See Exercise 48, Chapter 2, Folland). The problem is f might not be integrable with respect to the product measure.

Fubini's Theorem for Functions

- Although the theorem is still true if we reverse x and y, it is possible that the two iterated integrals are finite and differ. (See Exercise 48, Chapter 2, Folland). The problem is f might not be integrable with respect to the product measure.
- In real problems, one first takes absolute values, computes an iterated integral and uses Tonelli's Theorem to hopefully conclude that f is integrable in the product space.

Fubini's Theorem for Functions

- Although the theorem is still true if we reverse x and y, it is possible that the two iterated integrals are finite and differ. (See Exercise 48, Chapter 2, Folland). The problem is f might not be integrable with respect to the product measure.
- In real problems, one first takes absolute values, computes an iterated integral and uses Tonelli's Theorem to hopefully conclude that f is integrable in the product space. Then, one uses Fubini's Theorem to compute the integral.

