Slides for additive vs. Linear functions

Old exercise which we presented.

If $E \subset R$ has positive measure, then E - E contains an open interval around 0.

We will use this to prove an interestiong theorem.

As we know, $f: R \rightarrow R$ is linear if

As we know, $f: R \rightarrow R$ is linear if

1.
$$f(x+y) = f(x) + f(y)$$
 for all $x, y \in R$

As we know, $f: R \to R$ is linear if

1.
$$f(x+y) = f(x) + f(y)$$
 for all $x, y \in R$

and

2.
$$f(cx) = cf(x)$$
 for all $x, c \in R$.

As we know, $f: R \rightarrow R$ is linear if

1.
$$f(x + y) = f(x) + f(y)$$
 for all $x, y \in R$

and

2.
$$f(cx) = cf(x)$$
 for all $x, c \in R$.

In fact, in 1-d, it is easy to check that (2) implies (1).

As we know, $f: R \rightarrow R$ is linear if

1.
$$f(x + y) = f(x) + f(y)$$
 for all $x, y \in R$

and

2.
$$f(cx) = cf(x)$$
 for all $x, c \in R$.

In fact, in 1-d, it is easy to check that (2) implies (1). The question here is whether (1) implies (2).

As we know, $f: R \rightarrow R$ is linear if

1.
$$f(x + y) = f(x) + f(y)$$
 for all $x, y \in R$

and

2.
$$f(cx) = cf(x)$$
 for all $x, c \in R$.

In fact, in 1-d, it is easy to check that (2) implies (1). The question here is whether (1) implies (2).

We call f additive if it satisfies (1).

As we know, $f: R \rightarrow R$ is linear if

1.
$$f(x + y) = f(x) + f(y)$$
 for all $x, y \in R$

and

2.
$$f(cx) = cf(x)$$
 for all $x, c \in R$.

In fact, in 1-d, it is easy to check that (2) implies (1). The question here is whether (1) implies (2).

We call f additive if it satisfies (1). This is the same as saying that f is a group homomorphism from R to R.

As we know, $f: R \rightarrow R$ is linear if

1.
$$f(x + y) = f(x) + f(y)$$
 for all $x, y \in R$

and

2.
$$f(cx) = cf(x)$$
 for all $x, c \in R$.

In fact, in 1-d, it is easy to check that (2) implies (1).

The question here is whether (1) implies (2).

We call f additive if it satisfies (1). This is the same as saying that f is a group homomorphism from R to R.

Does (1) imply (2)?

As we know, $f: R \rightarrow R$ is linear if

1.
$$f(x + y) = f(x) + f(y)$$
 for all $x, y \in R$

and

2.
$$f(cx) = cf(x)$$
 for all $x, c \in R$.

In fact, in 1-d, it is easy to check that (2) implies (1).

The question here is whether (1) implies (2).

We call f additive if it satisfies (1). This is the same as saying that f is a group homomorphism from R to R.

Does (1) imply (2)? Answer: No.

As we know, $f: R \rightarrow R$ is linear if

1.
$$f(x + y) = f(x) + f(y)$$
 for all $x, y \in R$

and

2.
$$f(cx) = cf(x)$$
 for all $x, c \in R$.

In fact, in 1-d, it is easy to check that (2) implies (1).

The question here is whether (1) implies (2).

We call f additive if it satisfies (1). This is the same as saying that f is a group homomorphism from R to R.

Does (1) imply (2)? Answer: No. But yes under the weak assumption of f being measurable.

Proposition: There exists $f: R \to R$ which is additive but not linear.

Proposition: There exists $f: R \to R$ which is additive but not linear.

Proof outline:

Proposition: There exists $f: R \to R$ which is additive but not linear.

Proof outline:

View R as a vector space over Q (which is then infinite dimensional).

Proposition: There exists $f: R \to R$ which is additive but not linear.

Proof outline:

View R as a vector space over Q (which is then infinite dimensional). One checks that the set $\{1,\sqrt{2}\}$ is linearly independent.

Proposition: There exists $f: R \to R$ which is additive but not linear.

Proof outline:

View R as a vector space over Q (which is then infinite dimensional). One checks that the set $\{1,\sqrt{2}\}$ is linearly independent. (This follows easily from the fact that $\sqrt{2}$ is irrational.)

Proposition: There exists $f: R \to R$ which is additive but not linear.

Proof outline:

View R as a vector space over Q (which is then infinite dimensional). One checks that the set $\{1,\sqrt{2}\}$ is linearly independent. (This follows easily from the fact that $\sqrt{2}$ is irrational.) Extend this set to a basis $\mathcal B$ for R (as a Q-vector space).

Proposition: There exists $f: R \to R$ which is additive but not linear.

Proof outline:

View R as a vector space over Q (which is then infinite dimensional). One checks that the set $\{1,\sqrt{2}\}$ is linearly independent. (This follows easily from the fact that $\sqrt{2}$ is irrational.) Extend this set to a basis $\mathcal B$ for R (as a Q-vector space). (Warning: Axiom of Choice.)

Proposition: There exists $f: R \to R$ which is additive but not linear.

Proof outline:

View R as a vector space over Q (which is then infinite dimensional). One checks that the set $\{1,\sqrt{2}\}$ is linearly independent. (This follows easily from the fact that $\sqrt{2}$ is irrational.) Extend this set to a basis $\mathcal B$ for R (as a Q-vector space). (Warning: Axiom of Choice.)

Let f be a function from \mathcal{B} to R which takes 1 to 1, $\sqrt{2}$ to 3 and is arbitrary on the other elements of \mathcal{B} .

Proposition: There exists $f: R \to R$ which is additive but not linear.

Proof outline:

View R as a vector space over Q (which is then infinite dimensional). One checks that the set $\{1,\sqrt{2}\}$ is linearly independent. (This follows easily from the fact that $\sqrt{2}$ is irrational.) Extend this set to a basis $\mathcal B$ for R (as a Q-vector space). (Warning: Axiom of Choice.)

Let f be a function from $\mathcal B$ to R which takes 1 to 1, $\sqrt{2}$ to 3 and is arbitrary on the other elements of $\mathcal B$. By linear algebra, f can be extended to a Q-linear transformation from R to R,

Proposition: There exists $f: R \to R$ which is additive but not linear.

Proof outline:

View R as a vector space over Q (which is then infinite dimensional). One checks that the set $\{1,\sqrt{2}\}$ is linearly independent. (This follows easily from the fact that $\sqrt{2}$ is irrational.) Extend this set to a basis $\mathcal B$ for R (as a Q-vector space). (Warning: Axiom of Choice.)

Let f be a function from $\mathcal B$ to R which takes 1 to 1, $\sqrt{2}$ to 3 and is arbitrary on the other elements of $\mathcal B$. By linear algebra, f can be extended to a Q-linear transformation from R to R, meaning (1) holds and (2) holds for $c\in Q$.

Proposition: There exists $f: R \to R$ which is additive but not linear.

Proof outline:

View R as a vector space over Q (which is then infinite dimensional). One checks that the set $\{1,\sqrt{2}\}$ is linearly independent. (This follows easily from the fact that $\sqrt{2}$ is irrational.) Extend this set to a basis $\mathcal B$ for R (as a Q-vector space). (Warning: Axiom of Choice.)

Let f be a function from \mathcal{B} to R which takes 1 to 1, $\sqrt{2}$ to 3 and is arbitrary on the other elements of \mathcal{B} . By linear algebra, f can be extended to a Q-linear transformation from R to R, meaning (1) holds and (2) holds for $c \in Q$. In particular, f is additive.

Proposition: There exists $f: R \to R$ which is additive but not linear.

Proof outline:

View R as a vector space over Q (which is then infinite dimensional). One checks that the set $\{1, \sqrt{2}\}$ is linearly independent. (This follows easily from the fact that $\sqrt{2}$ is irrational.) Extend this set to a basis \mathcal{B} for R (as a Q-vector space). (Warning: Axiom of Choice.)

Let f be a function from B to R which takes 1 to 1, $\sqrt{2}$ to 3 and is arbitrary on the other elements of \mathcal{B} . By linear algebra, f can be extended to a Q-linear transformation from R to R, meaning (1) holds and (2) holds for $c \in Q$. In particular, f is additive. But f cannot be R-linear, since any such map $x \to ax$ which takes 1 to 1 is the identity.

QED

Theorem

If $f: R \to R$ is additive and measurable, then f is linear.

Theorem

If $f: R \to R$ is additive and measurable, then f is linear.

Before we prove this, we begin with a warm up which is weaker.

Theorem

If $f: R \to R$ is additive and measurable, then f is linear.

Before we prove this, we begin with a warm up which is weaker.

Proposition: If $f: R \to R$ is additive and continuous, then f is linear.

Lemma

If $f: R \to R$ is additive, then f(cx) = cf(x) for all x and $c \in Q$.

Lemma

If $f: R \to R$ is additive, then f(cx) = cf(x) for all x and $c \in Q$. In fancy words, f is a linear transformation when R is viewed as a Q vector space.

Lemma

If $f: R \to R$ is additive, then f(cx) = cf(x) for all x and $c \in Q$. In fancy words, f is a linear transformation when R is viewed as a Q vector space.

Proof:

Lemma

If $f: R \to R$ is additive, then f(cx) = cf(x) for all x and $c \in Q$. In fancy words, f is a linear transformation when R is viewed as a Q vector space.

Proof:

(1) implies by induction that for positive integer n, f(nx) = nf(x).

Lemma

If $f: R \to R$ is additive, then f(cx) = cf(x) for all x and $c \in Q$. In fancy words, f is a linear transformation when R is viewed as a Q vector space.

Proof:

(1) implies by induction that for positive integer n, f(nx) = nf(x). Therefore if n, m are positive integers, one has

$$f(m\frac{n}{m}x) = mf(\frac{n}{m}x)$$

Lemma

If $f: R \to R$ is additive, then f(cx) = cf(x) for all x and $c \in Q$. In fancy words, f is a linear transformation when R is viewed as a Q vector space.

Proof:

(1) implies by induction that for positive integer n, f(nx) = nf(x).

Therefore if n, m are positive integers, one has

$$f(m\frac{n}{m}x) = mf(\frac{n}{m}x)$$

giving

$$f(\frac{n}{m}x) = \frac{1}{m}f(nx) = \frac{n}{m}f(x).$$

Proposition: If $f: R \to R$ is additive and continuous, then f is linear.

Proposition: If $f: R \to R$ is additive and continuous, then f is linear.

Proof: Lemma gives f(x) = xf(1) for all $x \in Q$.

Proposition: If $f: R \to R$ is additive and continuous, then f is linear.

Proof: Lemma gives f(x) = xf(1) for all $x \in Q$. The two sides are continuous functions which agree on Q.

Proposition: If $f: R \to R$ is additive and continuous, then f is linear.

Proof: Lemma gives f(x) = xf(1) for all $x \in Q$. The two sides are continuous functions which agree on Q. Since Q is dense, they must be equal for all x.

Proposition: If $f: R \to R$ is additive and continuous, then f is linear.

Proof: Lemma gives f(x) = xf(1) for all $x \in Q$. The two sides are continuous functions which agree on Q. Since Q is dense, they must be equal for all x. Hence f is linear.

QED

Lemma

If f is additive but not linear, then f is unbounded in every interval about 0.

Lemma

If f is additive but not linear, then f is unbounded in every interval about 0. (I.e., f is additive and bounded in some interval about 0, then it is linear.)

Proof:

We assume that f(1) = 1.

Lemma

If f is additive but not linear, then f is unbounded in every interval about 0. (I.e., f is additive and bounded in some interval about 0, then it is linear.)

Proof:

We assume that f(1) = 1. Fix the interval $(-\epsilon, \epsilon)$ around 0.

Lemma

If f is additive but not linear, then f is unbounded in every interval about 0. (I.e., f is additive and bounded in some interval about 0, then it is linear.)

Proof:

We assume that f(1)=1. Fix the interval $(-\epsilon,\epsilon)$ around 0. If f is not linear, then there must exist positive $x \notin Q$ such that $f(x) \neq x$.

Lemma

If f is additive but not linear, then f is unbounded in every interval about 0. (I.e., f is additive and bounded in some interval about 0, then it is linear.)

Proof:

We assume that f(1)=1. Fix the interval $(-\epsilon,\epsilon)$ around 0. If f is not linear, then there must exist positive $x\not\in Q$ such that $f(x)\neq x$. Kronecker's Theorem says that there exist integers n and m arbitrarily large so that

$$|nx-m|<\epsilon.$$

Lemma

If f is additive but not linear, then f is unbounded in every interval about 0. (I.e., f is additive and bounded in some interval about 0, then it is linear.)

Proof:

We assume that f(1)=1. Fix the interval $(-\epsilon,\epsilon)$ around 0. If f is not linear, then there must exist positive $x \notin Q$ such that $f(x) \neq x$. Kronecker's Theorem says that there exist integers n and m arbitrarily large so that

$$|nx-m|<\epsilon.$$

We then have

$$f(nx - m) = nf(x) - m = nx - m + n(f(x) - x).$$

Lemma

If f is additive but not linear, then f is unbounded in every interval about 0. (I.e., f is additive and bounded in some interval about 0, then it is linear.)

Proof:

We assume that f(1)=1. Fix the interval $(-\epsilon,\epsilon)$ around 0. If f is not linear, then there must exist positive $x \notin Q$ such that $f(x) \neq x$. Kronecker's Theorem says that there exist integers n and m arbitrarily large so that

$$|nx-m|<\epsilon.$$

We then have

$$f(nx - m) = nf(x) - m = nx - m + n(f(x) - x).$$

If n, m are very large and $|nx - m| < \epsilon$, then, since $f(x) - x \neq 0$,

Lemma

If f is additive but not linear, then f is unbounded in every interval about 0. (I.e., f is additive and bounded in some interval about 0, then it is linear.)

Proof:

We assume that f(1) = 1. Fix the interval $(-\epsilon, \epsilon)$ around 0. If f is not linear, then there must exist positive $x \notin Q$ such that $f(x) \neq x$.

Kronecker's Theorem says that there exist integers n and m arbitrarily large so that

$$|nx-m|<\epsilon.$$

We then have

$$f(nx - m) = nf(x) - m = nx - m + n(f(x) - x).$$

If n, m are very large and $|nx - m| < \epsilon$, then, since $f(x) - x \neq 0$, we have a point in $(-\epsilon, \epsilon)$ whose f value becomes in absolute value as large as we want.

Theorem

If $f: R \to R$ is additive and measurable, then f is linear.

Theorem

If $f: R \to R$ is additive and measurable, then f is linear.

By lemma, enough to show that f is bounded in some interval $(-\epsilon, \epsilon)$ around 0.

Theorem

If $f: R \to R$ is additive and measurable, then f is linear.

By lemma, enough to show that f is bounded in some interval $(-\epsilon, \epsilon)$ around 0. Let $A_n = \{x : |f(x)| \le n\}$.

Theorem

If $f: R \to R$ is additive and measurable, then f is linear.

By lemma, enough to show that f is bounded in some interval $(-\epsilon, \epsilon)$ around 0. Let $A_n = \{x : |f(x)| \le n\}$. By our measurability assumption, the A_n 's are measurable, clearly increasing and their union is R.

Theorem

If $f: R \to R$ is additive and measurable, then f is linear.

By lemma, enough to show that f is bounded in some interval $(-\epsilon, \epsilon)$ around 0. Let $A_n = \{x : |f(x)| \le n\}$. By our measurability assumption, the A_n 's are measurable, clearly increasing and their union is R. By continuity of measure from below, $m(A_{n_0}) > 0$ for some n_0 .

Theorem

If $f: R \to R$ is additive and measurable, then f is linear.

By lemma, enough to show that f is bounded in some interval $(-\epsilon, \epsilon)$ around 0. Let $A_n = \{x : |f(x)| \le n\}$. By our measurability assumption, the A_n 's are measurable, clearly increasing and their union is R. By continuity of measure from below, $m(A_{n_0}) > 0$ for some n_0 . By our exercise, $(-\epsilon, \epsilon) \subseteq A_{n_0} - A_{n_0}$ for some $\epsilon > 0$.

Theorem

If $f: R \to R$ is additive and measurable, then f is linear.

By lemma, enough to show that f is bounded in some interval $(-\epsilon, \epsilon)$ around 0. Let $A_n = \{x : |f(x)| \le n\}$. By our measurability assumption, the A_n 's are measurable, clearly increasing and their union is R. By continuity of measure from below, $m(A_{n_0}) > 0$ for some n_0 . By our exercise, $(-\epsilon, \epsilon) \subseteq A_{n_0} - A_{n_0}$ for some $\epsilon > 0$. Then for all $x \in (-\epsilon, \epsilon)$, x = a - b with $a, b \in A_{n_0}$ implying that

$$|f(x)| = |f(a-b)| = |f(a)-f(b)| \le |f(a)| + |f(b)| \le 2n_0.$$

Theorem

If $f: R \to R$ is additive and measurable, then f is linear.

By lemma, enough to show that f is bounded in some interval $(-\epsilon, \epsilon)$ around 0. Let $A_n = \{x : |f(x)| \le n\}$. By our measurability assumption, the A_n 's are measurable, clearly increasing and their union is R. By continuity of measure from below, $m(A_{n_0}) > 0$ for some n_0 . By our exercise, $(-\epsilon, \epsilon) \subseteq A_{n_0} - A_{n_0}$ for some $\epsilon > 0$. Then for all $x \in (-\epsilon, \epsilon)$, x = a - b with $a, b \in A_{n_0}$ implying that

$$|f(x)| = |f(a-b)| = |f(a)-f(b)| \le |f(a)| + |f(b)| \le 2n_0.$$

QED