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Probability Theory framework

Kolmogorov in the 1930’s placed probability theory on a firm mathematical
basis; namely using measure and integration theory.

Definition
A probability space is a measure space (Ω,M,P) with P(Ω) = 1.

Ω is the set of “outcomes” of some “random” experiment.
M is the set of “events” to which we will assign a “probability”.
For A ∈M, P(A) is the the "probability" that our “randomly chosen”
ω ∈ Ω falls in A.

So, (Ω,M,P) governs some “random experiment” where P tells us the
“likelihood” that ω (chosen “randomly”) falls in different sets.
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Random variables
Definition
Given a probability space (Ω,M,P), a random variable is a measurable
function X on (Ω,M,P).

So a random variable is not really random as it is just a function. However,
if ω is “random”, then X (ω) is “random”. Hence we call it a random
variable.

Definition
If X is a random variable on a probability space (Ω,M,P), its
expectation, denoted E (X ), is simply defined by

E (X ) =

∫
XdP

provided this exists, meaning at least one of
∫
X+dP and

∫
X−dP is finite.
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Law or distribution of a random variable
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Law of distribution of a random variable
Definition
Given a random variable X on a probability space (Ω,M,P),

the
distribution or law of X (see picture) is the probability measure µX on
(R,B) given by

µX (A) := P(X−1(A)).

Remarks: (i) One needs to check that µX is a probability measure.
(ii) The distribution of X contains all the essential information of X .
(iii) If someone says
"Let X be a Poisson random variable with parameter λ",
what they mean is X is a random variable on some probability space (which
we often don’t care about) and the law of X , µX , satisfies

µX (k) =
e−λλk

k!
.
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Independence

Definition
n random variables X1,X2 . . . ,Xn on a probability space (Ω,M,P) are
called independent if for all Borel sets B1,B2 . . . ,Bn

P(
n⋂

i=1

X−1
i (Bi )) =

n∏
i=1

P(X−1
i (Bi )).

Definition
An infinite collection of random variables on a probability space (Ω,M,P)
is called independent if each finite collection is independent as above.
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A simple example of convergence in probability but not a.s.

Step 1: (will use 1− x ≤ e−x for all x)

Theorem
(Second Borel Cantelli Lemma)
Let E1,E2, . . . be a sequence of independent events in the probability space
(Ω,M,P). If

∑
i P(Ei ) =∞, then

P(lim supEi ) = 1.

Proof: (lim supEi )
c :=

⋃∞
n=1(

⋂∞
k=n E

c
k ). For each n,

P(
∞⋂
k=n

E c
k ) =

∞∏
k=n

P(E c
k ) =

∞∏
k=n

(1−P(Ek)) ≤
∞∏
k=n

e−P(Ek ) = e−
∑∞

k=n P(Ek ) = 0.

QED For the unit interval with Lebesgue measure, let En = [0, 1/n], what
is happening?
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(Ω,M,P). If

∑
i P(Ei ) =∞, then

P(lim supEi ) = 1.

Proof: (lim supEi )
c :=
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n=1(

⋂∞
k=n E

c
k ). For each n,
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E c
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=
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P(E c
k ) =
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(1−P(Ek)) ≤
∞∏
k=n

e−P(Ek ) = e−
∑∞

k=n P(Ek ) = 0.

QED For the unit interval with Lebesgue measure, let En = [0, 1/n], what
is happening?
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Two examples

Example 1: Let E1,E2, . . . be a sequence of independent events in some
probability space (Ω,M,P) with P(En) = 1/n2. Then the sequence of
functions IEn converges to 0 a.s. This follows immediately from the
Borel-Cantelli Lemma.

Example 2: Let E1,E2, . . . be a sequence of independent events in some
probability space (Ω,M,P) with P(En) = 1/n. Then the sequence of
functions IEn converges to 0 in measure but not a.s.

Why? P(|IEn − 0| ≥ ε) = P(En) which goes to 0. Hence convergence in
measure. However, the second Borel-Cantelli Lemma says that
P(lim supEi ) = 1 and this means that it is not the case that IEn converges
to 0 a.s.. In fact it says that IEn converges to 0 only on a set of probability
0.

One should contemplate what is happening. For very large n, it is very
unlikely that En occurs. But nonetheless, if you watch things in time (as n
moves), IEn will a.s. pop up to be 1 infinitely often but more and more
rarely.

September 21, 2020 8 / 25



Two examples
Example 1: Let E1,E2, . . . be a sequence of independent events in some
probability space (Ω,M,P) with P(En) = 1/n2.

Then the sequence of
functions IEn converges to 0 a.s. This follows immediately from the
Borel-Cantelli Lemma.

Example 2: Let E1,E2, . . . be a sequence of independent events in some
probability space (Ω,M,P) with P(En) = 1/n. Then the sequence of
functions IEn converges to 0 in measure but not a.s.

Why? P(|IEn − 0| ≥ ε) = P(En) which goes to 0. Hence convergence in
measure. However, the second Borel-Cantelli Lemma says that
P(lim supEi ) = 1 and this means that it is not the case that IEn converges
to 0 a.s.. In fact it says that IEn converges to 0 only on a set of probability
0.

One should contemplate what is happening. For very large n, it is very
unlikely that En occurs. But nonetheless, if you watch things in time (as n
moves), IEn will a.s. pop up to be 1 infinitely often but more and more
rarely.

September 21, 2020 8 / 25



Two examples
Example 1: Let E1,E2, . . . be a sequence of independent events in some
probability space (Ω,M,P) with P(En) = 1/n2. Then the sequence of
functions IEn converges to 0 a.s.

This follows immediately from the
Borel-Cantelli Lemma.

Example 2: Let E1,E2, . . . be a sequence of independent events in some
probability space (Ω,M,P) with P(En) = 1/n. Then the sequence of
functions IEn converges to 0 in measure but not a.s.

Why? P(|IEn − 0| ≥ ε) = P(En) which goes to 0. Hence convergence in
measure. However, the second Borel-Cantelli Lemma says that
P(lim supEi ) = 1 and this means that it is not the case that IEn converges
to 0 a.s.. In fact it says that IEn converges to 0 only on a set of probability
0.

One should contemplate what is happening. For very large n, it is very
unlikely that En occurs. But nonetheless, if you watch things in time (as n
moves), IEn will a.s. pop up to be 1 infinitely often but more and more
rarely.

September 21, 2020 8 / 25



Two examples
Example 1: Let E1,E2, . . . be a sequence of independent events in some
probability space (Ω,M,P) with P(En) = 1/n2. Then the sequence of
functions IEn converges to 0 a.s. This follows immediately from the
Borel-Cantelli Lemma.

Example 2: Let E1,E2, . . . be a sequence of independent events in some
probability space (Ω,M,P) with P(En) = 1/n. Then the sequence of
functions IEn converges to 0 in measure but not a.s.

Why? P(|IEn − 0| ≥ ε) = P(En) which goes to 0. Hence convergence in
measure. However, the second Borel-Cantelli Lemma says that
P(lim supEi ) = 1 and this means that it is not the case that IEn converges
to 0 a.s.. In fact it says that IEn converges to 0 only on a set of probability
0.

One should contemplate what is happening. For very large n, it is very
unlikely that En occurs. But nonetheless, if you watch things in time (as n
moves), IEn will a.s. pop up to be 1 infinitely often but more and more
rarely.

September 21, 2020 8 / 25



Two examples
Example 1: Let E1,E2, . . . be a sequence of independent events in some
probability space (Ω,M,P) with P(En) = 1/n2. Then the sequence of
functions IEn converges to 0 a.s. This follows immediately from the
Borel-Cantelli Lemma.

Example 2: Let E1,E2, . . . be a sequence of independent events in some
probability space (Ω,M,P) with P(En) = 1/n.

Then the sequence of
functions IEn converges to 0 in measure but not a.s.

Why? P(|IEn − 0| ≥ ε) = P(En) which goes to 0. Hence convergence in
measure. However, the second Borel-Cantelli Lemma says that
P(lim supEi ) = 1 and this means that it is not the case that IEn converges
to 0 a.s.. In fact it says that IEn converges to 0 only on a set of probability
0.

One should contemplate what is happening. For very large n, it is very
unlikely that En occurs. But nonetheless, if you watch things in time (as n
moves), IEn will a.s. pop up to be 1 infinitely often but more and more
rarely.

September 21, 2020 8 / 25



Two examples
Example 1: Let E1,E2, . . . be a sequence of independent events in some
probability space (Ω,M,P) with P(En) = 1/n2. Then the sequence of
functions IEn converges to 0 a.s. This follows immediately from the
Borel-Cantelli Lemma.

Example 2: Let E1,E2, . . . be a sequence of independent events in some
probability space (Ω,M,P) with P(En) = 1/n. Then the sequence of
functions IEn converges to 0 in measure but not a.s.

Why? P(|IEn − 0| ≥ ε) = P(En) which goes to 0. Hence convergence in
measure. However, the second Borel-Cantelli Lemma says that
P(lim supEi ) = 1 and this means that it is not the case that IEn converges
to 0 a.s.. In fact it says that IEn converges to 0 only on a set of probability
0.

One should contemplate what is happening. For very large n, it is very
unlikely that En occurs. But nonetheless, if you watch things in time (as n
moves), IEn will a.s. pop up to be 1 infinitely often but more and more
rarely.

September 21, 2020 8 / 25



Two examples
Example 1: Let E1,E2, . . . be a sequence of independent events in some
probability space (Ω,M,P) with P(En) = 1/n2. Then the sequence of
functions IEn converges to 0 a.s. This follows immediately from the
Borel-Cantelli Lemma.

Example 2: Let E1,E2, . . . be a sequence of independent events in some
probability space (Ω,M,P) with P(En) = 1/n. Then the sequence of
functions IEn converges to 0 in measure but not a.s.

Why? P(|IEn − 0| ≥ ε) = P(En) which goes to 0. Hence convergence in
measure. However, the second Borel-Cantelli Lemma says that
P(lim supEi ) = 1 and this means that it is not the case that IEn converges
to 0 a.s.. In fact it says that IEn converges to 0 only on a set of probability
0.

One should contemplate what is happening. For very large n, it is very
unlikely that En occurs. But nonetheless, if you watch things in time (as n
moves), IEn will a.s. pop up to be 1 infinitely often but more and more
rarely.

September 21, 2020 8 / 25



Two examples
Example 1: Let E1,E2, . . . be a sequence of independent events in some
probability space (Ω,M,P) with P(En) = 1/n2. Then the sequence of
functions IEn converges to 0 a.s. This follows immediately from the
Borel-Cantelli Lemma.

Example 2: Let E1,E2, . . . be a sequence of independent events in some
probability space (Ω,M,P) with P(En) = 1/n. Then the sequence of
functions IEn converges to 0 in measure but not a.s.

Why? P(|IEn − 0| ≥ ε) = P(En) which goes to 0. Hence convergence in
measure. However, the second Borel-Cantelli Lemma says that
P(lim supEi ) = 1 and this means that it is not the case that IEn converges
to 0 a.s.. In fact it says that IEn converges to 0 only on a set of probability
0.

One should contemplate what is happening. For very large n, it is very
unlikely that En occurs.

But nonetheless, if you watch things in time (as n
moves), IEn will a.s. pop up to be 1 infinitely often but more and more
rarely.

September 21, 2020 8 / 25



Two examples
Example 1: Let E1,E2, . . . be a sequence of independent events in some
probability space (Ω,M,P) with P(En) = 1/n2. Then the sequence of
functions IEn converges to 0 a.s. This follows immediately from the
Borel-Cantelli Lemma.

Example 2: Let E1,E2, . . . be a sequence of independent events in some
probability space (Ω,M,P) with P(En) = 1/n. Then the sequence of
functions IEn converges to 0 in measure but not a.s.

Why? P(|IEn − 0| ≥ ε) = P(En) which goes to 0. Hence convergence in
measure. However, the second Borel-Cantelli Lemma says that
P(lim supEi ) = 1 and this means that it is not the case that IEn converges
to 0 a.s.. In fact it says that IEn converges to 0 only on a set of probability
0.

One should contemplate what is happening. For very large n, it is very
unlikely that En occurs. But nonetheless, if you watch things in time (as n
moves), IEn will a.s. pop up to be 1 infinitely often but more and more
rarely.

September 21, 2020 8 / 25



Law of Large Numbers: Special case

Theorem

(Weak and Strong Law of Large Numbers in a SPECIAL case)
Let X1,X2, . . . be independent random variables each with distribution
(δ1 + δ−1)/2; i.e. P({ω : Xi (ω) = 1}) = P({ω : Xi (ω) = −1}) = 1/2.
Then (WLLN)
(i).

Sn
n

:=

∑n
i=1 Xi

n
converges in measure (in probability) → 0.

and (SLLN)
(ii).

Sn
n

:=

∑n
i=1 Xi

n
converges almost everywhere (almost surely) → 0.
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Some remarks

Remarks:

1. SLLN implies WLLN. Why?
2. WLLN easier to prove but holds a little more generally.
3. WLLN could be formulated in the 19th century while the conceptual
framework did not exist in the 19th century to state the SLLN.
4. Which is more natural?
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Proof of the WLLN
Proof:
(i) We first compute E (S2

n ).

We have

E (S2
n ) = E ((

n∑
i=1

Xi )(
n∑

j=1

Xj)) =
n∑

i ,j=1

E (XiXj) = n +
n∑

i ,j=1,i 6=j

E (XiXj).

Each Xi has expectation 0 and due to independence E (XiXj) = 0 when
i 6= j . So

E (S2
n ) = n

and hence, by linearity
E ((Sn/n)2) = 1/n.

Finally, fixing ε > 0, we have, using Markov’s inequality

P(|Sn/n| ≥ ε) = P((Sn/n)2 ≥ ε2) ≤ E ((Sn/n)2)

ε2
=

1
nε2

.
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and hence, by linearity
E ((Sn/n)2) = 1/n.
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Proof of the SLLN
(ii) ∑

n

P(|Sn/n| ≥ ε)

< or =∞?

The previous line does not tell us. But let’s anyway prove (ii) assuming
this converges.

The Borel-Cantelli Lemma tells us that for every ε > 0,

P(|Sn/n| ≥ ε i.o.) = 0.

Letting Ak := (|Sn/n| ≥ 1
k i.o.), we have P(Ak) = 0 and hence

P(
⋃

k Ak) = 0. This is the same as P(
⋂

k A
c
k) = 1.

One observes that ⋂
k

Ac
k = {Sn

n
→ 0}.

Hence P(Sn/n→ 0) = 1.
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Proof of the SLLN

∑
n

P(|Sn/n| ≥ ε) <∞.

We need to use 4th moments and will prove afterwards

E (S4
n ) ≤ 3n2.

This gives E ((Sn/n)4) ≤ 3/n2. Assuming this, we fix ε > 0 and we obtain

P(|Sn/n| ≥ ε) = P((Sn/n)4 ≥ ε4) ≤ E ((Sn/n)4)

ε4
≤ 3

n2ε4
.
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Proof of the SLLN

E (S4
n ) ≤ 3n2

E (S4
n ) =

∑
i ,j ,k,`

E (XiXjXkX`).

We break the index set into three groups, (a) i = j = k = `,
(b) two of i , j , k , ` take one value and two take another value
and (c) all other possibilities.

Terms in (a) or (b), which are E (X 4
i ) and E (X 2

i X
2
j ) are 1.

All terms of type (c) are zero after checking.

The number of terms of type (b) is n(n − 1)3 (elementary combinatorics).
Hence E (S4

n ) is n + n(n − 1)3 ≤ 3n2. QED
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General SLLN

Theorem

(Strong Law of Large Numbers: General case) Let X1,X2, . . . be
independent random variables with the same distribution with E (|X |) <∞.
Then

Sn
n

:=

∑n
i=1 Xi

n
converges a.e. to E (X ).
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WLLN without an expectation

The WLLN holds under slightly weaker assumptions.

For example if the probability density function for X is

f (x) :=
c

x2 log(|x |)
I|x |≥2

then E (|X |) =∞ and

Sn
n
→ 0 in measure but not a.e.

What is happening? How could this be occuring?

For very large n, Sn
n is very likely to be close to 0, but if you watch the

trajectory in time, there will be these very rare times at which Sn
n is close to

∞ and times close to −∞.
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Infinite number of independent random variables?

How do we know that we can have a probability space with an infinite
number of independent random variables. There are two approaches.

Approach 1: Constructing an infinite product space (see notes).

Approach 2: Use ([0, 1],B[0,1],m) where m is Lebesgue measure as our
probability space.
Given x ∈ [0, 1], x has a binary expansion

x =
∞∑
n=1

an(x)

2n

where each an(x) ∈ {0, 1}. (Nonuniqueness only occurs at countably many
x ’s and so can ignore.) Now, for each n ≥ 1, define the random variable

Xn(x) = 1 if an(x) = 1 and − 1 if an(x) = 0.

One can show that X1,X2, . . . are independent and each has distribution
(δ1 + δ−1)/2.
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Random series: a fascinating aside

Of course
∑

n
1
n diverges while

∑
n

(−1)n
n converges.

What happens if we put a random sign in front of 1
n?

Let {Xn}n≥1 be independent random variables with
P(Xn = 1) = P(Xn = −1) = 1

2 for each n.

Does
∞∑
n=1

Xn

n
converge or not?

Theorem∑∞
n=1

Xn
n converges a.e.
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Random series: a fascinating aside

Theorem

(i) If α > 1/2,

then
∑∞

n=1
Xn
nα converges a.e.

(ii) If α ∈ (0, 1/2], then
∑∞

n=1
Xn
nα diverges a.e..

More specificially, one has that a.e., lim supn→∞
∑n

k=1
Xk
kα =∞ and

lim infn→∞
∑n

k=1
Xk
kα = −∞.

Explanation: The variance of
∑n

k=1
Xk
kα =

∑n
k=1

1
k2α converges to ∞ if and

only if θ ≤ 1/2.
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A few words about the variance

Definition
If X is a random variable on a probability space (Ω,M,P) with finite
expectation, then the variance of X , Var(X ),

is

Var(X ) =

∫
(X − E (X ))2 dP.

• Assuming X has finite expectation, Var(X ) <∞ if and only if
X ∈ L2(Ω,M,P)

• Var(X ) = E (X 2)− (E (X ))2, which is something you might have
seen, is actually the pythagorean theorem, viewed properly.
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A few words about the variance

In Rn, there is a dot product x · y :=
∑

i xiyi .

This can be used to
compute projections in order to find the closest point to a given point
which sits in some plane.

For L2(Ω,M,P), there is a similar dot product defined by X ·Y := E (XY ).
It satisfies all the usual properties that the dot product in Rn satisfies.
The length of a random variable is defined to be, exactly as in Rn,
(X · X )1/2 or (E (X 2))1/2. The distance between X and Y is the length of
X − Y .
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A few words about the variance

One can consider the 1-dimensional space of constant random variables
and ask which random variable in this subspace is closest to a given
random variable X .

It turns out that this is simply the constant random
variable E (X ), i.e., E (X ) is the projection of X onto the 1-dimensional
space of constant random variables.

Hence E (X ) and X − E (X ) are orthogonal. The pythagorean theorem tells
us that E (X 2) = E (X − E (X ))2 + (E (X ))2 = Var(X ) + (E (X ))2. So, the
variance is the "squared distance from X to its projection onto the
1-dimensional space of constant functions".
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A fun aside: the arc sign law for coin tossing

You play a game. Each minute you win or lose a dollar, each with probably
1/2, independently each time. Xi is what you received at time i (either 1
or -1) and Sn :=

∑n
i=1 Xi is your total winnings at time n.

If you played a very very large number n of times and it turns out that
Sn
n < −.001, would you have a right to say you have been very unlucky?

Answer: yes.

Since Sn
n approaches 0 in probability (WLLN),

P(Snn < −.001) ≤ P(|Snn − 0| ≥ .001) which goes to 0 as n→∞.
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A fun aside: the arc sign law for coin tossing

Now, lets say you played a very large number of times and you noticed that
you were behind most of the time. More specifically, you noticed that 90%
of the time you were losing; i.e.

|{i ∈ {1, 2, . . . , n} : Si < 0}| ≥ .9n.
Could you claim you are unlucky?

After all, things should even out in the end and you should be leading
about half the time.

Being able to claim you are very unlucky should mean that

lim
n→∞

P(|{i ∈ {1, 2, . . . , n} : Si < 0}| ≥ .9n) = 0.

False: the above limit is not zero and rather equals
2
π

arcsin(
√
.1)
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A fun aside: the arc sign law for coin tossing

Doesn’t the Weak Law of Large Numbers say

lim
n→∞

P(|{i ∈ {1, 2, . . . , n} : Si < 0}| ≥ .9n) = 0?

Let Yi = 1 if you are leading at time i and Yi = 0 if you are losing at time
i .
The WLLN should say that ∑n

i=1 Yi

n

converges in probability to 1/2 and then the above limit should be 0.

What’s happening? The WLLN is not applicable since the Yi ’s are not
independent. In fact, they are very correlated.
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