Class Lectures (for Chapter 7)

What's coming?

Deeper aspects of measure theory.

What's coming?

Deeper aspects of measure theory.
The main theorems of this chapter are the Radon-Nikodym Theorem and the Lebesgue Decomposition Theorem.

What's coming?

Deeper aspects of measure theory.
The main theorems of this chapter are the Radon-Nikodym Theorem and the Lebesgue Decomposition Theorem.

We will need a lot of preliminary work, including the so-called Hahn and Jordan Decomposition theorems.

Signed measures

Definition

If (X, \mathcal{M}) is a measurable space, a signed measure is a $\operatorname{map} \nu$ from \mathcal{M} to $[-\infty, \infty]$ satisfying

Signed measures

Definition

If (X, \mathcal{M}) is a measurable space, a signed measure is a $\operatorname{map} \nu$ from \mathcal{M} to $[-\infty, \infty]$ satisfying
(i) $\nu(\emptyset)=0$.

Signed measures

Definition

If (X, \mathcal{M}) is a measurable space, a signed measure is a map ν from \mathcal{M} to $[-\infty, \infty]$ satisfying
(i) $\nu(\emptyset)=0$.
(ii) At most one of the values $\pm \infty$ are assumed.

Signed measures

Definition

If (X, \mathcal{M}) is a measurable space, a signed measure is a $\operatorname{map} \nu$ from \mathcal{M} to $[-\infty, \infty]$ satisfying
(i) $\nu(\emptyset)=0$.
(ii) At most one of the values $\pm \infty$ are assumed.
(iii) If A_{1}, A_{2}, \ldots, are (pairwise) disjoint elements of \mathcal{M}, then

$$
\nu\left(\bigcup_{i} A_{i}\right)=\sum_{i} \nu\left(A_{i}\right)
$$

Signed measures

Definition

If (X, \mathcal{M}) is a measurable space, a signed measure is a $\operatorname{map} \nu$ from \mathcal{M} to $[-\infty, \infty]$ satisfying
(i) $\nu(\emptyset)=0$.
(ii) At most one of the values $\pm \infty$ are assumed.
(iii) If A_{1}, A_{2}, \ldots, are (pairwise) disjoint elements of \mathcal{M}, then

$$
\nu\left(\bigcup_{i} A_{i}\right)=\sum_{i} \nu\left(A_{i}\right)
$$

Remarks:

Signed measures

Definition

If (X, \mathcal{M}) is a measurable space, a signed measure is a $\operatorname{map} \nu$ from \mathcal{M} to $[-\infty, \infty]$ satisfying
(i) $\nu(\emptyset)=0$.
(ii) At most one of the values $\pm \infty$ are assumed.
(iii) If A_{1}, A_{2}, \ldots, are (pairwise) disjoint elements of \mathcal{M}, then

$$
\nu\left(\bigcup_{i} A_{i}\right)=\sum_{i} \nu\left(A_{i}\right)
$$

Remarks:
a. A measure is a signed measure.

Signed measures

Definition

If (X, \mathcal{M}) is a measurable space, a signed measure is a map ν from \mathcal{M} to $[-\infty, \infty]$ satisfying
(i) $\nu(\emptyset)=0$.
(ii) At most one of the values $\pm \infty$ are assumed.
(iii) If A_{1}, A_{2}, \ldots, are (pairwise) disjoint elements of \mathcal{M}, then

$$
\nu\left(\bigcup_{i} A_{i}\right)=\sum_{i} \nu\left(A_{i}\right) .
$$

Remarks:
a. A measure is a signed measure.
b. If μ_{1} and μ_{2} are finite measures (or if at least one is a finite measure), then $\mu_{1}-\mu_{2}$ is a signed measure. (Prove this!).

Signed measures

Definition

If (X, \mathcal{M}) is a measurable space, a signed measure is a map ν from \mathcal{M} to $[-\infty, \infty]$ satisfying
(i) $\nu(\emptyset)=0$.
(ii) At most one of the values $\pm \infty$ are assumed.
(iii) If A_{1}, A_{2}, \ldots, are (pairwise) disjoint elements of \mathcal{M}, then

$$
\nu\left(\bigcup_{i} A_{i}\right)=\sum_{i} \nu\left(A_{i}\right) .
$$

Remarks:
a. A measure is a signed measure.
b. If μ_{1} and μ_{2} are finite measures (or if at least one is a finite measure), then $\mu_{1}-\mu_{2}$ is a signed measure. (Prove this!).
c. Condition (ii) is there to avoid having $\infty-\infty$.

Signed measures

First goal (Jordan Decomposition Theorem): Every signed measure has the form $\mu_{1}-\mu_{2}$ with μ_{1} and μ_{2} being measures with at least one being a finite measure

Signed measures

First goal (Jordan Decomposition Theorem): Every signed measure has the form $\mu_{1}-\mu_{2}$ with μ_{1} and μ_{2} being measures with at least one being a finite measure and where μ_{1} and μ_{2} will "live on different parts of the space": i.e., mutually singular.

Signed measures

First goal (Jordan Decomposition Theorem): Every signed measure has the form $\mu_{1}-\mu_{2}$ with μ_{1} and μ_{2} being measures with at least one being a finite measure and where μ_{1} and μ_{2} will "live on different parts of the space": i.e., mutually singular.

Definition

If ν is a signed measure on (X, \mathcal{M}), a set $A \in \mathcal{M}$ is called a positive set if $\nu(B) \geq 0$ for all $B \subseteq A$ with $B \in \mathcal{M}$.

Signed measures

First goal (Jordan Decomposition Theorem): Every signed measure has the form $\mu_{1}-\mu_{2}$ with μ_{1} and μ_{2} being measures with at least one being a finite measure and where μ_{1} and μ_{2} will "live on different parts of the space": i.e., mutually singular.

Definition

If ν is a signed measure on (X, \mathcal{M}), a set $A \in \mathcal{M}$ is called a positive set if $\nu(B) \geq 0$ for all $B \subseteq A$ with $B \in \mathcal{M}$. A is called a negative set if
$\nu(B) \leq 0$ for all $B \subseteq A$ with $B \in \mathcal{M}$.

Signed measures

First goal (Jordan Decomposition Theorem): Every signed measure has the form $\mu_{1}-\mu_{2}$ with μ_{1} and μ_{2} being measures with at least one being a finite measure and where μ_{1} and μ_{2} will "live on different parts of the space": i.e., mutually singular.

Definition

If ν is a signed measure on (X, \mathcal{M}), a set $A \in \mathcal{M}$ is called a positive set if $\nu(B) \geq 0$ for all $B \subseteq A$ with $B \in \mathcal{M}$. A is called a negative set if $\nu(B) \leq 0$ for all $B \subseteq A$ with $B \in \mathcal{M}$. A is called a null set if $\nu(B)=0$ for all $B \subseteq A$ with $B \in \mathcal{M}$.

Signed measures

First goal (Jordan Decomposition Theorem): Every signed measure has the form $\mu_{1}-\mu_{2}$ with μ_{1} and μ_{2} being measures with at least one being a finite measure and where μ_{1} and μ_{2} will "live on different parts of the space": i.e., mutually singular.

Definition

If ν is a signed measure on (X, \mathcal{M}), a set $A \in \mathcal{M}$ is called a positive set if $\nu(B) \geq 0$ for all $B \subseteq A$ with $B \in \mathcal{M}$. A is called a negative set if
$\nu(B) \leq 0$ for all $B \subseteq A$ with $B \in \mathcal{M}$. A is called a null set if $\nu(B)=0$ for all $B \subseteq A$ with $B \in \mathcal{M}$. (Note that a set is null if and only if it is both a positive and a negative set.)

A trivial but illustrative example

Example: $X=\{1,2,3,4\}, \mathcal{M}$ is all subsets,

A trivial but illustrative example

Example: $X=\{1,2,3,4\}, \mathcal{M}$ is all subsets, $\mu(\{1\})=-2, \mu(\{2\})=3, \mu(\{3\})=-1$ and $\mu(\{4\})=1$.

A trivial but illustrative example

Example: $X=\{1,2,3,4\}, \mathcal{M}$ is all subsets, $\mu(\{1\})=-2, \mu(\{2\})=3, \mu(\{3\})=-1$ and $\mu(\{4\})=1$. The measure of other sets is just obtained by adding up the pieces.

A trivial but illustrative example

Example: $X=\{1,2,3,4\}, \mathcal{M}$ is all subsets, $\mu(\{1\})=-2, \mu(\{2\})=3, \mu(\{3\})=-1$ and $\mu(\{4\})=1$.
The measure of other sets is just obtained by adding up the pieces.
$\mu(\{2,3\})=2$ but $\{2,3\}$ is not a positive set since it contains $\{3\}$ which has negative measure.

A trivial but illustrative example

Example: $X=\{1,2,3,4\}, \mathcal{M}$ is all subsets,
$\mu(\{1\})=-2, \mu(\{2\})=3, \mu(\{3\})=-1$ and $\mu(\{4\})=1$.
The measure of other sets is just obtained by adding up the pieces.
$\mu(\{2,3\})=2$ but $\{2,3\}$ is not a positive set since it contains $\{3\}$ which has negative measure.

Note $X=\{2,4\} \cup\{1,3\}$

A trivial but illustrative example

Example: $X=\{1,2,3,4\}, \mathcal{M}$ is all subsets,
$\mu(\{1\})=-2, \mu(\{2\})=3, \mu(\{3\})=-1$ and $\mu(\{4\})=1$.
The measure of other sets is just obtained by adding up the pieces.
$\mu(\{2,3\})=2$ but $\{2,3\}$ is not a positive set since it contains $\{3\}$ which has negative measure.

Note $X=\{2,4\} \cup\{1,3\}$ and that $\{2,4\}$ is a positive set and $\{1,3\}$ is a negative set.

A trivial but illustrative example

Example: $X=\{1,2,3,4\}, \mathcal{M}$ is all subsets,
$\mu(\{1\})=-2, \mu(\{2\})=3, \mu(\{3\})=-1$ and $\mu(\{4\})=1$.
The measure of other sets is just obtained by adding up the pieces.
$\mu(\{2,3\})=2$ but $\{2,3\}$ is not a positive set since it contains $\{3\}$ which has negative measure.

Note $X=\{2,4\} \cup\{1,3\}$ and that $\{2,4\}$ is a positive set and $\{1,3\}$ is a negative set.

Note also that if we define μ_{1} and μ_{2} by
$\mu_{1}(\{1\})=0, \mu_{1}(\{2\})=3, \mu_{1}(\{3\})=0$ and $\mu_{1}(\{4\})=1$

A trivial but illustrative example

Example: $X=\{1,2,3,4\}, \mathcal{M}$ is all subsets,
$\mu(\{1\})=-2, \mu(\{2\})=3, \mu(\{3\})=-1$ and $\mu(\{4\})=1$.
The measure of other sets is just obtained by adding up the pieces.
$\mu(\{2,3\})=2$ but $\{2,3\}$ is not a positive set since it contains $\{3\}$ which has negative measure.

Note $X=\{2,4\} \cup\{1,3\}$ and that $\{2,4\}$ is a positive set and $\{1,3\}$ is a negative set.

Note also that if we define μ_{1} and μ_{2} by
$\mu_{1}(\{1\})=0, \mu_{1}(\{2\})=3, \mu_{1}(\{3\})=0$ and $\mu_{1}(\{4\})=1$ and $\mu_{2}(\{1\})=2, \mu_{2}(\{2\})=0, \mu_{1}(\{3\})=1$ and $\mu_{1}(\{4\})=0$,

A trivial but illustrative example

Example: $X=\{1,2,3,4\}, \mathcal{M}$ is all subsets,
$\mu(\{1\})=-2, \mu(\{2\})=3, \mu(\{3\})=-1$ and $\mu(\{4\})=1$.
The measure of other sets is just obtained by adding up the pieces.
$\mu(\{2,3\})=2$ but $\{2,3\}$ is not a positive set since it contains $\{3\}$ which has negative measure.

Note $X=\{2,4\} \cup\{1,3\}$ and that $\{2,4\}$ is a positive set and $\{1,3\}$ is a negative set.

Note also that if we define μ_{1} and μ_{2} by
$\mu_{1}(\{1\})=0, \mu_{1}(\{2\})=3, \mu_{1}(\{3\})=0$ and $\mu_{1}(\{4\})=1$ and $\mu_{2}(\{1\})=2, \mu_{2}(\{2\})=0, \mu_{1}(\{3\})=1$ and $\mu_{1}(\{4\})=0$, then

$$
\mu=\mu_{1}-\mu_{2}
$$

A trivial but illustrative example

Example: $X=\{1,2,3,4\}, \mathcal{M}$ is all subsets,
$\mu(\{1\})=-2, \mu(\{2\})=3, \mu(\{3\})=-1$ and $\mu(\{4\})=1$.
The measure of other sets is just obtained by adding up the pieces.
$\mu(\{2,3\})=2$ but $\{2,3\}$ is not a positive set since it contains $\{3\}$ which has negative measure.

Note $X=\{2,4\} \cup\{1,3\}$ and that $\{2,4\}$ is a positive set and $\{1,3\}$ is a negative set.

Note also that if we define μ_{1} and μ_{2} by
$\mu_{1}(\{1\})=0, \mu_{1}(\{2\})=3, \mu_{1}(\{3\})=0$ and $\mu_{1}(\{4\})=1$ and $\mu_{2}(\{1\})=2, \mu_{2}(\{2\})=0, \mu_{1}(\{3\})=1$ and $\mu_{1}(\{4\})=0$, then

$$
\mu=\mu_{1}-\mu_{2}
$$

and μ_{1} and μ_{2} "live on different parts of $X^{\prime \prime}$.

A trivial but illustrative example

Example: $X=\{1,2,3,4\}, \mathcal{M}$ is all subsets,
$\mu(\{1\})=-2, \mu(\{2\})=3, \mu(\{3\})=-1$ and $\mu(\{4\})=1$.
The measure of other sets is just obtained by adding up the pieces.
$\mu(\{2,3\})=2$ but $\{2,3\}$ is not a positive set since it contains $\{3\}$ which has negative measure.

Note $X=\{2,4\} \cup\{1,3\}$ and that $\{2,4\}$ is a positive set and $\{1,3\}$ is a negative set.

Note also that if we define μ_{1} and μ_{2} by
$\mu_{1}(\{1\})=0, \mu_{1}(\{2\})=3, \mu_{1}(\{3\})=0$ and $\mu_{1}(\{4\})=1$ and $\mu_{2}(\{1\})=2, \mu_{2}(\{2\})=0, \mu_{1}(\{3\})=1$ and $\mu_{1}(\{4\})=0$, then

$$
\mu=\mu_{1}-\mu_{2}
$$

and μ_{1} and μ_{2} "live on different parts of $X^{\prime \prime}$.
This is the picture we want in general.

Hahn Decomposition Theorem

Theorem

(Hahn Decomposition Theorem) If ν is a signed measure on (X, \mathcal{M}), then X can be partitioned into two sets $P, N(P \cup N=X, P \cap N=\emptyset)$ with $P, N \in \mathcal{M}$

Hahn Decomposition Theorem

Theorem

(Hahn Decomposition Theorem) If ν is a signed measure on (X, \mathcal{M}), then X can be partitioned into two sets $P, N(P \cup N=X, P \cap N=\emptyset)$ with $P, N \in \mathcal{M}$ where P is a positive set and N is a negative set.

Hahn Decomposition Theorem

Theorem

(Hahn Decomposition Theorem) If ν is a signed measure on (X, \mathcal{M}), then X can be partitioned into two sets $P, N(P \cup N=X, P \cap N=\emptyset)$ with $P, N \in \mathcal{M}$ where P is a positive set and N is a negative set. There is "almost uniqueness" in that if $\left(P^{\prime}, N^{\prime}\right)$ is another such partition, then $P \triangle P^{\prime}$ and $N \triangle N^{\prime}$ are each null sets.

Hahn Decomposition Theorem

Theorem

(Hahn Decomposition Theorem) If ν is a signed measure on (X, \mathcal{M}), then X can be partitioned into two sets $P, N(P \cup N=X, P \cap N=\emptyset)$ with $P, N \in \mathcal{M}$ where P is a positive set and N is a negative set. There is "almost uniqueness" in that if $\left(P^{\prime}, N^{\prime}\right)$ is another such partition, then $P \triangle P^{\prime}$ and $N \triangle N^{\prime}$ are each null sets.

Simple Example: Consider $\left([0,1], \mathcal{B}_{[0,1]}\right)$ and let m be Lebesgue measure.

Hahn Decomposition Theorem

Theorem

(Hahn Decomposition Theorem) If ν is a signed measure on (X, \mathcal{M}), then X can be partitioned into two sets $P, N(P \cup N=X, P \cap N=\emptyset)$ with $P, N \in \mathcal{M}$ where P is a positive set and N is a negative set. There is "almost uniqueness" in that if $\left(P^{\prime}, N^{\prime}\right)$ is another such partition, then $P \triangle P^{\prime}$ and $N \triangle N^{\prime}$ are each null sets.

Simple Example: Consider $\left([0,1], \mathcal{B}_{[0,1]}\right)$ and let m be Lebesgue measure.
Let

$$
\nu(A):=m\left(A \cap\left[0, \frac{3}{4}\right]\right)-m\left(A \cap\left(\frac{3}{4}, 1\right]\right) .
$$

Hahn Decomposition Theorem

Theorem

(Hahn Decomposition Theorem) If ν is a signed measure on (X, \mathcal{M}), then X can be partitioned into two sets $P, N(P \cup N=X, P \cap N=\emptyset)$ with $P, N \in \mathcal{M}$ where P is a positive set and N is a negative set. There is "almost uniqueness" in that if $\left(P^{\prime}, N^{\prime}\right)$ is another such partition, then $P \triangle P^{\prime}$ and $N \triangle N^{\prime}$ are each null sets.

Simple Example: Consider $\left([0,1], \mathcal{B}_{[0,1]}\right)$ and let m be Lebesgue measure. Let

$$
\nu(A):=m\left(A \cap\left[0, \frac{3}{4}\right]\right)-m\left(A \cap\left(\frac{3}{4}, 1\right]\right) .
$$

Then a Hahn decomposition is given by $\left(\left[0, \frac{3}{4}\right],\left(\frac{3}{4}, 1\right]\right)$.

Key lemma for the Hahn Decomposition Theorem

First two fairly easy fact about signed measures; these are Propositions 3.1 and Lemma 3.2 in F .

Key lemma for the Hahn Decomposition Theorem

First two fairly easy fact about signed measures; these are Propositions 3.1 and Lemma 3.2 in F.
(i) The continuity from below and from above for measures applies to signed measures as well.

Key lemma for the Hahn Decomposition Theorem

First two fairly easy fact about signed measures; these are Propositions 3.1 and Lemma 3.2 in F.
(i) The continuity from below and from above for measures applies to signed measures as well.
(ii) A measurable subset of a positive set is a positive set (trivial)

Key lemma for the Hahn Decomposition Theorem

First two fairly easy fact about signed measures; these are Propositions 3.1 and Lemma 3.2 in F.
(i) The continuity from below and from above for measures applies to signed measures as well.
(ii) A measurable subset of a positive set is a positive set (trivial) and a countable union of (not necessarily disjoint) positive sets is a positive set (easy).

Key lemma for the Hahn Decomposition Theorem

First two fairly easy fact about signed measures; these are Propositions 3.1 and Lemma 3.2 in F.
(i) The continuity from below and from above for measures applies to signed measures as well.
(ii) A measurable subset of a positive set is a positive set (trivial) and a countable union of (not necessarily disjoint) positive sets is a positive set (easy).

Lemma

Let ν be a signed measure on (X, \mathcal{M}) which does not take the value ∞.

Key lemma for the Hahn Decomposition Theorem

First two fairly easy fact about signed measures; these are Propositions 3.1 and Lemma 3.2 in F.
(i) The continuity from below and from above for measures applies to signed measures as well.
(ii) A measurable subset of a positive set is a positive set (trivial) and a countable union of (not necessarily disjoint) positive sets is a positive set (easy).

Lemma

Let ν be a signed measure on (X, \mathcal{M}) which does not take the value ∞. If $\nu(A)>0$, then there exists a measurable $B \subseteq A$ where $\nu(B)>0$ and B is a positive set.

Key lemma for the Hahn Decomposition Theorem

First two fairly easy fact about signed measures; these are Propositions 3.1 and Lemma 3.2 in F.
(i) The continuity from below and from above for measures applies to signed measures as well.
(ii) A measurable subset of a positive set is a positive set (trivial) and a countable union of (not necessarily disjoint) positive sets is a positive set (easy).

Lemma

Let ν be a signed measure on (X, \mathcal{M}) which does not take the value ∞. If $\nu(A)>0$, then there exists a measurable $B \subseteq A$ where $\nu(B)>0$ and B is a positive set.

Read lecture notes.

Proof of the Hahn Decomposition Theorem

Assume WLOG ∞ is not obtained by ν.

Proof of the Hahn Decomposition Theorem

Assume WLOG ∞ is not obtained by ν. Let

$$
m=\sup \{\nu(E): E \text { is a positive set }\} .
$$

Proof of the Hahn Decomposition Theorem

Assume WLOG ∞ is not obtained by ν. Let

$$
m=\sup \{\nu(E): E \text { is a positive set }\} .
$$

If $m=0$, then the lemma implies that every subset has nonpositive measure

Proof of the Hahn Decomposition Theorem

Assume WLOG ∞ is not obtained by ν. Let

$$
m=\sup \{\nu(E): E \text { is a positive set }\} .
$$

If $m=0$, then the lemma implies that every subset has nonpositive measure and hence X is a negative set.

Proof of the Hahn Decomposition Theorem

Assume WLOG ∞ is not obtained by ν. Let

$$
m=\sup \{\nu(E): E \text { is a positive set }\} .
$$

If $m=0$, then the lemma implies that every subset has nonpositive measure and hence X is a negative set.

Otherwise, we choose a sequence of positive sets $\left(P_{j}\right)$ so that

$$
\lim _{j \rightarrow \infty} \nu\left(P_{j}\right)=m
$$

Proof of the Hahn Decomposition Theorem

Assume WLOG ∞ is not obtained by ν. Let

$$
m=\sup \{\nu(E): E \text { is a positive set }\} .
$$

If $m=0$, then the lemma implies that every subset has nonpositive measure and hence X is a negative set.

Otherwise, we choose a sequence of positive sets $\left(P_{j}\right)$ so that

$$
\lim _{j \rightarrow \infty} \nu\left(P_{j}\right)=m
$$

Letting $P=\bigcup_{j} P_{j}$, we have that P is a positive set.

Proof of the Hahn Decomposition Theorem

Assume WLOG ∞ is not obtained by ν. Let

$$
m=\sup \{\nu(E): E \text { is a positive set }\} .
$$

If $m=0$, then the lemma implies that every subset has nonpositive measure and hence X is a negative set.

Otherwise, we choose a sequence of positive sets $\left(P_{j}\right)$ so that

$$
\lim _{j \rightarrow \infty} \nu\left(P_{j}\right)=m
$$

Letting $P=\bigcup_{j} P_{j}$, we have that P is a positive set. Therefore, we have $\nu(P)=m$ since $\nu(P) \geq \nu\left(P_{j}\right)$ for all j.

Proof of the Hahn Decomposition Theorem

Assume WLOG ∞ is not obtained by ν. Let

$$
m=\sup \{\nu(E): E \text { is a positive set }\} .
$$

If $m=0$, then the lemma implies that every subset has nonpositive measure and hence X is a negative set.

Otherwise, we choose a sequence of positive sets $\left(P_{j}\right)$ so that

$$
\lim _{j \rightarrow \infty} \nu\left(P_{j}\right)=m
$$

Letting $P=\bigcup_{j} P_{j}$, we have that P is a positive set. Therefore, we have $\nu(P)=m$ since $\nu(P) \geq \nu\left(P_{j}\right)$ for all j. This implies that $m<\infty$.

Proof of the Hahn Decomposition Theorem

Assume WLOG ∞ is not obtained by ν. Let

$$
m=\sup \{\nu(E): E \text { is a positive set }\} .
$$

If $m=0$, then the lemma implies that every subset has nonpositive measure and hence X is a negative set.

Otherwise, we choose a sequence of positive sets $\left(P_{j}\right)$ so that

$$
\lim _{j \rightarrow \infty} \nu\left(P_{j}\right)=m
$$

Letting $P=\bigcup_{j} P_{j}$, we have that P is a positive set. Therefore, we have $\nu(P)=m$ since $\nu(P) \geq \nu\left(P_{j}\right)$ for all j. This implies that $m<\infty$. If we can show that P^{c} is a negative set, we would be done.

Proof of the Hahn Decomposition Theorem

Proof of the Hahn Decomposition Theorem

If P^{c} is not a negative set, then there exists $E \subseteq P^{c}$ with $\nu(E)>0$.

Proof of the Hahn Decomposition Theorem

If P^{c} is not a negative set, then there exists $E \subseteq P^{c}$ with $\nu(E)>0$.
By the key lemma, E contains a subset F which is a positive set and with $\nu(F)>0$.

Proof of the Hahn Decomposition Theorem

If P^{c} is not a negative set, then there exists $E \subseteq P^{c}$ with $\nu(E)>0$.
By the key lemma, E contains a subset F which is a positive set and with $\nu(F)>0$.

Then $P \cup F$ would be a positive set

Proof of the Hahn Decomposition Theorem

If P^{c} is not a negative set, then there exists $E \subseteq P^{c}$ with $\nu(E)>0$.
By the key lemma, E contains a subset F which is a positive set and with $\nu(F)>0$.

Then $P \cup F$ would be a positive set with ν-measure larger than m.

Proof of the Hahn Decomposition Theorem

If P^{c} is not a negative set, then there exists $E \subseteq P^{c}$ with $\nu(E)>0$.
By the key lemma, E contains a subset F which is a positive set and with $\nu(F)>0$.

Then $P \cup F$ would be a positive set with ν-measure larger than m. Contradiction. QED

Mutual singularity

Definition

Two measures μ and ν on (X, \mathcal{M}) are mutually singular, $\mu \perp \nu$,

Mutual singularity

Definition

Two measures μ and ν on (X, \mathcal{M}) are mutually singular, $\mu \perp \nu$, if X can be partitioned into two disjoint sets E and F in \mathcal{M}

Mutual singularity

Definition

Two measures μ and ν on (X, \mathcal{M}) are mutually singular, $\mu \perp \nu$, if X can be partitioned into two disjoint sets E and F in \mathcal{M} so that $\mu(E)=0=\nu(F)$.

Mutual singularity

Definition

Two measures μ and ν on (X, \mathcal{M}) are mutually singular, $\mu \perp \nu$, if X can be partitioned into two disjoint sets E and F in \mathcal{M} so that $\mu(E)=0=\nu(F)$. So μ "lives on $F^{\prime \prime}$ and ν "lives on E ".

Mutual singularity

Definition

Two measures μ and ν on (X, \mathcal{M}) are mutually singular, $\mu \perp \nu$, if X can be partitioned into two disjoint sets E and F in \mathcal{M} so that $\mu(E)=0=\nu(F)$. So μ "lives on $F^{\prime \prime}$ and ν "lives on $E^{\prime \prime}$. (For signed measures, the definition needs to be modified.)

Mutual singularity

Definition

Two measures μ and ν on (X, \mathcal{M}) are mutually singular, $\mu \perp \nu$, if X can be partitioned into two disjoint sets E and F in \mathcal{M} so that $\mu(E)=0=\nu(F)$. So μ "lives on $F^{\prime \prime}$ and ν "lives on $E^{\prime \prime}$. (For signed measures, the definition needs to be modified.)

Example: Let $X=[0,1]$ with the Borel sets.

Mutual singularity

Definition

Two measures μ and ν on (X, \mathcal{M}) are mutually singular, $\mu \perp \nu$, if X can be partitioned into two disjoint sets E and F in \mathcal{M} so that $\mu(E)=0=\nu(F)$. So μ "lives on $F^{\prime \prime}$ and ν "lives on $E^{\text {". (For signed }}$ measures, the definition needs to be modified.)

Example: Let $X=[0,1]$ with the Borel sets.
Let μ be Lebesgue measure restricted to $[1 / 2,1]$

Mutual singularity

Definition

Two measures μ and ν on (X, \mathcal{M}) are mutually singular, $\mu \perp \nu$, if X can be partitioned into two disjoint sets E and F in \mathcal{M} so that $\mu(E)=0=\nu(F)$. So μ "lives on $F^{\prime \prime}$ and ν "lives on $E^{\prime \prime}$. (For signed measures, the definition needs to be modified.)

Example: Let $X=[0,1]$ with the Borel sets.
Let μ be Lebesgue measure restricted to $[1 / 2,1]$ meaning $\mu(A)=m(A \cap[1 / 2,1])$.

Mutual singularity

Definition

Two measures μ and ν on (X, \mathcal{M}) are mutually singular, $\mu \perp \nu$, if X can be partitioned into two disjoint sets E and F in \mathcal{M} so that $\mu(E)=0=\nu(F)$. So μ "lives on $F^{\prime \prime}$ and ν "lives on $E^{\prime \prime}$. (For signed measures, the definition needs to be modified.)

Example: Let $X=[0,1]$ with the Borel sets.
Let μ be Lebesgue measure restricted to $[1 / 2,1]$ meaning $\mu(A)=m(A \cap[1 / 2,1])$.
Let ν be Lebesgue measure restricted to $[0,1 / 2]$

Mutual singularity

Definition

Two measures μ and ν on (X, \mathcal{M}) are mutually singular, $\mu \perp \nu$, if X can be partitioned into two disjoint sets E and F in \mathcal{M} so that $\mu(E)=0=\nu(F)$. So μ "lives on $F^{\prime \prime}$ and ν "lives on $E^{\text {". (For signed }}$ measures, the definition needs to be modified.)

Example: Let $X=[0,1]$ with the Borel sets.
Let μ be Lebesgue measure restricted to $[1 / 2,1]$ meaning $\mu(A)=m(A \cap[1 / 2,1])$.

Let ν be Lebesgue measure restricted to $[0,1 / 2]$ meaning $\nu(A)=m(A \cap[0,1 / 2])$.

Mutual singularity

Definition

Two measures μ and ν on (X, \mathcal{M}) are mutually singular, $\mu \perp \nu$, if X can be partitioned into two disjoint sets E and F in \mathcal{M} so that $\mu(E)=0=\nu(F)$. So μ "lives on $F^{\prime \prime}$ and ν "lives on $E^{\prime \prime}$. (For signed measures, the definition needs to be modified.)

Example: Let $X=[0,1]$ with the Borel sets.
Let μ be Lebesgue measure restricted to $[1 / 2,1]$ meaning $\mu(A)=m(A \cap[1 / 2,1])$.

Let ν be Lebesgue measure restricted to $[0,1 / 2]$ meaning $\nu(A)=m(A \cap[0,1 / 2])$.

Then μ and ν are mutually singular

Mutual singularity

Definition

Two measures μ and ν on (X, \mathcal{M}) are mutually singular, $\mu \perp \nu$, if X can be partitioned into two disjoint sets E and F in \mathcal{M} so that $\mu(E)=0=\nu(F)$. So μ "lives on $F^{\prime \prime}$ and ν "lives on $E^{\prime \prime}$. (For signed measures, the definition needs to be modified.)

Example: Let $X=[0,1]$ with the Borel sets.
Let μ be Lebesgue measure restricted to $[1 / 2,1]$ meaning
$\mu(A)=m(A \cap[1 / 2,1])$.
Let ν be Lebesgue measure restricted to $[0,1 / 2]$ meaning
$\nu(A)=m(A \cap[0,1 / 2])$.
Then μ and ν are mutually singular with $E=[0,1 / 2]$ and $F=(1 / 2,1]$.

Mutual singularity

Example: Let $X=[0,1]$ with the Borel sets.

Mutual singularity

Example: Let $X=[0,1]$ with the Borel sets.
Let μ be Lebesgue measure restricted to $[1 / 2,1]$.

Mutual singularity

Example: Let $X=[0,1]$ with the Borel sets.
Let μ be Lebesgue measure restricted to $[1 / 2,1]$.
Let ν be Lebesgue measure restricted to $[0,1 / 2]$

Mutual singularity

Example: Let $X=[0,1]$ with the Borel sets.
Let μ be Lebesgue measure restricted to $[1 / 2,1]$.
Let ν be Lebesgue measure restricted to $[0,1 / 2]$ plus a unit point mass at 3/4.

Mutual singularity

Example: Let $X=[0,1]$ with the Borel sets.
Let μ be Lebesgue measure restricted to $[1 / 2,1]$.
Let ν be Lebesgue measure restricted to $[0,1 / 2]$ plus a unit point mass at $3 / 4$. So $\nu(A)=m(A \cap[0,1 / 2])+\delta_{3 / 4}(A)$.

Mutual singularity

Example: Let $X=[0,1]$ with the Borel sets.
Let μ be Lebesgue measure restricted to $[1 / 2,1]$.
Let ν be Lebesgue measure restricted to $[0,1 / 2]$ plus a unit point mass at $3 / 4$. So $\nu(A)=m(A \cap[0,1 / 2])+\delta_{3 / 4}(A)$.
Then μ and ν are mutually singular

Mutual singularity

Example: Let $X=[0,1]$ with the Borel sets.
Let μ be Lebesgue measure restricted to $[1 / 2,1]$.
Let ν be Lebesgue measure restricted to $[0,1 / 2]$ plus a unit point mass at $3 / 4$. So $\nu(A)=m(A \cap[0,1 / 2])+\delta_{3 / 4}(A)$.
Then μ and ν are mutually singular with $E=[0,1 / 2] \cup\{3 / 4\}$ and $F=(1 / 2,1] \backslash\{3 / 4\}$.

Mutual singularity

Example: Let $X=[0,1]$ with the Borel sets.
Let μ be Lebesgue measure restricted to $[1 / 2,1]$.
Let ν be Lebesgue measure restricted to $[0,1 / 2]$ plus a unit point mass at $3 / 4$. So $\nu(A)=m(A \cap[0,1 / 2])+\delta_{3 / 4}(A)$.
Then μ and ν are mutually singular with $E=[0,1 / 2] \cup\{3 / 4\}$ and $F=(1 / 2,1] \backslash\{3 / 4\}$.

Example: The Cantor measure and Lebesgue measure.

Mutual singularity

Example: Let $X=[0,1]$ with the Borel sets.
Let μ be Lebesgue measure restricted to $[1 / 2,1]$.
Let ν be Lebesgue measure restricted to $[0,1 / 2]$ plus a unit point mass at $3 / 4$. So $\nu(A)=m(A \cap[0,1 / 2])+\delta_{3 / 4}(A)$.
Then μ and ν are mutually singular with $E=[0,1 / 2] \cup\{3 / 4\}$ and $F=(1 / 2,1] \backslash\{3 / 4\}$.
Example: The Cantor measure and Lebesgue measure. $E=C$ and $F=C^{c}$.

The Jordan Decomposition Theorem

The Jordan Decomposition Theorem

Theorem

(Jordan Decomposition Theorem)

The Jordan Decomposition Theorem

Theorem

(Jordan Decomposition Theorem) If ν is a signed measure on (X, \mathcal{M}),

The Jordan Decomposition Theorem

Theorem

(Jordan Decomposition Theorem) If ν is a signed measure on (X, \mathcal{M}), then there exist unique measures ν^{+}and ν^{-}so that ν^{+}and ν^{-}are mutually singular

The Jordan Decomposition Theorem

Theorem

(Jordan Decomposition Theorem) If ν is a signed measure on (X, \mathcal{M}), then there exist unique measures ν^{+}and ν^{-}so that ν^{+}and ν^{-}are mutually singular and

$$
\nu=\nu^{+}-\nu^{-} .
$$

The Jordan Decomposition Theorem

Theorem

(Jordan Decomposition Theorem) If ν is a signed measure on (X, \mathcal{M}), then there exist unique measures ν^{+}and ν^{-}so that ν^{+}and ν^{-}are mutually singular and

$$
\nu=\nu^{+}-\nu^{-} .
$$

Let μ_{1} be Lebesgue measure restricted to $[0,3 / 4]$

The Jordan Decomposition Theorem

Theorem

(Jordan Decomposition Theorem) If ν is a signed measure on (X, \mathcal{M}), then there exist unique measures ν^{+}and ν^{-}so that ν^{+}and ν^{-}are mutually singular and

$$
\nu=\nu^{+}-\nu^{-} .
$$

Let μ_{1} be Lebesgue measure restricted to $[0,3 / 4]$ and μ_{2} be Lebesgue measure restricted to $[1 / 4,1]$.

What is the Jordan decomposition of $\nu:=\mu_{1}-\mu_{2}$?

The Jordan Decomposition Theorem

Theorem

(Jordan Decomposition Theorem) If ν is a signed measure on (X, \mathcal{M}), then there exist unique measures ν^{+}and ν^{-}so that ν^{+}and ν^{-}are mutually singular and

$$
\nu=\nu^{+}-\nu^{-} .
$$

Let μ_{1} be Lebesgue measure restricted to $[0,3 / 4]$ and μ_{2} be Lebesgue measure restricted to $[1 / 4,1]$.
What is the Jordan decomposition of $\nu:=\mu_{1}-\mu_{2}$?
Is ν^{+}and ν^{-}just μ_{1} and μ_{2} ?

The Jordan Decomposition Theorem

Theorem

(Jordan Decomposition Theorem) If ν is a signed measure on (X, \mathcal{M}), then there exist unique measures ν^{+}and ν^{-}so that ν^{+}and ν^{-}are mutually singular and

$$
\nu=\nu^{+}-\nu^{-} .
$$

Let μ_{1} be Lebesgue measure restricted to $[0,3 / 4]$ and μ_{2} be Lebesgue measure restricted to $[1 / 4,1]$.
What is the Jordan decomposition of $\nu:=\mu_{1}-\mu_{2}$?
Is ν^{+}and ν^{-}just μ_{1} and μ_{2} ?
No. μ_{1} and μ_{2} are not mutually singular.

The Jordan Decomposition Theorem

Theorem

(Jordan Decomposition Theorem) If ν is a signed measure on (X, \mathcal{M}), then there exist unique measures ν^{+}and ν^{-}so that ν^{+}and ν^{-}are mutually singular and

$$
\nu=\nu^{+}-\nu^{-} .
$$

Let μ_{1} be Lebesgue measure restricted to $[0,3 / 4]$ and μ_{2} be Lebesgue measure restricted to $[1 / 4,1]$.

What is the Jordan decomposition of $\nu:=\mu_{1}-\mu_{2}$?
Is ν^{+}and ν^{-}just μ_{1} and μ_{2} ?
No. μ_{1} and μ_{2} are not mutually singular.
Instead one should take ν^{+}to be Lebesgue measure restricted to $[0,1 / 4]$ and ν^{-}to be Lebesgue measure restricted to $[3 / 4,1]$.

Proof of The Jordan Decomposition Theorem

Let P, N be a Hahn decomposition of ν.

Proof of The Jordan Decomposition Theorem

Let P, N be a Hahn decomposition of ν.
Let ν^{+}be the "restriction of ν to $P^{\prime \prime}$ ", meaning

$$
\nu^{+}(A):=\nu(A \cap P)
$$

Proof of The Jordan Decomposition Theorem

Let P, N be a Hahn decomposition of ν.
Let ν^{+}be the "restriction of ν to $P^{\prime \prime}$ ", meaning

$$
\nu^{+}(A):=\nu(A \cap P)
$$

Note that ν^{+}is a measure since P is a positive set.

Proof of The Jordan Decomposition Theorem

Let P, N be a Hahn decomposition of ν.
Let ν^{+}be the "restriction of ν to $P^{\prime \prime}$ ", meaning

$$
\nu^{+}(A):=\nu(A \cap P)
$$

Note that ν^{+}is a measure since P is a positive set.
Let ν^{-}be the "restriction of ν to N " but "reversed", meaning

$$
\nu^{-}(A):=-\nu(A \cap N)
$$

Proof of The Jordan Decomposition Theorem

Let P, N be a Hahn decomposition of ν.
Let ν^{+}be the "restriction of ν to $P^{\prime \prime}$ ", meaning

$$
\nu^{+}(A):=\nu(A \cap P)
$$

Note that ν^{+}is a measure since P is a positive set.
Let ν^{-}be the "restriction of ν to N " but "reversed", meaning

$$
\nu^{-}(A):=-\nu(A \cap N) .
$$

Note that ν^{-}is a measure since N is a negative set.

Proof of The Jordan Decomposition Theorem

Let P, N be a Hahn decomposition of ν.
Let ν^{+}be the "restriction of ν to P^{\prime} ", meaning

$$
\nu^{+}(A):=\nu(A \cap P)
$$

Note that ν^{+}is a measure since P is a positive set.
Let ν^{-}be the "restriction of ν to N " but "reversed", meaning

$$
\nu^{-}(A):=-\nu(A \cap N) .
$$

Note that ν^{-}is a measure since N is a negative set.
$\nu^{+}(N)=0=\nu^{-}(P)$ and so $\nu^{+} \perp \nu^{-}$.

Proof of The Jordan Decomposition Theorem

Let P, N be a Hahn decomposition of ν.
Let ν^{+}be the "restriction of ν to P^{\prime} ", meaning

$$
\nu^{+}(A):=\nu(A \cap P)
$$

Note that ν^{+}is a measure since P is a positive set.
Let ν^{-}be the "restriction of ν to N " but "reversed", meaning

$$
\nu^{-}(A):=-\nu(A \cap N) .
$$

Note that ν^{-}is a measure since N is a negative set.
$\nu^{+}(N)=0=\nu^{-}(P)$ and so $\nu^{+} \perp \nu^{-}$.
Also

$$
\left(\nu^{+}-\nu^{-}\right)(A)=\nu^{+}(A)-\nu^{-}(A)=\nu(A \cap P)+\nu(A \cap N)=\nu(A)
$$

QED

Absolute continuity

Definition

Given two measures ν and μ on (X, \mathcal{M}), we say that ν is absolutely continuous with respect to μ,

Absolute continuity

Definition

Given two measures ν and μ on (X, \mathcal{M}), we say that ν is absolutely continuous with respect to μ, written $\nu \ll \mu$,

Absolute continuity

Definition

Given two measures ν and μ on (X, \mathcal{M}), we say that ν is absolutely continuous with respect to μ, written $\nu \ll \mu$, if
$\mu(A)=0$ implies that $\nu(A)=0$.

Absolute continuity

Definition

Given two measures ν and μ on (X, \mathcal{M}), we say that ν is absolutely continuous with respect to μ, written $\nu \ll \mu$, if

$$
\mu(A)=0 \text { implies that } \nu(A)=0 .
$$

The following is a simple but central example illustrating this concept.

Absolute continuity

Definition

Given two measures ν and μ on (X, \mathcal{M}), we say that ν is absolutely continuous with respect to μ, written $\nu \ll \mu$, if

$$
\mu(A)=0 \text { implies that } \nu(A)=0 .
$$

The following is a simple but central example illustrating this concept. Consider a measure space (X, \mathcal{M}, μ) and a function $f \in L^{+}((X, \mathcal{M}, \mu))$.

Absolute continuity

Definition

Given two measures ν and μ on (X, \mathcal{M}), we say that ν is absolutely continuous with respect to μ, written $\nu \ll \mu$, if

$$
\mu(A)=0 \text { implies that } \nu(A)=0 .
$$

The following is a simple but central example illustrating this concept. Consider a measure space (X, \mathcal{M}, μ) and a function $f \in L^{+}((X, \mathcal{M}, \mu))$. Define the measure ν on (X, \mathcal{M}) by

$$
\nu(A):=\int_{A} f(x) d \mu(x) .
$$

Absolute continuity

Definition

Given two measures ν and μ on (X, \mathcal{M}), we say that ν is absolutely continuous with respect to μ, written $\nu \ll \mu$, if

$$
\mu(A)=0 \text { implies that } \nu(A)=0 .
$$

The following is a simple but central example illustrating this concept. Consider a measure space (X, \mathcal{M}, μ) and a function $f \in L^{+}((X, \mathcal{M}, \mu))$. Define the measure ν on (X, \mathcal{M}) by

$$
\nu(A):=\int_{A} f(x) d \mu(x) .
$$

(Convince yourself this is a measure; uses linearity of the integral and the Monotone Convergence Theorem.)

Absolute continuity

Definition

Given two measures ν and μ on (X, \mathcal{M}), we say that ν is absolutely continuous with respect to μ, written $\nu \ll \mu$, if

$$
\mu(A)=0 \text { implies that } \nu(A)=0 .
$$

The following is a simple but central example illustrating this concept. Consider a measure space (X, \mathcal{M}, μ) and a function $f \in L^{+}((X, \mathcal{M}, \mu))$. Define the measure ν on (X, \mathcal{M}) by

$$
\nu(A):=\int_{A} f(x) d \mu(x) .
$$

(Convince yourself this is a measure; uses linearity of the integral and the Monotone Convergence Theorem.) ν is called $f \mu$ and one has $\nu \ll \mu$.

The Radon-Nikodym Theorem (converse of the previous example)

Theorem

Let ν and μ be two measures on (X, \mathcal{M}) with $\nu \ll \mu$ and with ν and μ being σ-finite.

The Radon-Nikodym Theorem (converse of the previous example)

Theorem

Let ν and μ be two measures on (X, \mathcal{M}) with $\nu \ll \mu$ and with ν and μ being σ-finite. Then there exists a measurable function $f_{0}:(X, \mathcal{M}) \rightarrow[0, \infty)$

The Radon-Nikodym Theorem (converse of the previous example)

Theorem

Let ν and μ be two measures on (X, \mathcal{M}) with $\nu \ll \mu$ and with ν and μ being σ-finite. Then there exists a measurable function $f_{0}:(X, \mathcal{M}) \rightarrow[0, \infty)$ such that for all $A \in \mathcal{M}$,

$$
\nu(A):=\int_{A} f_{0}(x) d \mu(x) .
$$

The Radon-Nikodym Theorem (converse of the previous example)

Theorem

Let ν and μ be two measures on (X, \mathcal{M}) with $\nu \ll \mu$ and with ν and μ being σ-finite. Then there exists a measurable function $f_{0}:(X, \mathcal{M}) \rightarrow[0, \infty)$ such that for all $A \in \mathcal{M}$,

$$
\nu(A):=\int_{A} f_{0}(x) d \mu(x) .
$$

One can modify f_{0} on a set of μ-measure 0 and the above will still be true.

The Radon-Nikodym Theorem (converse of the previous example)

Theorem

Let ν and μ be two measures on (X, \mathcal{M}) with $\nu \ll \mu$ and with ν and μ being σ-finite. Then there exists a measurable function $f_{0}:(X, \mathcal{M}) \rightarrow[0, \infty)$ such that for all $A \in \mathcal{M}$,

$$
\nu(A):=\int_{A} f_{0}(x) d \mu(x) .
$$

One can modify f_{0} on a set of μ-measure 0 and the above will still be true. However, f_{0} is unique in the sense that if g_{0} is another such function,

The Radon-Nikodym Theorem (converse of the previous example)

Theorem

Let ν and μ be two measures on (X, \mathcal{M}) with $\nu \ll \mu$ and with ν and μ being σ-finite. Then there exists a measurable function $f_{0}:(X, \mathcal{M}) \rightarrow[0, \infty)$ such that for all $A \in \mathcal{M}$,

$$
\nu(A):=\int_{A} f_{0}(x) d \mu(x) .
$$

One can modify f_{0} on a set of μ-measure 0 and the above will still be true. However, f_{0} is unique in the sense that if g_{0} is another such function, then

$$
\mu\left\{x: f_{0}(x) \neq g_{0}(x)\right\}=0 .
$$

The Radon-Nikodym Theorem (converse of the previous example)

Theorem

Let ν and μ be two measures on (X, \mathcal{M}) with $\nu \ll \mu$ and with ν and μ being σ-finite. Then there exists a measurable function $f_{0}:(X, \mathcal{M}) \rightarrow[0, \infty)$ such that for all $A \in \mathcal{M}$,

$$
\nu(A):=\int_{A} f_{0}(x) d \mu(x) .
$$

One can modify f_{0} on a set of μ-measure 0 and the above will still be true. However, f_{0} is unique in the sense that if g_{0} is another such function, then

$$
\mu\left\{x: f_{0}(x) \neq g_{0}(x)\right\}=0 .
$$

This is false if one does not assume σ-finiteness.

The Radon-Nikodym Theorem

The Radon-Nikodym Theorem

Remarks:

1. The f_{0} above is called the Radon-Nikodym Derivative of ν with respect to μ.

The Radon-Nikodym Theorem

Remarks:

1. The f_{0} above is called the Radon-Nikodym Derivative of ν with respect to μ.
2. If μ is Lebesgue measure on (R, \mathcal{B}) and ν is the distribution (or law) of a random variable which is absolutely continuous with respect to μ,

The Radon-Nikodym Theorem

Remarks:

1. The f_{0} above is called the Radon-Nikodym Derivative of ν with respect to μ.
2. If μ is Lebesgue measure on (R, \mathcal{B}) and ν is the distribution (or law) of a random variable which is absolutely continuous with respect to μ, then the Radon-Nikodym Derivative of ν with respect to μ is simply the "probability density function" from elementary probability.

The Radon-Nikodym Theorem

Remarks:

1. The f_{0} above is called the Radon-Nikodym Derivative of ν with respect to μ.
2. If μ is Lebesgue measure on (R, \mathcal{B}) and ν is the distribution (or law) of a random variable which is absolutely continuous with respect to μ, then the Radon-Nikodym Derivative of ν with respect to μ is simply the "probability density function" from elementary probability.
3. (Kolmogorov) The Radon-Nikodym Theorem is crucial in advanced probability when one deals with the subtle concept of conditioning.

Illustration of The Radon-Nikodym Theorem in a simple case

Let $X=\{1,2,3\}$ (full σ-algebra).

Illustration of The Radon-Nikodym Theorem in a simple case

Let $X=\{1,2,3\}$ (full σ-algebra).
Let $\mu=(1 / 3,0,4)$

Illustration of The Radon-Nikodym Theorem in a simple case

Let $X=\{1,2,3\}$ (full σ-algebra).
Let $\mu=(1 / 3,0,4), \nu_{1}=(0,5,8)$

Illustration of The Radon-Nikodym Theorem in a simple case

Let $X=\{1,2,3\}$ (full σ-algebra).
Let $\mu=(1 / 3,0,4), \nu_{1}=(0,5,8)$ and $\nu_{2}=(2,0,1)$.

Illustration of The Radon-Nikodym Theorem in a simple case

Let $X=\{1,2,3\}$ (full σ-algebra).
Let $\mu=(1 / 3,0,4), \nu_{1}=(0,5,8)$ and $\nu_{2}=(2,0,1)$.
Then $\nu_{1} \nless \mu$

Illustration of The Radon-Nikodym Theorem in a simple case

Let $X=\{1,2,3\}$ (full σ-algebra).
Let $\mu=(1 / 3,0,4), \nu_{1}=(0,5,8)$ and $\nu_{2}=(2,0,1)$.
Then $\nu_{1} \ll \mu$ but $\nu_{2} \ll \mu$

Illustration of The Radon-Nikodym Theorem in a simple case

Let $X=\{1,2,3\}$ (full σ-algebra).
Let $\mu=(1 / 3,0,4), \nu_{1}=(0,5,8)$ and $\nu_{2}=(2,0,1)$.
Then $\nu_{1} \ll \mu$ but $\nu_{2} \ll \mu$ and the Radon-Nikodym derivative of ν_{2} with respect to μ is the function $(6,0,1 / 4)$.

Illustration of The Radon-Nikodym Theorem in a simple case

Let $X=\{1,2,3\}$ (full σ-algebra).
Let $\mu=(1 / 3,0,4), \nu_{1}=(0,5,8)$ and $\nu_{2}=(2,0,1)$.
Then $\nu_{1} \nless \mu$ but $\nu_{2} \ll \mu$ and the Radon-Nikodym derivative of ν_{2} with respect to μ is the function $(6,0,1 / 4)$. Or in fact $(6, x, 1 / 4)$ for any x since this is just a change on a set of μ measure 0 .

Illustration of The Radon-Nikodym Theorem in a simple case

Let $X=\{1,2,3\}$ (full σ-algebra).
Let $\mu=(1 / 3,0,4), \nu_{1}=(0,5,8)$ and $\nu_{2}=(2,0,1)$.
Then $\nu_{1} \ll \mu$ but $\nu_{2} \ll \mu$ and the Radon-Nikodym derivative of ν_{2} with respect to μ is the function $(6,0,1 / 4)$. Or in fact $(6, x, 1 / 4)$ for any x since this is just a change on a set of μ measure 0 .

If you take a smaller σ-algebra, then one could have $\nu_{1} \ll \mu$.

Illustration of The Radon-Nikodym Theorem in a simple case

Let $X=\{1,2,3\}$ (full σ-algebra).
Let $\mu=(1 / 3,0,4), \nu_{1}=(0,5,8)$ and $\nu_{2}=(2,0,1)$.
Then $\nu_{1} \ll \mu$ but $\nu_{2} \ll \mu$ and the Radon-Nikodym derivative of ν_{2} with respect to μ is the function $(6,0,1 / 4)$. Or in fact $(6, x, 1 / 4)$ for any x since this is just a change on a set of μ measure 0 .

If you take a smaller σ-algebra, then one could have $\nu_{1} \ll \mu$. For example, $\{\emptyset, X,\{1,2\},\{3\}\}$.

Proof of The Radon-Nikodym Theorem for finite measure spaces

Proof of The Radon-Nikodym Theorem for finite measure spaces

Define

$$
\mathcal{F}:=\left\{f: X \rightarrow[0, \infty): \int_{A} f(x) d \mu(x) \leq \nu(A) \forall A \in \mathcal{M}\right\}
$$

Proof of The Radon-Nikodym Theorem for finite measure spaces

Define

$$
\mathcal{F}:=\left\{f: X \rightarrow[0, \infty): \int_{A} f(x) d \mu(x) \leq \nu(A) \forall A \in \mathcal{M}\right\}
$$

Note \mathcal{F} is nonempty since $f \equiv 0$ is in \mathcal{F}.

Proof of The Radon-Nikodym Theorem for finite measure spaces

Define

$$
\mathcal{F}:=\left\{f: X \rightarrow[0, \infty): \int_{A} f(x) d \mu(x) \leq \nu(A) \forall A \in \mathcal{M}\right\} .
$$

Note \mathcal{F} is nonempty since $f \equiv 0$ is in \mathcal{F}. Let

$$
m:=\sup \left\{\int f(x) d \mu(x): f \in \mathcal{F}\right\} .
$$

Proof of The Radon-Nikodym Theorem for finite measure spaces

Define

$$
\mathcal{F}:=\left\{f: X \rightarrow[0, \infty): \int_{A} f(x) d \mu(x) \leq \nu(A) \forall A \in \mathcal{M}\right\} .
$$

Note \mathcal{F} is nonempty since $f \equiv 0$ is in \mathcal{F}. Let

$$
m:=\sup \left\{\int f(x) d \mu(x): f \in \mathcal{F}\right\} .
$$

Note that $m \leq \nu(X)(<\infty)$.

Proof of The Radon-Nikodym Theorem for finite measure spaces

Define

$$
\mathcal{F}:=\left\{f: X \rightarrow[0, \infty): \int_{A} f(x) d \mu(x) \leq \nu(A) \forall A \in \mathcal{M}\right\}
$$

Note \mathcal{F} is nonempty since $f \equiv 0$ is in \mathcal{F}. Let

$$
m:=\sup \left\{\int f(x) d \mu(x): f \in \mathcal{F}\right\} .
$$

Note that $m \leq \nu(X)(<\infty)$.
claim: There exists $f_{0} \in \mathcal{F}$ for which $\int f_{0}(x) d \mu(x)=m$; i.e. the supremum above is achieved.

Proof of The Radon-Nikodym Theorem for finite measure spaces

Proof of The Radon-Nikodym Theorem for finite measure spaces

Subclaim: If $h_{1}, h_{2} \in \mathcal{F}$, then $\max \left\{h_{1}, h_{2}\right\} \in \mathcal{F}$.

Proof of The Radon-Nikodym Theorem for finite measure spaces

Subclaim: If $h_{1}, h_{2} \in \mathcal{F}$, then $\max \left\{h_{1}, h_{2}\right\} \in \mathcal{F}$.
Subproof: One sees this by noting that for all $A \in \mathcal{M}$,

Proof of The Radon-Nikodym Theorem for finite measure spaces

Subclaim: If $h_{1}, h_{2} \in \mathcal{F}$, then $\max \left\{h_{1}, h_{2}\right\} \in \mathcal{F}$.
Subproof: One sees this by noting that for all $A \in \mathcal{M}$,
$\int_{A} \max \left\{h_{1}, h_{2}\right\} d \mu(x)=\int_{A \cap\left\{h_{1} \geq h_{2}\right\}} h_{1}(x) d \mu(x)+\int_{A \cap\left\{h_{1}<h_{2}\right\}} h_{2}(x) d \mu(x)$

Proof of The Radon-Nikodym Theorem for finite measure spaces

Subclaim: If $h_{1}, h_{2} \in \mathcal{F}$, then $\max \left\{h_{1}, h_{2}\right\} \in \mathcal{F}$.
Subproof: One sees this by noting that for all $A \in \mathcal{M}$,

$$
\begin{gathered}
\int_{A} \max \left\{h_{1}, h_{2}\right\} d \mu(x)=\int_{A \cap\left\{h_{1} \geq h_{2}\right\}} h_{1}(x) d \mu(x)+\int_{A \cap\left\{h_{1}<h_{2}\right\}} h_{2}(x) d \mu(x) \\
\leq \nu\left(A \cap\left\{h_{1} \geq h_{2}\right\}\right)+\nu\left(A \cap\left\{h_{1}<h_{2}\right\}\right)=\nu(A) .
\end{gathered}
$$

qed

Proof of The Radon-Nikodym Theorem for finite measure spaces

Proof of The Radon-Nikodym Theorem for finite measure spaces

Now choose $h_{1}, h_{2}, \ldots \subseteq \mathcal{F}$ so that

Proof of The Radon-Nikodym Theorem for finite measure spaces

Now choose $h_{1}, h_{2}, \ldots \subseteq \mathcal{F}$ so that

$$
\lim _{n \rightarrow \infty} \int h_{n}(x) d \mu(x)=m
$$

Proof of The Radon-Nikodym Theorem for finite measure spaces

Now choose $h_{1}, h_{2}, \ldots \subseteq \mathcal{F}$ so that

$$
\lim _{n \rightarrow \infty} \int h_{n}(x) d \mu(x)=m
$$

If we let

$$
g_{n}:=\max \left\{h_{1}, h_{2}, \ldots, h_{n}\right\}
$$

Proof of The Radon-Nikodym Theorem for finite measure spaces

Now choose $h_{1}, h_{2}, \ldots \subseteq \mathcal{F}$ so that

$$
\lim _{n \rightarrow \infty} \int h_{n}(x) d \mu(x)=m
$$

If we let

$$
g_{n}:=\max \left\{h_{1}, h_{2}, \ldots, h_{n}\right\}
$$

we have that (1) each $g_{n} \in \mathcal{F}$ from the subclaim,

Proof of The Radon-Nikodym Theorem for finite measure spaces

Now choose $h_{1}, h_{2}, \ldots \subseteq \mathcal{F}$ so that

$$
\lim _{n \rightarrow \infty} \int h_{n}(x) d \mu(x)=m
$$

If we let

$$
g_{n}:=\max \left\{h_{1}, h_{2}, \ldots, h_{n}\right\}
$$

we have that (1) each $g_{n} \in \mathcal{F}$ from the subclaim, (2) $g_{1} \leq g_{2} \leq g_{3} \ldots$

Proof of The Radon-Nikodym Theorem for finite measure spaces

Now choose $h_{1}, h_{2}, \ldots \subseteq \mathcal{F}$ so that

$$
\lim _{n \rightarrow \infty} \int h_{n}(x) d \mu(x)=m
$$

If we let

$$
g_{n}:=\max \left\{h_{1}, h_{2}, \ldots, h_{n}\right\}
$$

we have that (1) each $g_{n} \in \mathcal{F}$ from the subclaim, (2) $g_{1} \leq g_{2} \leq g_{3} \ldots$ and

$$
\lim _{n \rightarrow \infty} \int g_{n}(x) d \mu(x)=m
$$

Proof of The Radon-Nikodym Theorem for finite measure spaces

Finally, letting

$$
f_{0}:=\lim _{n \rightarrow \infty} g_{n},
$$

Proof of The Radon-Nikodym Theorem for finite measure spaces

Finally, letting

$$
f_{0}:=\lim _{n \rightarrow \infty} g_{n},
$$

we have by MCT (1) $f_{0} \in \mathcal{F}$

Proof of The Radon-Nikodym Theorem for finite measure spaces

Finally, letting

$$
f_{0}:=\lim _{n \rightarrow \infty} g_{n}
$$

we have by MCT (1) $f_{0} \in \mathcal{F}$ and (2) $\int f_{0}(x) d \mu(x)=m$. QED (claim)

Proof of The Radon-Nikodym Theorem for finite measure spaces

Finally, letting

$$
f_{0}:=\lim _{n \rightarrow \infty} g_{n}
$$

we have by MCT (1) $f_{0} \in \mathcal{F}$ and (2) $\int f_{0}(x) d \mu(x)=m$. QED (claim) Recall where we are.

Proof of The Radon-Nikodym Theorem for finite measure spaces

Finally, letting

$$
f_{0}:=\lim _{n \rightarrow \infty} g_{n}
$$

we have by MCT (1) $f_{0} \in \mathcal{F}$ and (2) $\int f_{0}(x) d \mu(x)=m$. QED (claim) Recall where we are.

$$
\mathcal{F}:=\left\{f: X \rightarrow[0, \infty): \int_{A} f(x) d \mu(x) \leq \nu(A) \forall A \in \mathcal{M}\right\}
$$

Proof of The Radon-Nikodym Theorem for finite measure spaces

Finally, letting

$$
f_{0}:=\lim _{n \rightarrow \infty} g_{n},
$$

we have by MCT (1) $f_{0} \in \mathcal{F}$ and (2) $\int f_{0}(x) d \mu(x)=m$. QED (claim) Recall where we are.

$$
\begin{aligned}
\mathcal{F}:=\{f: X & \left.\rightarrow[0, \infty): \int_{A} f(x) d \mu(x) \leq \nu(A) \forall A \in \mathcal{M}\right\} . \\
m & :=\sup \left\{\int f(x) d \mu(x): f \in \mathcal{F}\right\} .
\end{aligned}
$$

Proof of The Radon-Nikodym Theorem for finite measure spaces

Finally, letting

$$
f_{0}:=\lim _{n \rightarrow \infty} g_{n},
$$

we have by MCT (1) $f_{0} \in \mathcal{F}$ and (2) $\int f_{0}(x) d \mu(x)=m$. QED (claim) Recall where we are.

$$
\begin{aligned}
\mathcal{F}:=\{f: X & \left.\rightarrow[0, \infty): \int_{A} f(x) d \mu(x) \leq \nu(A) \forall A \in \mathcal{M}\right\} . \\
m & :=\sup \left\{\int f(x) d \mu(x): f \in \mathcal{F}\right\} .
\end{aligned}
$$

claim: There exists $f_{0} \in \mathcal{F}$ for which $\int f_{0}(x) d \mu(x)=m$.

Proof of The Radon-Nikodym Theorem for finite measure spaces

Finally, letting

$$
f_{0}:=\lim _{n \rightarrow \infty} g_{n}
$$

we have by MCT (1) $f_{0} \in \mathcal{F}$ and (2) $\int f_{0}(x) d \mu(x)=m$. QED (claim) Recall where we are.

$$
\begin{aligned}
\mathcal{F}:=\{f: X & \left.\rightarrow[0, \infty): \int_{A} f(x) d \mu(x) \leq \nu(A) \forall A \in \mathcal{M}\right\} . \\
m & :=\sup \left\{\int f(x) d \mu(x): f \in \mathcal{F}\right\}
\end{aligned}
$$

claim: There exists $f_{0} \in \mathcal{F}$ for which $\int f_{0}(x) d \mu(x)=m$.
This f_{0} will turn out to be our Radon Nikodym derivative.

Proof of The Radon-Nikodym Theorem for finite measure spaces

Proof of The Radon-Nikodym Theorem for finite measure

 spacesNow, letting

$$
\nu_{0}:=\nu-f_{0} \mu,
$$

Proof of The Radon-Nikodym Theorem for finite measure spaces

Now, letting

$$
\nu_{0}:=\nu-f_{0} \mu,
$$

ν_{0} is a measure.

Proof of The Radon-Nikodym Theorem for finite measure spaces

Now, letting

$$
\nu_{0}:=\nu-f_{0} \mu,
$$

ν_{0} is a measure. We want to show that $\nu_{0}=0$.

Proof of The Radon-Nikodym Theorem for finite measure spaces

Now, letting

$$
\nu_{0}:=\nu-f_{0} \mu,
$$

ν_{0} is a measure. We want to show that $\nu_{0}=0$. (Idea: if not, we can push m up.)

Proof of The Radon-Nikodym Theorem for finite measure spaces

Now, letting

$$
\nu_{0}:=\nu-f_{0} \mu
$$

ν_{0} is a measure. We want to show that $\nu_{0}=0$. (Idea: if not, we can push m up.)

If $\nu_{0}(X)>0$, choose $\epsilon>0$ so that

$$
\begin{equation*}
\nu_{0}(X)-\epsilon \mu(X)>0 \tag{1}
\end{equation*}
$$

Proof of The Radon-Nikodym Theorem for finite measure spaces

Now, letting

$$
\nu_{0}:=\nu-f_{0} \mu,
$$

ν_{0} is a measure. We want to show that $\nu_{0}=0$. (Idea: if not, we can push m up.)

If $\nu_{0}(X)>0$, choose $\epsilon>0$ so that

$$
\begin{equation*}
\nu_{0}(X)-\epsilon \mu(X)>0 \tag{1}
\end{equation*}
$$

Let (P, N) be a Hahn decomposition for the signed measure $\nu_{0}-\epsilon \mu$.

Proof of The Radon-Nikodym Theorem for finite measure spaces

Now, letting

$$
\nu_{0}:=\nu-f_{0} \mu
$$

ν_{0} is a measure. We want to show that $\nu_{0}=0$. (Idea: if not, we can push m up.)

If $\nu_{0}(X)>0$, choose $\epsilon>0$ so that

$$
\begin{equation*}
\nu_{0}(X)-\epsilon \mu(X)>0 \tag{1}
\end{equation*}
$$

Let (P, N) be a Hahn decomposition for the signed measure $\nu_{0}-\epsilon \mu$.
Case 1: $\mu(P)=0$.

Proof of The Radon-Nikodym Theorem for finite measure spaces

Now, letting

$$
\nu_{0}:=\nu-f_{0} \mu
$$

ν_{0} is a measure. We want to show that $\nu_{0}=0$. (Idea: if not, we can push m up.)

If $\nu_{0}(X)>0$, choose $\epsilon>0$ so that

$$
\begin{equation*}
\nu_{0}(X)-\epsilon \mu(X)>0 \tag{1}
\end{equation*}
$$

Let (P, N) be a Hahn decomposition for the signed measure $\nu_{0}-\epsilon \mu$.
Case 1: $\mu(P)=0$. Then, since $\nu \ll \mu$, we have that $\nu(P)=0$

Proof of The Radon-Nikodym Theorem for finite measure spaces

Now, letting

$$
\nu_{0}:=\nu-f_{0} \mu,
$$

ν_{0} is a measure. We want to show that $\nu_{0}=0$. (Idea: if not, we can push m up.)

If $\nu_{0}(X)>0$, choose $\epsilon>0$ so that

$$
\begin{equation*}
\nu_{0}(X)-\epsilon \mu(X)>0 \tag{1}
\end{equation*}
$$

Let (P, N) be a Hahn decomposition for the signed measure $\nu_{0}-\epsilon \mu$.
Case 1: $\mu(P)=0$. Then, since $\nu \ll \mu$, we have that $\nu(P)=0$ and hence $\left(\nu_{0}-\epsilon \mu\right)(P)=0$,

Proof of The Radon-Nikodym Theorem for finite measure spaces

Now, letting

$$
\nu_{0}:=\nu-f_{0} \mu,
$$

ν_{0} is a measure. We want to show that $\nu_{0}=0$. (Idea: if not, we can push m up.)

If $\nu_{0}(X)>0$, choose $\epsilon>0$ so that

$$
\begin{equation*}
\nu_{0}(X)-\epsilon \mu(X)>0 \tag{1}
\end{equation*}
$$

Let (P, N) be a Hahn decomposition for the signed measure $\nu_{0}-\epsilon \mu$.
Case 1: $\mu(P)=0$. Then, since $\nu \ll \mu$, we have that $\nu(P)=0$ and hence $\left(\nu_{0}-\epsilon \mu\right)(P)=0$, contradicting (1).

Proof of The Radon-Nikodym Theorem for finite measure spaces

Proof of The Radon-Nikodym Theorem for finite measure spaces
Case 2: $\mu(P)>0$.

Proof of The Radon-Nikodym Theorem for finite measure spaces
Case 2: $\mu(P)>0$. Note that

$$
g_{0}:=f_{0}+\epsilon l_{P} \in \mathcal{F}
$$

Proof of The Radon-Nikodym Theorem for finite measure

 spacesCase 2: $\mu(P)>0$. Note that

$$
g_{0}:=f_{0}+\epsilon l_{P} \in \mathcal{F}
$$

since for all $A \in \mathcal{M}$

Proof of The Radon-Nikodym Theorem for finite measure

 spacesCase 2: $\mu(P)>0$. Note that

$$
g_{0}:=f_{0}+\epsilon l_{P} \in \mathcal{F}
$$

since for all $A \in \mathcal{M}$
$\int_{A}\left(f_{0}+\epsilon I_{P}\right) d \mu(x)=\int_{A} f_{0} d \mu(x)+\epsilon \mu(P \cap A) \leq \int_{A} f_{0} d \mu(x)+\nu_{0}(P \cap A)$

Proof of The Radon-Nikodym Theorem for finite measure

 spacesCase 2: $\mu(P)>0$. Note that

$$
g_{0}:=f_{0}+\epsilon l_{P} \in \mathcal{F}
$$

since for all $A \in \mathcal{M}$

$$
\begin{aligned}
\int_{A}\left(f_{0}+\epsilon I_{P}\right) d \mu(x)= & \int_{A} f_{0} d \mu(x)+\epsilon \mu(P \cap A) \leq \int_{A} f_{0} d \mu(x)+\nu_{0}(P \cap A) \\
& \leq \int_{A} f_{0} d \mu(x)+\nu_{0}(A)=\nu(A)
\end{aligned}
$$

Proof of The Radon-Nikodym Theorem for finite measure

 spacesCase 2: $\mu(P)>0$. Note that

$$
g_{0}:=f_{0}+\epsilon l_{P} \in \mathcal{F}
$$

since for all $A \in \mathcal{M}$

$$
\begin{aligned}
\int_{A}\left(f_{0}+\epsilon I_{P}\right) d \mu(x)= & \int_{A} f_{0} d \mu(x)+\epsilon \mu(P \cap A) \leq \int_{A} f_{0} d \mu(x)+\nu_{0}(P \cap A) \\
& \leq \int_{A} f_{0} d \mu(x)+\nu_{0}(A)=\nu(A)
\end{aligned}
$$

Next, since $\mu(P)>0$, we have that

$$
\int g_{0} d \mu(x)=m+\epsilon \mu(P)>m
$$

contradicting the definition of m.

Proof of The Radon-Nikodym Theorem for finite measure

 spacesCase 2: $\mu(P)>0$. Note that

$$
g_{0}:=f_{0}+\epsilon l_{P} \in \mathcal{F}
$$

since for all $A \in \mathcal{M}$

$$
\begin{aligned}
\int_{A}\left(f_{0}+\epsilon I_{P}\right) d \mu(x)= & \int_{A} f_{0} d \mu(x)+\epsilon \mu(P \cap A) \leq \int_{A} f_{0} d \mu(x)+\nu_{0}(P \cap A) \\
& \leq \int_{A} f_{0} d \mu(x)+\nu_{0}(A)=\nu(A)
\end{aligned}
$$

Next, since $\mu(P)>0$, we have that

$$
\int g_{0} d \mu(x)=m+\epsilon \mu(P)>m
$$

contradicting the definition of m. Contradiction. QED

Proof of uniqueness in The Radon-Nikodym Theorem for finite measure spaces

For uniqueness, one notes that if $\mu\left\{x: f_{0}(x) \neq g_{0}(x)\right\}>0$,

Proof of uniqueness in The Radon-Nikodym Theorem for finite measure spaces

For uniqueness, one notes that if $\mu\left\{x: f_{0}(x) \neq g_{0}(x)\right\}>0$, then WLOG $\mu\left\{x: f_{0}(x)>g_{0}(x)\right\}>0$

Proof of uniqueness in The Radon-Nikodym Theorem for finite measure spaces

For uniqueness, one notes that if $\mu\left\{x: f_{0}(x) \neq g_{0}(x)\right\}>0$, then WLOG $\mu\left\{x: f_{0}(x)>g_{0}(x)\right\}>0$ which yields

Proof of uniqueness in The Radon-Nikodym Theorem for finite measure spaces

For uniqueness, one notes that if $\mu\left\{x: f_{0}(x) \neq g_{0}(x)\right\}>0$, then WLOG $\mu\left\{x: f_{0}(x)>g_{0}(x)\right\}>0$ which yields

$$
\int_{\left\{x: f_{0}(x)>g_{0}(x)\right\}} f_{0}(x) d \mu(x)>\int_{\left\{x: f_{0}(x)>g_{0}(x)\right\}} g_{0}(x) d \mu(x)
$$

Proof of uniqueness in The Radon-Nikodym Theorem for finite measure spaces

For uniqueness, one notes that if $\mu\left\{x: f_{0}(x) \neq g_{0}(x)\right\}>0$, then WLOG $\mu\left\{x: f_{0}(x)>g_{0}(x)\right\}>0$ which yields

$$
\int_{\left\{x: f_{0}(x)>g_{0}(x)\right\}} f_{0}(x) d \mu(x)>\int_{\left\{x: f_{0}(x)>g_{0}(x)\right\}} g_{0}(x) d \mu(x)
$$

contradicting the fact that each integral equals $\nu\left\{x: f_{0}(x)>g_{0}(x)\right\}$.

The Lebesgue Decomposition Theorem

The Lebesgue Decomposition Theorem

Theorem

(Lebesgue Decomposition Theorem) Let ν and μ be two measures on (X, \mathcal{M}) with ν and μ being σ-finite.

The Lebesgue Decomposition Theorem

Theorem

(Lebesgue Decomposition Theorem) Let ν and μ be two measures on (X, \mathcal{M}) with ν and μ being σ-finite. Then there exist unique measures $\nu_{a c}$ and ν_{s} so that

$$
\nu=\nu_{\mathrm{ac}}+\nu_{\mathrm{s}}
$$

and

$$
\nu_{\mathrm{ac}} \ll \mu \text { and } \nu_{s} \perp \mu \text { (and hence we also have } \nu_{s} \perp \nu_{a c} \text {). }
$$

The Lebesgue Decomposition Theorem

Theorem

(Lebesgue Decomposition Theorem) Let ν and μ be two measures on (X, \mathcal{M}) with ν and μ being σ-finite. Then there exist unique measures $\nu_{a c}$ and ν_{s} so that

$$
\nu=\nu_{\mathrm{ac}}+\nu_{\mathrm{s}}
$$

and

$$
\nu_{\mathrm{ac}} \ll \mu \text { and } \nu_{s} \perp \mu \text { (and hence we also have } \nu_{s} \perp \nu_{a c} \text {). }
$$

- If $\nu \ll \mu$, then $\nu_{a c}=\nu, \nu_{s}=0$ and if $\nu \perp \mu$, then $\nu_{a c}=0, \nu_{s}=\nu$.

The Lebesgue Decomposition Theorem

Theorem

(Lebesgue Decomposition Theorem) Let ν and μ be two measures on (X, \mathcal{M}) with ν and μ being σ-finite. Then there exist unique measures $\nu_{a c}$ and ν_{s} so that

$$
\nu=\nu_{\mathrm{ac}}+\nu_{\mathrm{s}}
$$

and

$$
\nu_{\mathrm{ac}} \ll \mu \text { and } \nu_{s} \perp \mu \text { (and hence we also have } \nu_{s} \perp \nu_{a c} \text {). }
$$

- If $\nu \ll \mu$, then $\nu_{a c}=\nu, \nu_{s}=0$ and if $\nu \perp \mu$, then $\nu_{a c}=0, \nu_{s}=\nu$.
- This is false if one does not assume σ-finiteness.

The Lebesgue Decomposition Theorem

Theorem

(Lebesgue Decomposition Theorem) Let ν and μ be two measures on (X, \mathcal{M}) with ν and μ being σ-finite. Then there exist unique measures $\nu_{a c}$ and ν_{s} so that

$$
\nu=\nu_{\mathrm{ac}}+\nu_{\mathrm{s}}
$$

and

$$
\nu_{\mathrm{ac}} \ll \mu \text { and } \nu_{s} \perp \mu \text { (and hence we also have } \nu_{s} \perp \nu_{a c} \text {). }
$$

- If $\nu \ll \mu$, then $\nu_{a c}=\nu, \nu_{s}=0$ and if $\nu \perp \mu$, then $\nu_{a c}=0, \nu_{s}=\nu$.
- This is false if one does not assume σ-finiteness.
- There is a version for signed measures.

The Lebesgue Decomposition Theorem

Theorem

(Lebesgue Decomposition Theorem) Let ν and μ be two measures on (X, \mathcal{M}) with ν and μ being σ-finite. Then there exist unique measures ν_{ac} and ν_{s} so that

$$
\nu=\nu_{\mathrm{ac}}+\nu_{\mathrm{s}}
$$

and

$$
\nu_{\mathrm{ac}} \ll \mu \text { and } \nu_{s} \perp \mu \text { (and hence we also have } \nu_{s} \perp \nu_{a c} \text {). }
$$

- If $\nu \ll \mu$, then $\nu_{a c}=\nu, \nu_{s}=0$ and if $\nu \perp \mu$, then $\nu_{a c}=0, \nu_{s}=\nu$.
- This is false if one does not assume σ-finiteness.
- There is a version for signed measures.
- We do the proof for the finite measure case.

The Lebesgue Decomposition Theorem

Theorem

(Lebesgue Decomposition Theorem) Let ν and μ be two measures on (X, \mathcal{M}) with ν and μ being σ-finite. Then there exist unique measures $\nu_{a c}$ and ν_{s} so that

$$
\nu=\nu_{a c}+\nu_{s}
$$

and

$$
\nu_{\mathrm{ac}} \ll \mu \text { and } \nu_{s} \perp \mu \text { (and hence we also have } \nu_{s} \perp \nu_{a c} \text {). }
$$

- If $\nu \ll \mu$, then $\nu_{a c}=\nu, \nu_{s}=0$ and if $\nu \perp \mu$, then $\nu_{a c}=0, \nu_{s}=\nu$.
- This is false if one does not assume σ-finiteness.
- There is a version for signed measures.
- We do the proof for the finite measure case.
- We do not prove the uniqueness.

The Lebesgue Decomposition for a simple example

Let $X=\{1,2,3\}$ (full σ-algebra).

The Lebesgue Decomposition for a simple example

Let $X=\{1,2,3\}$ (full σ-algebra).
Let $\nu=(0,5,8)$ and $\mu=(1 / 3,0,4)$.

The Lebesgue Decomposition for a simple example

Let $X=\{1,2,3\}$ (full σ-algebra).
Let $\nu=(0,5,8)$ and $\mu=(1 / 3,0,4)$.
What is the Lebesgue Decomposition of ν with respect to μ ?

The Lebesgue Decomposition for a simple example

Let $X=\{1,2,3\}$ (full σ-algebra).
Let $\nu=(0,5,8)$ and $\mu=(1 / 3,0,4)$.
What is the Lebesgue Decomposition of ν with respect to μ ?
$\nu=(0,5,8)=(0,0,8)+(0,5,0)=\nu_{a c}+\nu_{s}$.

The Lebesgue Decomposition for a simple example

Let $X=\{1,2,3\}$ (full σ-algebra).
Let $\nu=(0,5,8)$ and $\mu=(1 / 3,0,4)$.
What is the Lebesgue Decomposition of ν with respect to μ ?
$\nu=(0,5,8)=(0,0,8)+(0,5,0)=\nu_{a c}+\nu_{s}$.
Also what is the Radon Nikodym derivative of $\nu_{a c}$ with respect to μ ?

The Lebesgue Decomposition for a simple example

Let $X=\{1,2,3\}$ (full σ-algebra).
Let $\nu=(0,5,8)$ and $\mu=(1 / 3,0,4)$.
What is the Lebesgue Decomposition of ν with respect to μ ?
$\nu=(0,5,8)=(0,0,8)+(0,5,0)=\nu_{a c}+\nu_{s}$.
Also what is the Radon Nikodym derivative of $\nu_{a c}$ with respect to μ ? The function ($0,0,2$).

The Lebesgue Decomposition for a simple example

Let $X=\{1,2,3\}$ (full σ-algebra).
Let $\nu=(0,5,8)$ and $\mu=(1 / 3,0,4)$.
What is the Lebesgue Decomposition of ν with respect to μ ?
$\nu=(0,5,8)=(0,0,8)+(0,5,0)=\nu_{a c}+\nu_{s}$.
Also what is the Radon Nikodym derivative of $\nu_{a c}$ with respect to μ ? The function $(0,0,2)$. Or in fact $(0, x, 2)$ for any value of x since this is just a change on a set of μ measure 0 .

The proof of the Lebesgue Decomposition Theorem (uses the proof of the Radon-Nikodym Theorem)

The proof of the Lebesgue Decomposition Theorem (uses the proof of the Radon-Nikodym Theorem)

Recall

The proof of the Lebesgue Decomposition Theorem (uses the proof of the Radon-Nikodym Theorem)

Recall

$$
\text { (1) } \mathcal{F}:=\left\{f: X \rightarrow[0, \infty): \int_{A} f(x) d \mu(x) \leq \nu(A) \forall A \in \mathcal{M}\right\}
$$

The proof of the Lebesgue Decomposition Theorem (uses the proof of the Radon-Nikodym Theorem)

Recall

$$
\begin{aligned}
& \text { (1) } \mathcal{F}:=\left\{f: X \rightarrow[0, \infty): \int_{A} f(x) d \mu(x) \leq \nu(A) \forall A \in \mathcal{M}\right\} . \\
& \text { (2) } m:=\sup \left\{\int f(x) d \mu(x): f \in \mathcal{F}\right\} .
\end{aligned}
$$

The proof of the Lebesgue Decomposition Theorem (uses the proof of the Radon-Nikodym Theorem)

Recall

$$
\begin{aligned}
& \text { (1) } \mathcal{F}:=\left\{f: X \rightarrow[0, \infty): \int_{A} f(x) d \mu(x) \leq \nu(A) \forall A \in \mathcal{M}\right\} . \\
& \text { (2) } m:=\sup \left\{\int f(x) d \mu(x): f \in \mathcal{F}\right\} .
\end{aligned}
$$

(3) There exists $f_{0} \in \mathcal{F}$ for which $\int f_{0}(x) d \mu(x)=m$.

The proof of the Lebesgue Decomposition Theorem (uses the proof of the Radon-Nikodym Theorem)

Recall

$$
\begin{aligned}
& \text { (1) } \mathcal{F}:=\left\{f: X \rightarrow[0, \infty): \int_{A} f(x) d \mu(x) \leq \nu(A) \forall A \in \mathcal{M}\right\} . \\
& \text { (2) } m:=\sup \left\{\int f(x) d \mu(x): f \in \mathcal{F}\right\} .
\end{aligned}
$$

(3) There exists $f_{0} \in \mathcal{F}$ for which $\int f_{0}(x) d \mu(x)=m$.

$$
\text { (4) } \nu_{0}:=\nu-f_{0} \mu \text {, }
$$

The proof of the Lebesgue Decomposition Theorem (uses the proof of the Radon-Nikodym Theorem)

Recall

$$
\begin{aligned}
& \text { (1) } \mathcal{F}:=\left\{f: X \rightarrow[0, \infty): \int_{A} f(x) d \mu(x) \leq \nu(A) \forall A \in \mathcal{M}\right\} . \\
& \text { (2) } m:=\sup \left\{\int f(x) d \mu(x): f \in \mathcal{F}\right\} .
\end{aligned}
$$

(3) There exists $f_{0} \in \mathcal{F}$ for which $\int f_{0}(x) d \mu(x)=m$.

$$
\text { (4) } \nu_{0}:=\nu-f_{0} \mu \text {, }
$$

For the RNT, we had shown that $\nu_{0}=0$ when we had assumed that $\nu \ll \mu$.

The proof of the Lebesgue Decomposition Theorem (uses the proof of the Radon-Nikodym Theorem)

Recall

$$
\begin{aligned}
& \text { (1) } \mathcal{F}:=\left\{f: X \rightarrow[0, \infty): \int_{A} f(x) d \mu(x) \leq \nu(A) \forall A \in \mathcal{M}\right\} . \\
& \text { (2) } m:=\sup \left\{\int f(x) d \mu(x): f \in \mathcal{F}\right\} .
\end{aligned}
$$

(3) There exists $f_{0} \in \mathcal{F}$ for which $\int f_{0}(x) d \mu(x)=m$.

$$
\text { (4) } \nu_{0}:=\nu-f_{0} \mu \text {, }
$$

For the RNT, we had shown that $\nu_{0}=0$ when we had assumed that $\nu \ll \mu$. Now we will show that $\nu_{0} \perp \mu$

The proof of the Lebesgue Decomposition Theorem (uses the proof of the Radon-Nikodym Theorem)

Recall

$$
\begin{aligned}
& \text { (1) } \mathcal{F}:=\left\{f: X \rightarrow[0, \infty): \int_{A} f(x) d \mu(x) \leq \nu(A) \forall A \in \mathcal{M}\right\} . \\
& \text { (2) } m:=\sup \left\{\int f(x) d \mu(x): f \in \mathcal{F}\right\} .
\end{aligned}
$$

(3) There exists $f_{0} \in \mathcal{F}$ for which $\int f_{0}(x) d \mu(x)=m$.

$$
\text { (4) } \nu_{0}:=\nu-f_{0} \mu \text {, }
$$

For the RNT, we had shown that $\nu_{0}=0$ when we had assumed that $\nu \ll \mu$. Now we will show that $\nu_{0} \perp \mu$ completing the proof with $\nu_{a c}:=f_{0} \mu$ and $\nu_{s}:=\nu_{0}$.

The proof of the Lebesgue Decomposition Theorem (uses the proof of the Radon-Nikodym Theorem)

The proof of the Lebesgue Decomposition Theorem (uses the proof of the Radon-Nikodym Theorem)

Let $\left(\epsilon_{n}\right)$ be a decreasing sequence of numbers in $(0,1)$ converging to 0 . Let $\left(P_{n}, N_{n}\right)$ be a Hahn decomposition for the signed measure $\nu_{0}-\epsilon_{n} \mu$.

The proof of the Lebesgue Decomposition Theorem (uses the proof of the Radon-Nikodym Theorem)

Let $\left(\epsilon_{n}\right)$ be a decreasing sequence of numbers in $(0,1)$ converging to 0 . Let $\left(P_{n}, N_{n}\right)$ be a Hahn decomposition for the signed measure $\nu_{0}-\epsilon_{n} \mu$. Case 1: There exists n with $\mu\left(P_{n}\right)>0$.

The proof of the Lebesgue Decomposition Theorem (uses the proof of the Radon-Nikodym Theorem)

Let $\left(\epsilon_{n}\right)$ be a decreasing sequence of numbers in $(0,1)$ converging to 0 . Let $\left(P_{n}, N_{n}\right)$ be a Hahn decomposition for the signed measure $\nu_{0}-\epsilon_{n} \mu$. Case 1: There exists n with $\mu\left(P_{n}\right)>0$. This leads to a contradiction exactly as in case 2 in the RNT.

The proof of the Lebesgue Decomposition Theorem (uses the proof of the Radon-Nikodym Theorem)

Let $\left(\epsilon_{n}\right)$ be a decreasing sequence of numbers in $(0,1)$ converging to 0 . Let $\left(P_{n}, N_{n}\right)$ be a Hahn decomposition for the signed measure $\nu_{0}-\epsilon_{n} \mu$. Case 1: There exists n with $\mu\left(P_{n}\right)>0$. This leads to a contradiction exactly as in case 2 in the RNT. Do only a review.

The proof of the Lebesgue Decomposition Theorem (uses the proof of the Radon-Nikodym Theorem)

Let $\left(\epsilon_{n}\right)$ be a decreasing sequence of numbers in $(0,1)$ converging to 0 . Let $\left(P_{n}, N_{n}\right)$ be a Hahn decomposition for the signed measure $\nu_{0}-\epsilon_{n} \mu$.

Case 1: There exists n with $\mu\left(P_{n}\right)>0$. This leads to a contradiction exactly as in case 2 in the RNT. Do only a review.

One shows that $g_{0}:=f_{0}+\epsilon_{n} I_{P_{n}} \in \mathcal{F}$

The proof of the Lebesgue Decomposition Theorem (uses the proof of the Radon-Nikodym Theorem)

Let $\left(\epsilon_{n}\right)$ be a decreasing sequence of numbers in $(0,1)$ converging to 0 . Let $\left(P_{n}, N_{n}\right)$ be a Hahn decomposition for the signed measure $\nu_{0}-\epsilon_{n} \mu$.

Case 1: There exists n with $\mu\left(P_{n}\right)>0$. This leads to a contradiction exactly as in case 2 in the RNT. Do only a review.

One shows that $g_{0}:=f_{0}+\epsilon_{n} I_{P_{n}} \in \mathcal{F}$ and $\int g_{0} d \mu(x)=m+\epsilon_{n} \mu\left(P_{n}\right)>m$, a contradiction.

The proof of the Lebesgue Decomposition Theorem (uses the proof of the Radon-Nikodym Theorem)

The proof of the Lebesgue Decomposition Theorem (uses the proof of the Radon-Nikodym Theorem)
Case 2:

$$
\mu\left(P_{n}\right)=0 \text { for each } n
$$

The proof of the Lebesgue Decomposition Theorem (uses the proof of the Radon-Nikodym Theorem)
Case 2:

$$
\mu\left(P_{n}\right)=0 \text { for each } n
$$

Let $P:=\bigcup_{n} P_{n}$ and $N:=\bigcap_{n} N_{n}$.

The proof of the Lebesgue Decomposition Theorem (uses the proof of the Radon-Nikodym Theorem)

Case 2:

$$
\mu\left(P_{n}\right)=0 \text { for each } n
$$

Let $P:=\bigcup_{n} P_{n}$ and $N:=\bigcap_{n} N_{n}$.

- (P, N) is a partition since

$$
P^{c}=\left(\bigcup_{n} P_{n}\right)^{c}=\bigcap_{n} P_{n}^{c}=\bigcap_{n} N_{n}=N
$$

The proof of the Lebesgue Decomposition Theorem (uses the proof of the Radon-Nikodym Theorem)

Case 2:

$$
\mu\left(P_{n}\right)=0 \text { for each } n
$$

Let $P:=\bigcup_{n} P_{n}$ and $N:=\bigcap_{n} N_{n}$.

- (P, N) is a partition since

$$
P^{c}=\left(\bigcup_{n} P_{n}\right)^{c}=\bigcap_{n} P_{n}^{c}=\bigcap_{n} N_{n}=N
$$

- $\mu(P)=0$.

The proof of the Lebesgue Decomposition Theorem (uses the proof of the Radon-Nikodym Theorem)

Case 2:

$$
\mu\left(P_{n}\right)=0 \text { for each } n
$$

Let $P:=\bigcup_{n} P_{n}$ and $N:=\bigcap_{n} N_{n}$.

- (P, N) is a partition since

$$
P^{c}=\left(\bigcup_{n} P_{n}\right)^{c}=\bigcap_{n} P_{n}^{c}=\bigcap_{n} N_{n}=N
$$

- $\mu(P)=0$.
- Also, for each n, we have

$$
\nu_{0}(N) \leq \nu_{0}\left(N_{n}\right) \leq \epsilon_{n} \mu\left(N_{n}\right) \leq \epsilon_{n} \mu(X)
$$

This gives $\nu_{0}(N)=0$

The proof of the Lebesgue Decomposition Theorem (uses the proof of the Radon-Nikodym Theorem)

Case 2:

$$
\mu\left(P_{n}\right)=0 \text { for each } n
$$

Let $P:=\bigcup_{n} P_{n}$ and $N:=\bigcap_{n} N_{n}$.

- (P, N) is a partition since

$$
P^{c}=\left(\bigcup_{n} P_{n}\right)^{c}=\bigcap_{n} P_{n}^{c}=\bigcap_{n} N_{n}=N
$$

- $\mu(P)=0$.
- Also, for each n, we have

$$
\nu_{0}(N) \leq \nu_{0}\left(N_{n}\right) \leq \epsilon_{n} \mu\left(N_{n}\right) \leq \epsilon_{n} \mu(X)
$$

This gives $\nu_{0}(N)=0$ and so $\nu_{0} \perp \mu$.
QED

Another simpler decomposition

Given any σ-finite measure space (X, \mathcal{M}, μ) with single points being measurable (which is basically always the case),

Another simpler decomposition

Given any σ-finite measure space (X, \mathcal{M}, μ) with single points being measurable (which is basically always the case), we can always decompose μ into an atomic piece and a continuous piece as follows.

Another simpler decomposition

Given any σ-finite measure space (X, \mathcal{M}, μ) with single points being measurable (which is basically always the case), we can always decompose μ into an atomic piece and a continuous piece as follows. If \mathcal{A} is the set of atoms, we can write

$$
\mu=\left.\mu\right|_{\mathcal{A}}+\left.\mu\right|_{\mathcal{A}^{c}} .
$$

Another simpler decomposition

Given any σ-finite measure space (X, \mathcal{M}, μ) with single points being measurable (which is basically always the case), we can always decompose μ into an atomic piece and a continuous piece as follows. If \mathcal{A} is the set of atoms, we can write

$$
\mu=\left.\mu\right|_{\mathcal{A}}+\left.\mu\right|_{\mathcal{A}^{c}}
$$

Then $\left.\mu\right|_{\mathcal{A}}$ is atomic, $\left.\mu\right|_{\mathcal{A}^{c}}$ is continuous and these measures are mutually singular.

Full decomposition on (R, \mathcal{B})

Theorem
Let μ be a σ-finite measure on (R, \mathcal{B}).

Full decomposition on (R, \mathcal{B})

Theorem

Let μ be a σ-finite measure on (R, \mathcal{B}). Then μ can be decomposed uniquely as

Full decomposition on (R, \mathcal{B})

Theorem

Let μ be a σ-finite measure on (R, \mathcal{B}). Then μ can be decomposed uniquely as

$$
\mu=\mu_{d}+\mu_{\mathrm{sc}}+\mu_{\mathrm{ac}}
$$

Full decomposition on (R, \mathcal{B})

Theorem

Let μ be a σ-finite measure on (R, \mathcal{B}). Then μ can be decomposed uniquely as

$$
\mu=\mu_{d}+\mu_{s c}+\mu_{a c}
$$

where μ_{d} is an atomic measure ("d" for discrete),

Full decomposition on (R, \mathcal{B})

Theorem

Let μ be a σ-finite measure on (R, \mathcal{B}). Then μ can be decomposed uniquely as

$$
\mu=\mu_{d}+\mu_{\mathrm{sc}}+\mu_{\mathrm{ac}}
$$

where μ_{d} is an atomic measure ("d" for discrete), $\mu_{s c}$ is a continuous measure which is mutually singular with respect to Lebesgue measure

Full decomposition on (R, \mathcal{B})

Theorem

Let μ be a σ-finite measure on (R, \mathcal{B}). Then μ can be decomposed uniquely as

$$
\mu=\mu_{d}+\mu_{\mathrm{sc}}+\mu_{\mathrm{ac}}
$$

where μ_{d} is an atomic measure ("d" for discrete), $\mu_{s c}$ is a continuous measure which is mutually singular with respect to Lebesgue measure and μ_{ac} is absolutely continuous with respect to Lebesgue measure.

Full decomposition on (R, \mathcal{B})

Theorem

Let μ be a σ-finite measure on (R, \mathcal{B}). Then μ can be decomposed uniquely as

$$
\mu=\mu_{d}+\mu_{\mathrm{sc}}+\mu_{\mathrm{ac}}
$$

where μ_{d} is an atomic measure ("d" for discrete), $\mu_{s c}$ is a continuous measure which is mutually singular with respect to Lebesgue measure and μ_{ac} is absolutely continuous with respect to Lebesgue measure. Also, the three measures are mutually singular.

Full decomposition on (R, \mathcal{B})

Theorem

Let μ be a σ-finite measure on (R, \mathcal{B}). Then μ can be decomposed uniquely as

$$
\mu=\mu_{d}+\mu_{s c}+\mu_{\mathrm{ac}}
$$

where μ_{d} is an atomic measure ("d" for discrete), $\mu_{s c}$ is a continuous measure which is mutually singular with respect to Lebesgue measure and μ_{ac} is absolutely continuous with respect to Lebesgue measure. Also, the three measures are mutually singular.

The exact same theorem and proof works in R^{n} with n-dimensional Lebesgue measure.

Full decomposition on (R, \mathcal{B})

- If X is a random variable with for example either a normal or exponential distribution, its law would only have the third piece in the above decomposition.

Full decomposition on (R, \mathcal{B})

- If X is a random variable with for example either a normal or exponential distribution, its law would only have the third piece in the above decomposition.
- If X is a random variable with for example a Poisson or geometric distribution, its law would only have the first piece in the above decomposition.

Full decomposition on (R, \mathcal{B})

- If X is a random variable with for example either a normal or exponential distribution, its law would only have the third piece in the above decomposition.
- If X is a random variable with for example a Poisson or geometric distribution, its law would only have the first piece in the above decomposition.
- The existence of a random variable which contains the second piece is quite surprising to people studying probability.

Full decomposition on (R, \mathcal{B})

- If X is a random variable with for example either a normal or exponential distribution, its law would only have the third piece in the above decomposition.
- If X is a random variable with for example a Poisson or geometric distribution, its law would only have the first piece in the above decomposition.
- The existence of a random variable which contains the second piece is quite surprising to people studying probability. If the law of X would only have the second piece in its decomposition,

Full decomposition on (R, \mathcal{B})

- If X is a random variable with for example either a normal or exponential distribution, its law would only have the third piece in the above decomposition.
- If X is a random variable with for example a Poisson or geometric distribution, its law would only have the first piece in the above decomposition.
- The existence of a random variable which contains the second piece is quite surprising to people studying probability. If the law of X would only have the second piece in its decomposition, it would mean that X has no point masses

Full decomposition on (R, \mathcal{B})

- If X is a random variable with for example either a normal or exponential distribution, its law would only have the third piece in the above decomposition.
- If X is a random variable with for example a Poisson or geometric distribution, its law would only have the first piece in the above decomposition.
- The existence of a random variable which contains the second piece is quite surprising to people studying probability. If the law of X would only have the second piece in its decomposition, it would mean that X has no point masses but nonetheless there does not exist a probability density function.

Proof of the Full decomposition on (R, \mathcal{B})

Proof:

We first decompose μ into an atomic piece μ_{d} and a continuous measure μ_{c}.

$$
\mu=\mu_{d}+\mu_{c} .
$$

Proof of the Full decomposition on (R, \mathcal{B})

Proof:
We first decompose μ into an atomic piece $\mu_{\boldsymbol{d}}$ and a continuous measure μ_{c}.

$$
\mu=\mu_{d}+\mu_{c} .
$$

We now apply the Lebesgue Decomposition Theorem to write

$$
\mu_{c}=\mu_{\mathrm{sc}}+\mu_{\mathrm{ac}}
$$

Proof of the Full decomposition on (R, \mathcal{B})

Proof:
We first decompose μ into an atomic piece $\mu_{\boldsymbol{d}}$ and a continuous measure μ_{c}.

$$
\mu=\mu_{d}+\mu_{c} .
$$

We now apply the Lebesgue Decomposition Theorem to write

$$
\mu_{c}=\mu_{s c}+\mu_{a c}
$$

where $\mu_{s c} \perp m$ and $\mu_{a c} \ll m$. Now combine. QED

Proof of the Full decomposition on (R, \mathcal{B})

Proof:
We first decompose μ into an atomic piece $\mu_{\boldsymbol{d}}$ and a continuous measure μ_{c}.

$$
\mu=\mu_{d}+\mu_{c} .
$$

We now apply the Lebesgue Decomposition Theorem to write

$$
\mu_{c}=\mu_{s c}+\mu_{a c}
$$

where $\mu_{s c} \perp m$ and $\mu_{a c} \ll m$. Now combine. QED

Alternative description of absolute continuity

Proposition: Let μ and ν be measures with ν finite.

Alternative description of absolute continuity

Proposition: Let μ and ν be measures with ν finite. Then $\nu \ll \mu$

Alternative description of absolute continuity

Proposition: Let μ and ν be measures with ν finite. Then $\nu \ll \mu$ if and only if for every $\epsilon>0$, there exists $\delta>0$

Alternative description of absolute continuity

Proposition: Let μ and ν be measures with ν finite. Then $\nu \ll \mu$ if and only if for every $\epsilon>0$, there exists $\delta>0$ so that
$\mu(A)<\delta$ implies that $\nu(A)<\epsilon$.

Alternative description of absolute continuity

Proposition: Let μ and ν be measures with ν finite. Then $\nu \ll \mu$ if and only if for every $\epsilon>0$, there exists $\delta>0$ so that
$\mu(A)<\delta$ implies that $\nu(A)<\epsilon$.
In particular, if $f \in L^{+, 1}(X, \mathcal{M}, \mu)$, then for every $\epsilon>0$, there exists $\delta>0$

Alternative description of absolute continuity

Proposition: Let μ and ν be measures with ν finite. Then $\nu \ll \mu$ if and only if for every $\epsilon>0$, there exists $\delta>0$ so that
$\mu(A)<\delta$ implies that $\nu(A)<\epsilon$.
In particular, if $f \in L^{+, 1}(X, \mathcal{M}, \mu)$, then for every $\epsilon>0$, there exists $\delta>0$ so that

$$
\mu(A)<\delta \text { implies that } \int_{A} f d \mu<\epsilon
$$

Alternative description of absolute continuity

Proposition: Let μ and ν be measures with ν finite. Then $\nu \ll \mu$ if and only if for every $\epsilon>0$, there exists $\delta>0$ so that

$$
\mu(A)<\delta \text { implies that } \nu(A)<\epsilon .
$$

In particular, if $f \in L^{+, 1}(X, \mathcal{M}, \mu)$, then for every $\epsilon>0$, there exists $\delta>0$ so that

$$
\mu(A)<\delta \text { implies that } \int_{A} f d \mu<\epsilon
$$

Proof:

Alternative description of absolute continuity

Proposition: Let μ and ν be measures with ν finite. Then $\nu \ll \mu$ if and only if for every $\epsilon>0$, there exists $\delta>0$ so that

$$
\mu(A)<\delta \text { implies that } \nu(A)<\epsilon .
$$

In particular, if $f \in L^{+, 1}(X, \mathcal{M}, \mu)$, then for every $\epsilon>0$, there exists $\delta>0$ so that

$$
\mu(A)<\delta \text { implies that } \int_{A} f d \mu<\epsilon
$$

Proof:
The "if" direction is essentially immediate (and does not require that ν be finite).

Alternative description of absolute continuity

Proposition: Let μ and ν be measures with ν finite. Then $\nu \ll \mu$ if and only if for every $\epsilon>0$, there exists $\delta>0$ so that

$$
\mu(A)<\delta \text { implies that } \nu(A)<\epsilon .
$$

In particular, if $f \in L^{+, 1}(X, \mathcal{M}, \mu)$, then for every $\epsilon>0$, there exists $\delta>0$ so that

$$
\mu(A)<\delta \text { implies that } \int_{A} f d \mu<\epsilon .
$$

Proof:
The "if" direction is essentially immediate (and does not require that ν be finite).
If $\mu(A)=0$, then $\mu(A)<\delta$ for every $\delta>0$

Alternative description of absolute continuity

Proposition: Let μ and ν be measures with ν finite. Then $\nu \ll \mu$ if and only if for every $\epsilon>0$, there exists $\delta>0$ so that

$$
\mu(A)<\delta \text { implies that } \nu(A)<\epsilon .
$$

In particular, if $f \in L^{+, 1}(X, \mathcal{M}, \mu)$, then for every $\epsilon>0$, there exists $\delta>0$ so that

$$
\mu(A)<\delta \text { implies that } \int_{A} f d \mu<\epsilon
$$

Proof:
The "if" direction is essentially immediate (and does not require that ν be finite).
If $\mu(A)=0$, then $\mu(A)<\delta$ for every $\delta>0$ and hence $\nu(A)<\epsilon$ for every $\epsilon>0$.

Alternative description of absolute continuity

Proposition: Let μ and ν be measures with ν finite. Then $\nu \ll \mu$ if and only if for every $\epsilon>0$, there exists $\delta>0$ so that

$$
\mu(A)<\delta \text { implies that } \nu(A)<\epsilon .
$$

In particular, if $f \in L^{+, 1}(X, \mathcal{M}, \mu)$, then for every $\epsilon>0$, there exists $\delta>0$ so that

$$
\mu(A)<\delta \text { implies that } \int_{A} f d \mu<\epsilon .
$$

Proof:
The "if" direction is essentially immediate (and does not require that ν be finite).
If $\mu(A)=0$, then $\mu(A)<\delta$ for every $\delta>0$ and hence $\nu(A)<\epsilon$ for every $\epsilon>0$. So $\nu(A)=0$.

Alternative description of absolute continuity

If the statement on the RHS fails, then there would exist an $\epsilon_{0}>0$ and sets $\left(A_{n}\right)$ with $\mu\left(A_{n}\right) \leq 1 / 2^{n}$ and $\nu\left(A_{n}\right) \geq \epsilon_{0}$.

Alternative description of absolute continuity

If the statement on the RHS fails, then there would exist an $\epsilon_{0}>0$ and sets $\left(A_{n}\right)$ with $\mu\left(A_{n}\right) \leq 1 / 2^{n}$ and $\nu\left(A_{n}\right) \geq \epsilon_{0}$.

Let $A:=\lim \sup A_{n}$. The Borel Cantelli Lemma tells us that $\mu(A)=0$.

Alternative description of absolute continuity

If the statement on the RHS fails, then there would exist an $\epsilon_{0}>0$ and sets $\left(A_{n}\right)$ with $\mu\left(A_{n}\right) \leq 1 / 2^{n}$ and $\nu\left(A_{n}\right) \geq \epsilon_{0}$.

Let $A:=\lim \sup A_{n}$. The Borel Cantelli Lemma tells us that $\mu(A)=0$.
We will show that $\nu(A) \geq \epsilon_{0}$ which contradicts $\nu \ll \mu$.

Alternative description of absolute continuity

If the statement on the RHS fails, then there would exist an $\epsilon_{0}>0$ and sets $\left(A_{n}\right)$ with $\mu\left(A_{n}\right) \leq 1 / 2^{n}$ and $\nu\left(A_{n}\right) \geq \epsilon_{0}$.

Let $A:=\lim \sup A_{n}$. The Borel Cantelli Lemma tells us that $\mu(A)=0$.
We will show that $\nu(A) \geq \epsilon_{0}$ which contradicts $\nu \ll \mu$.
For each n,

$$
\nu\left(\bigcup_{k=n}^{\infty} A_{k}\right) \geq \epsilon_{0} .
$$

Alternative description of absolute continuity

If the statement on the RHS fails, then there would exist an $\epsilon_{0}>0$ and sets $\left(A_{n}\right)$ with $\mu\left(A_{n}\right) \leq 1 / 2^{n}$ and $\nu\left(A_{n}\right) \geq \epsilon_{0}$.

Let $A:=\lim \sup A_{n}$. The Borel Cantelli Lemma tells us that $\mu(A)=0$.
We will show that $\nu(A) \geq \epsilon_{0}$ which contradicts $\nu \ll \mu$.
For each n,

$$
\nu\left(\bigcup_{k=n}^{\infty} A_{k}\right) \geq \epsilon_{0}
$$

Now $n \rightarrow \infty$ using continuity from above for ν (ν is a finite measure) gives $\nu(A) \geq \epsilon_{0}$.
QED

