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Theory of Differentiation in Rn: Overview

In the middle of the 19th century, mathematicians were attempting to prove
that a continuous function must be differentiable at at least some point.

Weierstrass then shocked the community when he constructed a continuous
nowhere differentiable function on [0, 1]. (Almost all continuous functions
are nowhere differentiable).

October 8, 2020 2 / 32



Theory of Differentiation in Rn: Overview

In the middle of the 19th century, mathematicians were attempting to prove
that a continuous function must be differentiable at at least some point.

Weierstrass then shocked the community when he constructed a continuous
nowhere differentiable function on [0, 1].

(Almost all continuous functions
are nowhere differentiable).

October 8, 2020 2 / 32



Theory of Differentiation in Rn: Overview

In the middle of the 19th century, mathematicians were attempting to prove
that a continuous function must be differentiable at at least some point.

Weierstrass then shocked the community when he constructed a continuous
nowhere differentiable function on [0, 1]. (Almost all continuous functions
are nowhere differentiable).

October 8, 2020 2 / 32



Three approaches to the existence of nowhere differentiable
functions

First approach:

Let g be a continuous zigzag function whose values go between 0 and 1
which is linear with slope 1 or -1 except at the integers. Something like the
following works.

f (x) :=
∑
n

1
3n

g(4n(x))

Since |g | ≤ 1 and is continuous, f is continuous by the Weierstrass M-Test
(or some other test from advanced calculus). But, not worrying about
being rigorous, we have that

f ′(x) :=
∑
n

4n

3n
g ′(4n(x))

whose terms go to ∞.
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Three approaches to the existence of nowhere differentiable
functions

Second approach:

There is a notion of topologically large which is discussed in some detail in
one of the asides of the lecture notes. Using this, one can show that most
(topologically speaking) continuous functions are nowhere differentiable.

Third approach (more pertinent to the course):
Most continuous functions are nowhere differentiable in a measure theoretic
or probabilistic sense. Brownian motion is formally a probability measure P
on C [0, 1] which is the space of continuous functions from [0, 1] to R .
(Don’t worry about the σ-algebra.) It represents a random particle moving
on R for time 1. It is similar to a random walk and is the most important
process in stochastic processes.

P(f is nowhere differentiable) = 1
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Lebesgue’s Theorem

For monotone functions, the situation is vastly different.

Theorem

(Lebesgue) If f : [0, 1]→ R is monotone (x ≤ y implies that f (x) ≤ f (y)),
then for a.e. x , f is differentiable with a finite derivative.

Examples: 1. The distribution function of a measure on the rationals which
jumps at every rational.
2. For the Cantor ternary function, we have seen that the derivative is 0
a.e.
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The fundamental theorem of calculus

Theorem

1. (First fundamental theorem of calculus).
If f is a continuous function on [a, b] and

F (x) :=

∫ x

a
f (t) dt,

then F ′(x) = f (x) for all x .
2. (Second fundamental theorem of calculus).
If f is a continuously differentiable function on [a, b], then∫ b

a
f ′(x) dx = f (b)− f (a).

Most of the rest of the course are generalizations of the fundamental
theorems of calculus.
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A quick summary of the proofs of the fundamental theorems
of calculus

Being differentiable at x means

f (x + h)− f (x) = ah + o(h)

where o(h) goes to 0 quicker than h, limh→0
o(h)
h = 0. a = f ′(x).

First:

F (x + h)− F (x) =

∫ x+h

x
f (t) dt = f (x)h +

∫ x+h

x
(f (t)− f (x)) dt.

One checks the last term goes to 0 quicker than h since f is continuous at
x .

Second: The two functions∫ x

a
f ′(t) dt, f (x)− f (a)

have, by "First", the same derivative (f ′(x)) and agree at a. Hence equal.
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The first fundamental theorem of calculus
Could FTC (1) be true for all integrable functions?

No.

Let f be continuous on [a, b] and let g be any measurable function which
agrees with f a.e.
We then have that

∫ x
a f (t) dt =

∫ x
a g(t) dt for every x . Hence we get

(

∫ x

a
g(t) dt)′(x) = f (x) for every x

and therefore
(

∫ x

a
g(t) dt)′(x)

fails to equal g(x) at every point x where f (x) 6= g(x). But since f = g
a.e.,

(

∫ x

a
g(t) dt)′ = g(x) a.e.

This is the general case.
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The first fundamental theorem of calculus

Theorem
If f ∈ L1([0, 1],M,m)

and we define

F (x) :=

∫ x

a
f (t) dt,

then at a.e. x , we have F ′(x) = f (x). In other words,

lim
r→0

∫ x+r
x f (t)dt

r
= lim

r→0

F (x + r)− F (x)

r
= f (x) for a.e. x

We will even obtain a higher dimension analogue called Lebesgue’s
Differentiation Theorem. However, this will not give us Lebesgue’s
Theorem. For that, we will need a version of Lebesgue’s Differentiation
Theorem for measures.
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The second fundamental theorem of calculus

As far as the second fundamental theorem of calculus, we will stick to 1
dimension only

and we will assume f is monotone. Lebesgue’s Theorem
tells us f is differentiable a.e. and one can ask∫ b

a
f ′(x) dx = f (b)− f (a).

The Cantor Ternary function shows that this can fail 0 < 1. We will
eventually determine for which monotone f ’s one has equality.

This holds if and only if the measure µf , associated to f , is absolutely
continuous with respect to m.

For the Cantor Ternary function, we have seen the measure is singular
w.r.t. m.
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Approximations by sets and by continuous functions

Theorem

Let m be Lebesgue measure on Rn.

1. For any measurable set E ⊆ Rn, we have

m(E ) = sup{m(K ) : K ⊆ E ,K compact }.

2. If f ∈ L1(Rn,Bn,m) and ε > 0, then there exists a continuous
integrable function g on Rn so that∫

Rn

|f (x)− g(x)|dm(x) < ε.

Remarks: We have seen in an exercise that

m(E ) = inf{m(O) : E ⊆ O,O open }.
So you can approximate sets "from the outside" by open sets and "from
the inside" by compact sets.
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Approximations by sets and by continuous functions

However, one cannot do it the other way.

The irrationals [0, 1]\Q cannot be approximated "from the inside" by open
sets, since it contains no nonempty open sets. Similarly the rationals
[0, 1] ∩ Q cannot be approximated "from the outside" by closed sets, since
[0, 1] is the only closed set containing the rationals.
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Approximations by sets and by continuous functions

A regular Borel measure is a measure on (Rn,Bn) which is finite on
compact sets.

Theorem

Let ν be a regular Borel measure on Rn. If E is a Borel set, then

ν(E ) = inf{ν(O) : O ⊇ E ,O open }.
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A covering lemma

Theorem

(A covering lemma)
Let C be a collection of open balls in Rn with U being their union. For all
c < m(U), there exist B1,B2, . . . ,Bk ∈ C which are disjoint satisfying

k∑
i=1

m(Bi ) ≥
c

3n
.
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Proof of the covering lemma
Choose K ⊆ U compact so that m(K ) > c

and by compactness, choose
A1, . . . ,Am ∈ C which cover K . Now, restricting to A1, . . . ,Am, we choose
B1 among these to have maximal size. Then choose B2 to have maximal
size among those disjoint from B1. Then choose B3 to have maximal size
among those disjoint from B1 ∪ B2. Continue to the end. Let
B1,B2, . . . ,Bk be the disjoint sets obtained.

Claim: If Ai is not in the final list B1,B2, . . . ,Bk , then for some j

Ai ⊆ B∗j (1)

where B∗j is the ball concentric with Bj but with three times the radius.

To see this, since Ai was not chosen, it must have intersected one of the
Bj ’s. The first Bj which Ai intersects must be at least as large as Ai since
otherwise we would have chosen Ai instead of Bj at that stage. (1) now
follows from a picture.
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Proof of the covering lemma

(1) implies that K ⊆
⋃k

j=1 B
∗
j which in turn yields

c < m(K ) ≤ m(
k⋃

j=1

B∗j ) ≤
k∑

j=1

m(B∗j ) = 3n
k∑

j=1

m(Bj).

QED
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The Hardy-Littlewood Maximal Function

Definition
f : Rn → R is in L1

loc if f is integrable on each compact set.

For f ∈ L1
loc , x ∈ Rn and r > 0,

Ar f (x) :=
1

m(B(x , r))

∫
B(x ,r)

f (y)dm(y).

Remarks:
1. If f is continuous at x , it is easy to see that

lim
r→0

Ar f (x) = f (x).

(This is basically like the simplest version of the first fundamental Theorem
of Calculus in higher dimension).
2. We will use the believable fact that Ar f (x) is a continuous function of
(r , x) on (0,∞)× Rn.
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The Hardy-Littlewood Maximal Function

Definition
If f ∈ L1

loc(R
n), then the Hardy-Littlewood Maximal function Hf is

defined by
Hf (x) := sup

r>0
Ar |f |(x).

One checks that Hf is a measurable function by noting that

(Hf )−1(α,∞) =
⋃
r>0

(Ar |f |)−1(α,∞)

is open since (Ar |f |) is continuous.
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The Hardy-Littlewood Maximal Maximal Theorem and start
of proof

Theorem

If f ∈ L1(Rn), then for all α > 0,

m({x : Hf (x) > α}) ≤ 3n

α

∫
|f |dm(x)

Proof:
Let Eα := {x : Hf (x) > α}. For each x ∈ Eα, there exists rx > 0 so that

Arx |f |(x) > α.

Given c < m(
⋃

x∈Eα
B(x , rx)), by the covering lemma, there are x1, . . . , xk

in Eα so that the k balls {B(xi , rxi )} are disjoint and

c

3n
≤

k∑
i=1

m(B(xi , rxi )).

October 8, 2020 19 / 32



The Hardy-Littlewood Maximal Maximal Theorem and start
of proof

Theorem

If f ∈ L1(Rn),

then for all α > 0,

m({x : Hf (x) > α}) ≤ 3n

α

∫
|f |dm(x)

Proof:
Let Eα := {x : Hf (x) > α}. For each x ∈ Eα, there exists rx > 0 so that

Arx |f |(x) > α.

Given c < m(
⋃

x∈Eα
B(x , rx)), by the covering lemma, there are x1, . . . , xk

in Eα so that the k balls {B(xi , rxi )} are disjoint and

c

3n
≤

k∑
i=1

m(B(xi , rxi )).

October 8, 2020 19 / 32



The Hardy-Littlewood Maximal Maximal Theorem and start
of proof

Theorem

If f ∈ L1(Rn), then for all α > 0,

m({x : Hf (x) > α}) ≤ 3n

α

∫
|f |dm(x)

Proof:

Let Eα := {x : Hf (x) > α}. For each x ∈ Eα, there exists rx > 0 so that

Arx |f |(x) > α.

Given c < m(
⋃

x∈Eα
B(x , rx)), by the covering lemma, there are x1, . . . , xk

in Eα so that the k balls {B(xi , rxi )} are disjoint and

c

3n
≤

k∑
i=1

m(B(xi , rxi )).

October 8, 2020 19 / 32



The Hardy-Littlewood Maximal Maximal Theorem and start
of proof

Theorem

If f ∈ L1(Rn), then for all α > 0,

m({x : Hf (x) > α}) ≤ 3n

α

∫
|f |dm(x)

Proof:
Let Eα := {x : Hf (x) > α}.

For each x ∈ Eα, there exists rx > 0 so that

Arx |f |(x) > α.

Given c < m(
⋃

x∈Eα
B(x , rx)), by the covering lemma, there are x1, . . . , xk

in Eα so that the k balls {B(xi , rxi )} are disjoint and

c

3n
≤

k∑
i=1

m(B(xi , rxi )).

October 8, 2020 19 / 32



The Hardy-Littlewood Maximal Maximal Theorem and start
of proof

Theorem

If f ∈ L1(Rn), then for all α > 0,

m({x : Hf (x) > α}) ≤ 3n

α

∫
|f |dm(x)

Proof:
Let Eα := {x : Hf (x) > α}. For each x ∈ Eα, there exists rx > 0 so that

Arx |f |(x) > α.

Given c < m(
⋃

x∈Eα
B(x , rx)), by the covering lemma, there are x1, . . . , xk

in Eα so that the k balls {B(xi , rxi )} are disjoint and

c

3n
≤

k∑
i=1

m(B(xi , rxi )).

October 8, 2020 19 / 32



The Hardy-Littlewood Maximal Maximal Theorem and start
of proof

Theorem

If f ∈ L1(Rn), then for all α > 0,

m({x : Hf (x) > α}) ≤ 3n

α

∫
|f |dm(x)

Proof:
Let Eα := {x : Hf (x) > α}. For each x ∈ Eα, there exists rx > 0 so that

Arx |f |(x) > α.

Given c < m(
⋃

x∈Eα
B(x , rx)),

by the covering lemma, there are x1, . . . , xk
in Eα so that the k balls {B(xi , rxi )} are disjoint and

c

3n
≤

k∑
i=1

m(B(xi , rxi )).

October 8, 2020 19 / 32



The Hardy-Littlewood Maximal Maximal Theorem and start
of proof

Theorem

If f ∈ L1(Rn), then for all α > 0,

m({x : Hf (x) > α}) ≤ 3n

α

∫
|f |dm(x)

Proof:
Let Eα := {x : Hf (x) > α}. For each x ∈ Eα, there exists rx > 0 so that

Arx |f |(x) > α.

Given c < m(
⋃

x∈Eα
B(x , rx)), by the covering lemma, there are x1, . . . , xk

in Eα so that the k balls {B(xi , rxi )} are disjoint and

c

3n
≤

k∑
i=1

m(B(xi , rxi )).

October 8, 2020 19 / 32



The Hardy-Littlewood Maximal Maximal Theorem and start
of proof

Theorem

If f ∈ L1(Rn), then for all α > 0,

m({x : Hf (x) > α}) ≤ 3n

α

∫
|f |dm(x)

Proof:
Let Eα := {x : Hf (x) > α}. For each x ∈ Eα, there exists rx > 0 so that

Arx |f |(x) > α.

Given c < m(
⋃

x∈Eα
B(x , rx)), by the covering lemma, there are x1, . . . , xk

in Eα so that the k balls {B(xi , rxi )} are disjoint and

c

3n
≤

k∑
i=1

m(B(xi , rxi )).

October 8, 2020 19 / 32



Proof of the Hardy-Littlewood Maximal Maximal Theorem

On the other hand, by the way we have chosen the rx ’s,

we have

k∑
i=1

m(B(xi , rxi )) ≤
k∑

i=1

1
α

∫
B(xi ,rxi )

|f |(x)dm(x) ≤ 1
α

∫
|f |(x)dm(x)

where the last inequality follows from the disjointness of the balls. Since
this is true for all c < m(Eα), we are done.
QED
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Lebesgue’s Differentiation Theorem for functions

Theorem

If f ∈ L1
loc(R

n),

then for Lebesgue a.e. point x

lim
r→0

Ar f (x) = f (x).

Proof:
Fix N and we show true for a.e. point in [−N,N]n.
Then can assume f is 0 outside of [−N − 1,N + 1]n and so f ∈ L1(Rn).
Fix α and let

Eα := {x : lim sup
r→0

|Ar f (x)− f (x)| > α}.

If we can show that m(Eα) = 0 for each α, then done since since
⋃

n E 1
n
is

the set of points where the theorem fails.
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Proof of Lebesgue’s Differentiation Theorem for functions

We show m(Eα) = 0. Fix ε > 0. By our approximation theorem, we can
find a continuous integrable function g with∫

Rn

|f (x)− g(x)|dm(x) < ε.

Observe that
lim sup
r→0

|Ar f (x)− f (x)| =

lim sup
r→0

|Ar f (x)− Arg(x) + Arg(x)− g(x) + g(x)− f (x)| =

lim sup
r→0

|Ar (f − g)(x) + Arg(x)− g(x) + g(x)− f (x)| ≤

lim sup
r→0

|Ar (f − g)(x)|+ lim sup
r→0

|Arg(x)− g(x)|+ lim sup
r→0

|g(x)− f (x)|

This yields

lim sup
r→0

|Ar f (x)− f (x)| ≤ H(f − g)(x) + |g(x)− f (x)|.
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Proof of Lebesgue’s Differentiation Theorem for functions

lim sup
r→0

|Ar f (x)− f (x)| ≤ H(f − g)(x) + |g(x)− f (x)|.

Eα ⊆ {x : H(f − g)(x) >
α

2
} ∪ {x : |g(x)− f (x)| > α

2
}.

Hence

m(Eα) ≤ m({x : H(f − g)(x) >
α

2
}) +m({x : |g(x)− f (x)| > α

2
}).

Use Maximal inequality and Markov’s inequality, we get

m(Eα) ≤
2(3n)
α

ε+
2
α
ε.

Since this is true for every ε > 0, we can conclude m(Eα) = 0.
QED
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Lebesgue points and their existence

We have proved that if f is locally integrable, one has for Lebesgue a.e.
point x

lim
r→0

1
m(B(x , r))

∫
B(x ,r)

(f (y)− f (x))dm(y) = 0.

In fact,

Theorem

(Lebesgue points)
For any function f which is locally integrable, one has for Lebesgue a.e.
point x

lim
r→0

1
m(B(x , r))

∫
B(x ,r)

|f (y)− f (x)|dm(y) = 0. (2)

(The set of x where this holds is called the Lebesgue set of f and is
denoted by Lf .)
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Proof of the existence of Lebesgue points
Proof:
For q ∈ Q, let gq(x) := |f (x)− q|.

We know that

lim
r→0

1
m(B(x , r))

∫
B(x ,r)

|f (y)− q|dm(y) = |f (x)− q|

for all x except a set Eq of Lebesgue measure 0. Note m(
⋃

q∈Q Eq)) = 0
and take x 6∈

⋃
q∈Q Eq. For each q ∈ Q, we have

lim sup
r→0

1
m(B(x , r))

∫
B(x ,r)

|f (y)− f (x)|dm(y) ≤

lim sup
r→0

1
m(B(x , r))

∫
B(x ,r)

(|f (y)− q|+ |f (x)− q|)dm(y) =

lim sup
r→0

1
m(B(x , r))

∫
B(x ,r)

|f (y)− q|dm(y) + |f (x)− q| =

|f (x)− q|+ |f (x)− q|.
Since this inequality holds for all q ∈ Q, the LHS is 0. QED
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Nicely shrinking sets

Definition
A collection of Borel sets {Er}0<r≤1 is said to shrink nicely to x

if for all
r ∈ (0, 1], Er ⊆ B(x , r) and there exists α > 0 so that
m(Er ) ≥ αm(B(x , r)) for all r .

Example: In R2, Er := [0, r2 ]× [0, r
200 ] shrinks nicely to (0, 0) but

Er := [0, r2 ]× [0, r
2

2 ] does not shrink nicely to (0, 0).
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Lebesgue’s Theorem for nicely shrinking set

Corollary

Let f be locally integrable.

If x belongs to the Lebesgue set Lf and
{Er}0<r≤1 are Borel sets shrinking nicely to x , then

lim
r→0

1
m(Er ))

∫
Er

|f (y)− f (x)|dm(y) = 0 and

lim
r→0

1
m(Er ))

∫
Er

f (y)dm(y) = f (x).

Proof:
The first statement implies the second. For the first

1
m(Er ))

∫
Er

|f (y)− f (x)|dm(y) ≤ 1
αm(B(x , r))

∫
B(x ,r)

|f (y)− f (x)|dm(y).

QED
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Our 1-d special case

Theorem
If f ∈ L1([0, 1],M,m)

and we define

F (x) :=

∫ x

a
f (t) dt,

then at a.e. x , we have F ′(x) = f (x). I.e.

lim
r→0

∫ x+r
x f (t)dt

r
= f (x) for a.e. x

Let Er (x) := [x , x + r ] which shrinks nicely to x . QED
However, this still doesn’t give us Lebesgue’s Theorem that a monotone
function is differentiable a.e.
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Lebesgue’s Differentiation Theorem for measures

Theorem

Let ν be a regular Borel measure on Rn

whose Lebesgue decomposition
with respect to Lebesgue measure is given by νs + fm. Then

lim
r→0

ν(B(x , r))

m(B(x , r))
= f (x) exists for Lebesgue a.e. x .

Remark: If ν � m, this reduces to our previous theorem.

In addition, in light of that result, one needs to show that if λ⊥m, then

lim
r→0

λ(B(x , r))

m(B(x , r))
= 0 for Lebesgue a.e. x . (3)

We leave this to read on your own as it gets quite technical.
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A corollary of Lebesgue’s Differentiation Theorem for
measures (after checking a number of the previous things)

Corollary

Let ν be a regular Borel measure on Rn whose Lebesgue decomposition
with respect to Lebesgue measure is given by νs + fm.

Then for Lebesgue
a.e. x , we have that if {Er}0<r≤1 are Borel sets shrinking nicely to x , then

lim
r→∞

ν(Er )

m(Er )
= f (x).

Theorem

(Lebesgue) If f : [0, 1]→ R is monotone (x ≤ y implies that f (x) ≤ f (y)),
then for a.e. x , f is differentiable with a finite derivative.
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A proof of Lebesgue’s Theorem
Proof:

Let µf be the measure on [0, 1] corresponding to f . Then

f (x + h)− f (x)

h
=
µf ((x , x + h])

m((x , x + h])

converges a.e.

We even know what the limit is a.e. Namely, writing the Lebesgue
decomposition of µf with respect m

µf = µs + gdm

the limit is g(x) a.e. So, the derivative of f is the Radon-Nikodym
derivative of the the absolute continuous part of µf wrt m.

Examples: (1). f is the Cantor ternary function. (2). f is continuously
differentiable. We will see that µf � m and f ′ is the RN derivative wrt m.
(Elementary probability.)
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What is happening on the singular set?

Recall if λ⊥m, then

lim
r→0

λ(B(x , r))

m(B(x , r))
= 0 for Lebesgue a.e. x . (4)

One can ask what happens with a typical point with respect to λ.

Theorem

(The differentiation theorem on a singular set)
Let λ be a regular Borel measure on Rn singular with respect to Lebesgue
measure. Then

lim
r→0

λ(B(x , r))

m(B(x , r))
=∞ for λ a.e. x .
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