
13 Market-Driven Requirements Engineering for
Software Products

Björn Regnell and Sjaak Brinkkemper

Abstract: An increasing part of software development is devoted to products that
are offered to an open market with many customers. Market-driven development
imposes special challenges for the requirements engineering process. This chapter
provides an overview of the special characteristics of market-driven requirements
engineering and describes the most important challenges of the area. Key elements
of market-driven requirements engineering processes are presented together with a
definition of process quality. Requirements state models and requirements reposi-
tories are also described and examples of typical solutions to progress tracking and
data management are provided. The difficult problem of release planning is also
discussed and an industrial example of a release planning process is given.

Keywords: Market-driven requirements engineering, Product software, Release
planning, Requirements selection, Process quality, Process improvement.

13.1 Introduction

An increasing part of the software produced is aimed at being offered to an open
marketplace rather than to one specific customer. This type of software develop-
ment is often called market-driven and refers to the situation where the develop-
ment costs of a generic product are divided among many buyers on an open mar-
ket and where the potential profit is rewarded to the producer. Market-driven
development is different from customer-specific development (also called bespoke
development), where one single customer pays all development costs and the re-
sulting product is specific to the needs and wishes of that one customer. This
chapter explains the specific challenges of requirements engineering in a market-
driven software development context, with focus on process issues and manage-
ment concerns. It also describes some of the solutions provided by recent re-
search in the area of Market-Driven Requirements Engineering (MDRE).

This chapter in particular, and MDRE in general, mainly takes the viewpoint of
the developing organization and focuses on the producer’s requirements engineer-
ing process, which is aimed at aligning the product content with the needs of the
targeted market segments in order to create a profitable software product. There
are a number of basic questions that need to be answered by an organization that is
developing software products for an open market:

How to design and manage a MDRE process? In order to maximize profit it is
vital to outperform the competing software producers at requirements engineer-
ing. The developing organization needs to establish an efficient MDRE process

288 Regnell and Brinkkemper

that defines how to work with the classical RE activities, such as elicitation,
specification and validation, but in a market driven context.
How to design and manage a MDRE repository? The requirements produced
during classical RE are often stored in a document denoted “the specification”.
In MDRE, it is often more useful to store information in a repository that is dy-
namically evolving with past and recent data of varying type and level of ab-
straction, such as: potential and current customer profiles, current and previous
release contents, up-to-date status of both candidate requirements and require-
ments under development.
How to make profitable release planning? A key result of the MDRE process is
the strategic decision of what to deliver when. This decision takes into account
the strategic assets of the developing organization such as the competence of its
engineers, its software architecture investments to date, its current customer
base, and combines this with the overall business strategy of the company in
order to form a list of adequately detailed requirements that are to be released
to the market at a carefully selected point in time.

This chapter has many relations to other chapters of this book. Elicitation
(Chap. 2) is a very important part of MDRE but its focus is shifted from acquisi-
tion of one particular customer’s wishes to a combination of market analysis and
generation of new ideas based on opportunities provided by new technology.
Specification techniques from Chap. 3 can be utilized, but it is important to realize
that in the MDRE situation the set of requirements rapidly may get very large and
not all requirements can be specified in detail. Often natural language is the main
way of describing the major part of the requirements, and how to deal with large
repositories of textual requirements is further discussed in Chapter 10.

Prioritization (Chap. 4) is a key element of decision-making in MDRE, and de-
cision support (Chap. 12) can help in making better re-lease plans. Although each
requirement is treated as a separate element of the MDRE process, intricate de-
pendencies among requirements (Chap. 5) make release planning (Sect. 13.5) and
impact analysis (Chap. 6) increasingly complex. Requirements-based estimations
in general become more uncertain as the overwhelming number or potential de-
pendencies must be excluded from in-depth analysis for practical reasons.

It is recommended that the reader first get a basic knowledge of the state-of-
the-art part of the book (in particular Chaps. 2, 4, 5 and 6) before reading this
chapter. It is also recommended that Chap. 13 is studied in conjunction with
Chaps. 10 and 12, to get a broad view of the challenges and tools within the
MDRE area.

The chapter is organized as follows. Sect. 13.2 is devoted to an in-depth de-
scription of the context and concepts of MDRE and describes what is particular to
the market-driven situation compared to the customer-specific situation. Sect. 13.3
describes the main elements of the MDRE process and discusses various issues in
relation to that process, such as process quality and process capacity, and Sect.
13.4 describes MDRE data management and the relation between requirements re-
finement states and the use of a requirements repository. Section 13.5 provides de-
tails of the special nature of elicitation in the MDRE context. Section 13.6 de-

13 Market-Driven Requirements Engineering for Software Products 289

scribes road mapping and release planning as a vehicle for profitable products. Fi-
nally, Sect. 13.7 concludes the chapter.

13.2 Concepts and Context

This section introduces the MDRE context in more detail. Firstly, a number of
concepts are defined in order to establish a basic terminology for different types of
variants of MDRE. Secondly, a characterisation of the differences between cus-
tomer-specific RE and MDRE is given. Finally, a number of important challenges
in MDRE are discussed.

13.2.1 Basic Concepts

Market-Driven Requirements Engineering (MDRE) covers the classical RE activi-
ties, such as elicitation, specification, and validation, adapted to the market-driven
situation, where a software producer develops a product that is offered to an open
market with many customers. MDRE also covers the specific activities needed in
a market-driven context, such as release management and market analysis. MDRE
is often conducted under the pressure of competition from other producers, and as
the market and product evolve, the MDRE process enacted by a specific software
developing organization also needs to be evolved in order to stay ahead of compe-
tition.

Of course, the buyer of a software product also has to do some careful require-
ments engineering in order to select the right product that matches the specific
needs of that buyer. This selection process is out of direct control of the producer
and a research area of its own (often called COTS selection, see e.g. [24, 18]) and
is out of scope of this chapter. However, it is important for the producer to under-
stand how potential buyers may think in their selection process. This type of in-
formation regarding customer priorities is subject to market analysis, as described
in Sect. 13.4.

There are a number of variants of software products. Table 13.1 provides a
classification and some examples of software products based on two dimensions:
(1) the degree of customization and (2) the hardware/software content. The degree
of customization is divided into three levels. A product is said to be generic if it is
intended to be used as-is, out-of-the-box, perhaps with minor configurations that
are possible to be done by the end-user. A product is said to be customized if the
product is intended to be useful after it has been tailored to one specific cus-
tomer’s needs, e.g. through adding modules via an open application interface. A
product is said to be customer specific if the entire product is developed with one
particular customer’s wishes in mind.

The hardware/software content is divided into three classes: pure hardware de-
notes products that are fixed through its hardware architecture and contains no
software that can make the features of the product flexible; embedded systems im-

290 Regnell and Brinkkemper

ply products consisting of both a hardware platform and accompanying embedded
software; pure software denote a product that is completely comprised of software
and sold independently of its hardware platform(s).

In Table 13.1, the types of software products that are market-driven include ge-
neric/customized and embedded systems/pure software and have shaded cells. The
cells with thick frame are product software (pure generic/customized software).

The acronym COTS (Commercial Off-The-Shelf) is sometimes used to denote
software product, but we have deliberately not used this term subsequently, as it is
overloaded with many meanings, see e.g., [20].

Table 13.1 Examples of variants of hardware and software products

Pure Hardware Embedded Systems
(HW+SW)

Pure Software

Generic Note sticks Mobile phone Firewall

Customized Office furniture Customized car Enterprise resource
planning systems

Customer-Specific Portrait painting Military vehicle Web Site

The distinction between market-driven and customer-specific development is
not strict. For example, it is not uncommon that the developing organisation both
sells a generic product to an open market and at the same time sells consultancy
hours for customizing the product. Some new and costly parts in product evolution
are often developed as a customer-specific feature that is paid by a specific client
and later generalized and included in the generic product to get more revenue from
the investment. In these cases, the software producer has to deal with both MDRE
and bespoke RE, as well as generalisation of custom parts.

There are, of course, other aspects that affect the nature of the MDRE context,
not represented in Table 13.1. One additional aspect is the type of buyer, which
can be divided into enterprise versus consumer. Some products are sold to only
one of these segments, whereas some products are sold to both types. MDRE for
enterprise products may differ in many respects compared to MDRE for consumer
products, e.g. with respect to usability issues, product image, type of marketing
channels and number of customer relations that need to be maintained.

The level of complexity of the user interface is also a factor that affects the
MDRE process. Some products are almost invisible, e.g. an embedded Automatic
Braking System in a car that has a simple user interface including a pedal and a
lamp, but the software itself is very complex. End-users of systems with complex
user interfaces of, for example, desktop applications are probably more likely to
give extensive feedback on user interface issues, whereas transparent embedded
systems perhaps only render attention by end-users when they do not work as in-
tended. This in-turn may have strong implications on the elicitation process and
how to treat software usability in MDRE. (A case study in usability engineering in
a market-driven context is presented in [23].)

13 Market-Driven Requirements Engineering for Software Products 291

13.2.2 Characteristics of MDRE

Empirical evidence from a number of case studies and surveys show that MDRE
is different from the RE that is conducted in customer-specific projects in many
ways [5, 6, 19, 26, 15, 25, 12]. The primary objective of market-driven develop-
ment is to deliver the right product at the right time, while the bespoke situation
often is focused on fulfillment of a contract and compliance to a requirements
specification. In the MDRE case, success is determined by sales, market share,
product reviews etc., while in the bespoke case, customer satisfaction and user ac-
ceptance is directly determining whether the project is a failure or not. The life cy-
cle of a bespoke system is often viewed as divided into development first and then
maintenance. There is often one major release, whereas market-driven develop-
ment often is a long series of releases, and the product is undergoing continuous
evolution rather than maintenance.

In MDRE requirements elicitation is often devoted to innovation of new re-
quirements combined with market analysis, whereas customer-specific elicitation
is focusing on collecting information regarding one organizations wishes through,
e.g., interviews with the known users. In MDRE, some of the features to be re-
leased may be confidential and the eventual users unknown, so elicitation cannot
always rely on interviews with customers and end-users as the main source of in-
formation. Requirements specifications in the MDRE case are often less formal
compared to the bespoke case, and natural language text is the dominating way of
documenting the results of MDRE. (See also Chap. 15 on elicitation issues in
web-based information systems.)

While much effort in bespoke RE is devoted to negotiation and conflict resolu-
tion (see Chap. 7), the MDRE case is more focused on prioritization, cost-
estimation and release planning, and these activities are all conducted by the de-
veloping organization [5]. An example of a case study in market-driven prioritiza-
tion is available in [28] and Chapter 4 includes an in-depth account of prioritiza-
tion techniques.

In the bespoke case, validation can be made continuously through the contacts
between the customer and the developers, but in the market-driven case validation
is often delayed until a late stage in the development, e.g. at expositions during
fairs or during beta tests with selected key customers.

Some of the most important characteristics of a typical MDRE context are
summarized subsequently.

The developing organization makes all decisions but also takes all risks.
There is a continuous flow of requirements throughout the product lifetime.
The requirements volume is potentially very large and continuously growing.
A majority of the requirements are informally described.
The product is evolving continuously and delivered in multiple releases.
Release planning focuses on time-to-market and return-on-investment.

292 Regnell and Brinkkemper

13.2.3 Challenges in MDRE

In a survey on market-driven requirements engineering [15], a number of chal-
lenges were identified. The study results are based on interviews with employees
at five different companies of varying size and maturity. The purpose of the study
is to provide insights into the special RE challenges in market-driven software de-
velopment. Subsequently follows a short explanation of the most salient chal-
lenges found. For more details see [15].

Balancing market pull and technology push. It is necessary to find a good
trade-off between requirements corresponding to perceived user needs and new,
inventive ones that may provide a competitive advantage through ground-
breaking technology. Finding a good balance between technology-driven and
needs-driven requirements may be a delicate challenge.
Chasm between marketing and development. In some companies it can be ob-
served that there is a gap between marketing and developers concerning the
views on requirements engineering. Better communication and collaboration
between these groups are needed, in order to increase the requirements quality
and thereby the quality of the final product.
Organizational instability and market turbulence. Companies without a defined
process take a significant risk if key persons leave the organization, since they
lack the necessary documentation and structure. In times of downsizing or rapid
expansion it is very difficult to install a repeatable process.
Simple tools for basic needs. Some companies requested simple and easy-to-use
techniques for basic activities. For these companies it was a challenge to find
solutions that are not too complex.
Requirements dependencies. Dependencies among requirements make release
planning difficult. Some companies treat dependencies in a basic way by bun-
dling related requirements, but efficient ways of managing at least the most im-
portant dependencies are needed. (See further Chap. 5.) Different types of de-
pendencies are reported in the case study by Carlshamre et al. [7].
Cost-value-estimation and release planning. Release planning relies on accu-
rate estimates; underestimation of cost may result in an exceeded deadline
while over-estimation of cost may exclude valuable requirements; over- or un-
derestimation of value may result in a product that is badly aligned with actual
market needs and thus make the development investment a losing business.
Overloaded Requirements Management. Requirements suggestions from devel-
opers and customers are essential. It is a challenge to prevent the requirements
repository from being flooded with requirements and how to maintain through-
put at times when the number of arriving requirements peak.

The challenges stated above reveal intrinsically difficult problems and it is
unlikely that the challenges can be met by a single, simple solution. The key issue
for a market-driven company is to continuously improve in managing these chal-
lenges in such a way that it stays ahead of competitors.

13 Market-Driven Requirements Engineering for Software Products 293

13.3 The MDRE Process

This section provides a definition of MDRE process quality in terms of decision
outcomes in requirements selection. Process capacity and the importance of hav-
ing a screening function is also discussed.

As described in Sect. 13.1, requirements are continuously generated during the
entire lifetime of the product. The software is released in a series of releases as a
result of product evolution, where new features are added and existing features are
improved according to the advancement of the targeted market. In general, the
MDRE process can be seen as a way of synchronizing the work with the continu-
ous flow of candidate requirements and the work with the discrete release events.
This synchronisation should enable all parts of development from RE to V&V to
work in concert towards the same goals. The main vehicles for communicating
these goals are the strategic roadmap together with the release plan of the product.

When designing an MDRE process for a specific company, it is important to
realize that there are many situational factors that determine what the best concrete
process implementation is. Such factors include: type of development process,
type of distribution channels, price and licensing policy, type of market, what is
the distinguishing customer value, product complexity, nature of competition, cus-
tomer behaviour, requirements on product flexibility and adaptability, user inter-
face complexity, predictions on sales, sales channels, etc. It is obvious that the ma-
turity of the developing organization’s development process with the competence
of the developers, as well as the maturity of the market with customers’ knowl-
edge of how to apply technology for their own benefit, are major determining fac-
tors of what is most important to get right in the MDRE process. A further discus-
sion on maturity issues in MDRE is provided in [16].

13.3.1 Process Quality

When designing a MDRE process that is adapted to a specific organisation’s
needs, it may be valuable to define criteria for process success and thus to have a
concrete notion of process quality. Of course, the process quality is intimately re-
lated to the quality of the artefacts that are produced during the process, and
MDRE processes typically generate requirements descriptions in various forms.
However, a major process quality issue in MDRE is the quality of decisions that
are made about produced artefacts. One way of capturing decision quality is by re-
ferring to the ratio of correct requirement selection decisions that are made during
the recurring release planning activity, as in the alfa/beta model of MDRE selec-
tion quality [29], where the decision outcomes are divided into four cases, as de-
scribed in Table 13.2.

An alfa requirement is a requirement that has such a high inherent quality that
it ideally should be selected. The alfa requirements are thus the “golden grains”
among all candidates that the MDRE process should bring forward. “High quality”
can, for example, be interpreted as the actual added profit that the requirement is

294 Regnell and Brinkkemper

contributing with if included in the product. Correspondingly, beta requirements
are those that ideally should be rejected, as they are of inherently low quality.

Table 13.2 Decision outcomes in requirements selection

Decision

Selected Rejected

alfa

A
Correct

selection ratio

B
Incorrect

selection ratio

R
eq

ui
re

m
en

ts

Q
ua

li
ty

beta

C
Incorrect

selection ratio

D
Correct

selection ratio

In Table 13.2, the ratios of the different decision outcomes can be used to de-
fine metrics that can characterize the product and decision quality [29]. The prod-
uct quality Qp can be defined as Qp=A/(A+C), meaning the share of selected (and
thus implemented) alfa requirements of the total selected requirements. The deci-
sion quality Qd can be defined as Qd=(A+D)/(A+B+C+D), representing the share
of correct decision in relation to the total number of decisions.

The main challenge of the MDRE process is to find and select alfa require-
ments, while rejecting beta requirements, and thus maximizing A and D while
minimizing B and C. However, the problem is that it is not easy to know if a re-
quirement is actually an alfa or a beta requirement, as the cost-benefit trade-off is
very difficult. Estimations of both cost and value are inherently error prone and
dependent on difficult forecasting of market and technology advancements as well
as guesses about actions of competitors. Only post factum, when a product has
been out on the market for a longer period, it is possible to say with some degree
of certainty if it was a correct decision or not to select or reject a specific require-
ment [17]. Nevertheless, it is the quality of this uncertain decision-making that de-
termines winners and losers on a software product marketplace.

The elicitation sub process of MDRE (see further Sect. 13.4) has a major im-
pact on the process quality as it influences the fraction of incoming alfa require-
ments. The better the elicitation process is, the higher the share of alfa require-
ments, and thus representing an effective elicitation process that make the golden
grains come forward. The golden grain ratio, defined as the number of issued alfa
requirements divided by the total number of issued requirements, can thus be used
for characterizing the outcome of the elicitation process.

13 Market-Driven Requirements Engineering for Software Products 295

Fig. 13.1(a) Cost-value diagram with
alfa-requirements (filled) and beta-
requirements (empty)

Fig. 13.1(b) Estimated values are
differing from actual values causing
wrong selection decision

Figure 13.1 illustrates alfa and beta requirements using a cost-value diagram
[13]. In Fig. 13.1 (a) the alfa requirements can be seen as those requirements that
have values that are larger than their costs (filled circles in the figure). This means
that they are above the margin line. If a higher margin of say 20% is requested,
then the slope of the margin line is increased to the proportional factor of 1.2,
which in turn increases the demand for a requirement to be of alfa type. It should
be noted though, that the actual cost and value of a requirement is generally un-
known. Furthermore, he decision-making is only based on uncertain estimates, re-
sulting in the fact that beta requirements may end up above the margin line, as il-
lustrated in Fig. 13.1 (b). Here the value is overestimated and the cost is
underestimated so that a beta requirement is incorrectly judged to be an alfa re-
quirement.

It should be noted that the value and cost of a requirement is not only depend-
ing on the requirement itself, but also on its relation to other requirements. As de-
scribed in Chap. 5, requirements can have many different types of dependencies
between pairs, or more generally among n-tuples of requirements, and the value
and cost of one requirement may change depending on if other requirements are
selected or not [7]. In addition, the value and cost of a requirement may also
change over time, so that, e.g., an unanticipated delay in the implementation of a
requirement may render another cost-value ratio than was expected at the point in
time when the selection decision first was made.

In addition, the concept of “value” can be a complex combination of many dif-
ferent types of contributing values, e.g. value for a certain market segment, value
for the internal architecture to enable future feature development, value for
strengthening company image, value for entering new markets, etc. An example of
how to visualize and balance several value estimates in a distributed marketing or-
ganisation is given in [28]. Examples of optimisation and trade-off analysis for re-
lease planning can be found in [9] and [31]. The alfa/beta model has been used as
a basis for a survey among product managers [29], where it was found that a ma-
jority of the respondents that were able to consistently estimate process model pa-

296 Regnell and Brinkkemper

rameters revealed that most of their implemented product requirements were in-
correctly selected. This result indicates that the potential of process improvement
in MDRE within the surveyed companies is great.

In a case study in MDRE process improvement using a method called PARSEQ
(Post-release Analysis of Requirements SElection Quality) [17], it was shown that
retrospective investigation of selection quality, including a root case analysis of
decisions that were suspected to be wrong based on a re-estimation of cost and
value, revealed many interesting process improvement proposals.

13.3.2 Process Capacity

In empirical studies of the MDRE process it has been found that there is a risk that
the process gets in a state of congestion [27, 15], as a consequence of allowing
more requirements to enter the MDRE process than can be handled with the avail-
able resources. This, in turn, results in throughput problems and eventually a nega-
tive impact on both time-to-market and product quality. The MDRE process ca-
pacity and the risk of overloading have been further studied using both analytical
modelling with queuing theory [29] and discrete event process simulation [10, 1,
30]. These studies show that if the process gets overloaded, the throughput is se-
verely hampered and the mean-time-to-market increases rapidly.

In [30] the alfa/beta quality model was used as a basis for measurement in
process simulation experiments, and the results showed that an important means of
reducing the risk of overloading is the introduction of a screening activity. During
screening a quick assessment of each requirements value and cost is made before
further effort is spent on analysing that requirement. This results in a rough
judgement whether the requirement should be rejected upfront or if it should be al-
lowed to enter subsequent stages of refinement. (See further the requirements state
model in Sect. 13.4). Of course, there is a higher risk of making a wrong rejection
decision based on a quick and rough analysis, but the benefit of not pushing too
many requirements into the further stages of the process and thus avoiding over-
loading may be greater than the loss of a few golden grains, as taking on more
work than the available process capacity allows for may damage the whole devel-
opment and result in an unreasonably long mean-time-to-market [30].

Another means of speeding up MDRE is to support the manual and labour in-
tensive analysis of natural language requirements descriptions by means of lin-
guistic techniques [22, 21], which is further described in Chap. 10.

13.4 MDRE Data Management

This section provides a general description of two typical ingredients in MDRE
data management, the requirements state model used for progress tracking of re-
quirements refinement and the requirements repository where relevant attributes
of candidate requirements are stored. The description here is based on previous

13 Market-Driven Requirements Engineering for Software Products 297

studies of state models and repositories [6, 27] and our observation of industrial
practice, but generalized and simplified in order to provide a broad and not too
specific view of MDRE data management. One should therefore keep in mind that
this perspective is quite different from tailor-made software, where the wishes and
satisfaction of the customer are leading the requirements elicitation and capturing
process. This implies that key principles are not the same in the processes and data
management of MRDE.

13.4.1 Requirements State Model

At the conception of a requirement it is very uncertain whether it will finally get
realized into a product release. Available resources and lead time until the planned
date of the product release into the market limit the realization of any wish into the
software product. Market-driven software implies that the vision and scope of the
product are well established, thereby setting means to discern whether a require-
ment fits the standard or is to be rejected as it is too customer specific.

In keeping stock of the large volumes of requirements through the stages of the
development a requirements state model is indispensable (see Fig. 13.2). We call
this state model the requirements salmon ladder referring to the uncertainty of a
salmon to get back upstream to the breeding currents.

Fig. 13.2 Requirements state model, or requirements salmon ladder

Requirements are received at any time, but the development of a product is made
in releases that are produced at discrete points in time. We therefore distinguish
two modes: continuous mode and release mode. In the continuous mode, require-
ments are received and registered by the product manager from all kinds of sub-
mitters internal or external to the company, such as customers, sales representa-
tives, or development teams.

The development of product releases is initiated at designated times according
to the roadmap planning (see Sect. 13.6), and the requirements management ac-
tivities are in release mode. During release development the product manager is in
touch with other roles in the development team: project manager, software engi-

Candidate

Approved

Specified

Planned

Developed

Released

Verified

Discarded

Continuous mode

Release mode

Candidate

Approved

Specified

Planned

Developed

Released

Verified

Discarded

Candidate

Approved

Specified

Planned

DevelopedDeveloped

Released

Verified

DiscardedDiscarded

Continuous mode

Release mode

298 Regnell and Brinkkemper

neers, testers, technical authors, translators, etc. In release mode the content of the
next release, also called the release scope, is then frozen in order to manage the re-
lease development project properly. Changes to the scope are then decided
through a scope change procedure.

In order to monitor the progress of the work on the requirements the following
statuses of the requirements salmon ladder are usually distinguished.

Candidate: Each requirement received gets the status of “Candidate”. It is pre-
ferred that the description of the requirement follow the wording of the submitter
as precisely as possible in order to keep commitment from the submitting party to
the requirement. (For an overview of the requirements sources and elicitation, see
Sect. 13.5.)

Approved: At regular time intervals the requirements with status Candidate are
being reviewed for a possible inclusion into the future product releases. Accepted
requirements get the status “Approved”. This judgement process is a very difficult
and responsible task. First, a long term vision of the product is required, which is
usually expressed in product roadmap documents (see Sect. 13.6). Then a thor-
ough functional and technical understanding of the product is required to deter-
mine the meaning and consequences of the often very detailed requirements of the
existing customer base. Finally, the product managers should be able to cope with
the political and strategic issues brought in by possible new contracts, important
customers, and insisting sales people.

Specified: As the original description of the requirements is likely not very
suitable for planning and development purposes, normally a more elaborate speci-
fication is created and linked to this requirement. The documentation type of the
specifications may vary. In some organisations a text explaining the requirement
in more depth is created, whereas in others a complete design document with Use
Cases and Class diagrams is made. When the specification document is available
the requirement gets the status “Specified”.

Discarded: Rejected requirements get the status Discarded. A notification with
the motivation of the rejection is send to the submitter. Discarded requirements are
not deleted from the requirements database to enable future inquiries and analyses.

Planned: The planned release date and the available personnel resources de-
termine the number of person days available for development, testing, and product
completion. The product release planning can accommodate a maximum number
of requirements based on the effort estimates and a prioritization. All requirements
selected get the status “Planned”, and are input for the design and coding proc-
esses. As the estimates are usually too optimistic, some of the planned require-
ments have an indication of lower priority and may be candidate to be taken out of
the release plan in case of shortage of time to complete the release.

Developed: Development entails technical design, coding, unit tests, and pro-
duction of collateral materials, such as brochures, marketing campaign, and train-
ing material. When all these activities have been successfully completed, the re-
quirement gets the status “Developed”. Note, that de-scoping, i.e. taking a
requirement out of the release plan, can happen anytime, even when development
is substantially under way. In this case the code has to be brought back to a state

13 Market-Driven Requirements Engineering for Software Products 299

where the requirement was included. De-scoping usually happens if time runs out,
or due to changing priorities.

Verified: Several tests are likely to be necessary in order to ensure an adequate
level of quality before a developed requirement is released. Typical types of test
are: functional unit tests for the small units performed by a tester not part of the
development team; integration test focusing on dependencies between modules;
system test for the complete software system; acceptance test for the complete
product (software and collateral); and a final test of the installation files.

Released: When all activities for the product release have been completed the
requirement finally gets the status of “Released”, and the submitter is given a noti-
fication. Also released requirements are kept in the requirements repository for
further analysis.

Most commercial requirement management tools allow the addition and defini-
tion of own statuses. The correspondence of status transfers with activities in the
development, such as linkage to design and test documentation, can usually not be
enforced by the tools, but require manual operation.

Table 13.3 Outline of a typical MDRE repository

Attribute Value Assigned in State

State C / A / S / Di / P / De / V / R -

ID Unique identity Candidate

Submitter Who issued it? Candidate

Company Submitter’s company Candidate

Domain Functional domain Candidate

Label Good descriptive name Candidate

Description Short textual description Candidate

Contract Link to sales contract enforcing requirement Candidate

Priority Importance category (1,2,3) Approved

Motivation Rationale: Why is it important? Approved

Line of Business Market segment for which requirement is important Approved

Specification Links to Use Case, Textual Specification Specified

Decomposition Parent-of / Child-of – links to other req’s Specified

Estimation Effort estimation in hours Specified

Schedule Release for which it is planned for Planned

Design Links to design documents Developed

Test Links to test documents Verified

Release version Official release name Released

300 Regnell and Brinkkemper

13.4.2 Requirements Repository

In order to register the requirements properly many development teams use some
kind of requirements repository. For smaller development efforts a simple spread-
sheet may be sufficient. Larger-scale development is unlikely to be successfully
executed without a requirements management tool due to the volume of require-
ments. Monolithic requirements specification documents are also considered prob-
lematic, as the document structure hinders the concurrent elaboration of different
requirements by distinct teams. Individual registration of the requirements in an
MDRE repository is indispensable. We present in Table 13.3 an outline of a typi-
cal MDRE repository in relation to the salmon ladder.

Aside from these generic attributes there are more attribute categories that are
needed for specific markets. Country data is required for products that are sold in-
ternationally. Various countries have legal or financial rules that are required by
law. Products sold on different technical platforms, such as operating systems, da-
tabases or multi-modal user interfaces, usually require specific requirements to ca-
ter with the particularities of these platforms. Some platforms may provide facili-
ties that can be incorporated, whereas for other platforms these have to be
completely developed.

Products with different product lines or being sold to different markets (line of
business) require specific attributes related to the addressed functional domains.
This is the case for products being sold in markets where safety is an important is-
sue, such as the health care industry and in the avionics industry.

Tracing and tracking of requirements into the designs, code, and test reports is
mainly an administrative task requiring proper support tools. As long as the tools
employed in the requirements management and development lack proper means
for interoperation, the tracing and tracking is condemned to be a labor-intensive
error-prone manual task. Given the fact that developers often work at one re-
quirement at a time, the tracing of changes made in the various work products
would automatically provide insight into the requirements tracing process.

13.5 Market Analysis and Requirements Elicitation

Sources for requirements are numerous. When a new product is started, existing
literature on the subject matter may provide insight in the domain. An efficient
way to collect requirements in a structured manner is through the collaboration
with key customers. In return for early knowledge transfer the key customer assist
in requirements specification and in on-site testing. Care has to be taken that the
focus of the product remains the full width of the market, and not deteriorate into a
narrowing view of those key customer.

For larger enterprise applications markets, such as Enterprise Resource Plan-
ning (ERP) or Customer Relationship Management (CRM), analyst companies
(e.g. Gartner, Forrester) provide functional and technical overviews of the under-
lying domains. A side effect of the analyst reports is the unification of the termi-

13 Market-Driven Requirements Engineering for Software Products 301

nology in a domain. The positioning of the current product release on the complete
domain overview is a good source for additional requirements.

Recently, facilitated workshops were proposed as a means for effective and ef-
ficient elicitation of requirements. In this setting a group of domain experts is
brought together in an intensive work setting to specify the requirements managed
by a facilitator. Schalken et al. [32] reported an investigation into the advantages
of facilitated workshops compared to traditional one-on-one interviews. The com-
parison was in terms of required effort, in terms of calendar time required, and in
terms of the quality of the requirements. About 50 projects in both categories in a
large financial company in the Netherlands were analyzed. It turned out that re-
quirements’ gathering with facilitated workshops is less effective for small pro-
jects, but for large projects it is more effective. Surprisingly, the customers were
less satisfied with the quality of the resulting requirements. Time and group pres-
sure of the facilitated workshop might be reasons for this.

Customer involvement in requirements specification is to be performed in a
careful manner. Expectations have to be managed as the development of the re-
quirements may be spread over various releases and years. Some companies have
organized Customer Working Groups (CWG). A CWG is a team of customer rep-
resentatives together with product managers, which develops a specification
document for a whole new functional area. The customer representatives are ex-
perts in the domain, who can also judge the priorities of the must-have and the
nice-to-have requirements very well. Establishing a CWG in an area also sets ex-
pectations regarding the future availability in releases. Strategic roadmap changes
that exclude the CWG theme from the roadmap may set pressure on the vendor-
customer relationship.

13.6 Roadmapping and Release Planning

A roadmap is a document that provides a layout of the product releases to come
over a time frame of three to five years. Customers want to be sure that the future
of the software product on which they depend is in line with their future plans. Es-
pecially in markets where the costs and consequences of a vendor change are
large, the customer wants to have a stake in the roadmap decision-making.

Roadmaps are available in several segments of society to support decision
makers in the route to innovation [3]. Based on a variety of roadmaps reported in
the literature, Schaller [32] has established a taxonomy that classifies roadmaps
according to their location in an applications-objectives space. This taxonomy
scheme classifies the roadmaps broadly into the following four categories:

Science and Technology Roadmaps
Industry Technology Roadmaps
Corporate or Product-Technology Roadmaps
Product or Portfolio Management Roadmaps

302 Regnell and Brinkkemper

The Product-Technology Roadmaps is the type of roadmap of the software in-
dustry according to the taxonomy. Software development is a technology devel-
opment and a roadmap is made for each of the products. A technology roadmap is
the document that is generated by the roadmapping process. It identifies the criti-
cal system requirement themes, the product and process performance targets and
the technology alternatives and milestones for meeting these targets [8]. The
roadmap helps identify precise objectives and helps focus the required resources
on meeting those objectives. Roadmapping has several potential uses and resulting
benefits at both the individual corporate and industry levels. According to Garcia
[8] the three major uses of roadmapping are:

Development of a consensus about a set of needs and the technologies required
to satisfy those needs
Provision of a mechanism to help experts forecast technology developments in
target areas
A framework to plan and coordinate developments either within an organiza-
tion or in an entire industry

Investment
plan

Revenues

Product
Roadmap

Sales &
Services

Product
Requirements

Product
Release

Design
Software

Build

Corporate
strategy

Product
strategy

Release
process

Development

process

Investment
plan

Revenues

Product
Roadmap

Sales &
Services

Product
Requirements

Product
Release

Design
Software

Build

Corporate
strategy

Product
strategy

Release
process

Development

process

Fig. 13.3 Product roadmap in the investment cycle

The determination of the product roadmap in a MDRE context cannot be seen
independent from the overall strategy of the company. As shown in Fig. 13.3 it
serves best to distinguish a cyclic, four layer structure to stratify from strategy
making to the development of the software product. First, on an annual basis the
investment plan is devised based on revenues and forecast plans of the current
product lines: an extension of the product line with a next release, a start of a new
product line, and the termination of a product line. These plans also include the

13 Market-Driven Requirements Engineering for Software Products 303

investment levels in terms of money or headcount, and some strategic issues re-
garding the content of the products.

The investment plan is then input for the management of the product develop-
ment unit to create or update the current product roadmaps. In several product
companies the main manager responsible for the product roadmap is called Chief
Technology Officer. The roadmaps are created taking the views of the units for
sales and consulting services into account, as these units know best what the
strengths and weaknesses of the current products are, and what kind of market
trends and functionality is appreciated by current and prospective customers.

Phase 1: Initiation Phase

Phase 2: Preparation Phase

Phase 3: Finalization Phase

Phase 4: Follow-up Phase

1. Form a roadmap team
2. Determine the strategy

3. Determine pre-conditions
4. Set context

1. Prioritize themes

2. Select themes
3. Determine time schedule

4. Create roadmap

1. Validate roadmap
2. Communicate internally

3. Communicate externally

1. Periodically review and update
roadmap

Phase 1: Initiation Phase

Phase 2: Preparation Phase

Phase 3: Finalization Phase

Phase 4: Follow-up Phase

1. Form a roadmap team
2. Determine the strategy

3. Determine pre-conditions
4. Set context

1. Prioritize themes

2. Select themes
3. Determine time schedule

4. Create roadmap

1. Validate roadmap
2. Communicate internally

3. Communicate externally

1. Periodically review and update
roadmap

Fig. 13.4 Roadmap processes

Product managers are responsible for the release process at the next layer of
operation. They elaborate the product roadmap into a set of product requirements
for the various releases. Either they select the suitable requirements from the
available candidate requirements in the requirements database (see Fig. 13.3), or
they look for additional requirements (see Fig. 13.4) from various sources in the
product domain. This step is especially needed when new product lines are initi-
ated or when an existing product line is expanded with a new functional area. The
set of product requirements is then input for the development process, which re-
sults into the kernel of the software product, the software build. The software
build together with the auxiliary materials, such as user manuals, training material,
marketing collateral, is then packaged as a new product release.

304 Regnell and Brinkkemper

Example: Roadmapping at Baan
Recently, the roadmapping processes of Baan (now SSA Global) were evaluated
and redesigned [3]. The process flow of the roadmap process, which resulted from
this effort, is shown in Fig. 13.4 and explained subsequently.

The roadmapping effort starts in Phase 1 with the formation of the roadmap
team. Obviously, some senior employees with in-depth product knowledge and
access to the key people are candidates for this role. The strategy and precondi-
tions are usually laid out by corporate management, e.g. time line (three or five
years), products in scope, range of investment, and release frequency. The team
then formulates its own plan and context. In the next phase the themes for func-
tional and technical extension to the products are identified and prioritized.
Themes can be seen as high-level requirements, usually well known generic issues
in the product domain. The themes are elaborate in a set of coherent requirements
to be planned in one or subsequent releases. Typical themes are “Enabling for
Workflow”, “Porting to Linux platform”, and “Extensions for a new market”.
Themes should be so well defined and attractive, that they are candidates for the
functional extensions to be listed on the brochures that cover the release products

Schedules of roadmaps are often expressed in quarters of a year. A timeline
shows the various product lines with the releases plotted. The release frequency is
dependent on the size of the product. For Baan ERP the frequency was about 1.5
year as the market is not receptive for too many disruptive system upgrades.
Bookkeeping software is usually upgraded once a year. Changed legislation re-
quires that the financial processes are brought up-to-date. When the roadmap has
been drafted, it requires to be validated by the various stakeholders groups: gen-
eral management, large customers, sales and consultancy teams, and development
teams. Comments and feedback is integrated, and the roadmap is handed over to
the general management, who is the owner and communicator of the roadmap.
The formal communication of the roadmap is often launched at some large event
where many customers meet.

Finally, in the Follow-up phase the roadmap team is thanked for its efforts and
dissolved. Some product managers remain responsible for the maintenance of the
product roadmap documentation and the updating with new themes. After about
three years a new roadmap team is formed and the cycle of phases is repeated.

13.7 Conclusion

When the requirements engineering process is enacted in a market-driven context
the developing organization faces special challenges. Continuously arriving re-
quirement candidates provide input to the decision-making that should result in a
strategic roadmap and a prioritized release plan. A major challenge is to cope with
the potentially enormous amount of information and to represent and organize it in
an efficient way so that it can provide a good basis for efficient and effective deci-
sion-making, which in-turn provides the basis for a profitable software business.

13 Market-Driven Requirements Engineering for Software Products 305

This chapter offers input to the design of a competitive MDRE process through
the following elements as explained previously:

A process quality model for assessing the goodness of requirements selection
A typical requirements state model to be used in progress tracking
A typical requirements repository to be used in data management
An example of an industrial release management process

The MDRE has to be adapted to its specific context. The maturity of the or-
ganization and its products, as well as the market and its customers, are critical pa-
rameters that have to be considered when formulating and establishing a well-
balanced process. It is also important that there is a built in mechanism for learn-
ing and improving in order to stay ahead even as the competition gets smarter. In
[2], the following four research topics were identified based on a systematic as-
sessment of research contributions in relation to the Capability Maturity Model In-
tegration [4]:

Release planning: means to select requirements for the next release based on
priority, development effort estimates, and expected revenues
Experience evaluations of industrial requirements management processes: a
study in MDRE efforts in a variety of companies
Tracking and tracing: tools to track and trace the requirements over the various
work products of the development process, such as designs, code, tests, and
manuals;
Measuring requirements management efficiency and effectiveness: develop-
ment of measurements to provide means to assess the efficiency and effective-
ness of the requirements processes

Other important areas providing challenges to RE researcher in the market-
driven context are: accurate prioritization, efficient management of dependencies,
and tool support for handling very large requirement repositories, as well as the
general area of RE decision support (see further Chaps. 4, 5, 10 and 12 respec-
tively). Both descriptive and prescriptive research is needed to provide both a
deeper understanding of the nature of MDRE as well as to offer solutions to indus-
trial problems in combination with scientific evidence on how to best apply them.

Acknowledgements

We would like to thank all researchers that have been involved in the many pro-
jects that have formed the basis for this chapter. Special thanks to Johan Natt och
Dag and Lena Karlsson, both at Lund University, who have during their PhD stud-
ies actively participated in the advancement of the research frontier within market-
driven requirements engineering. We would also like to thank Dr. Joachim Karls-
son and Per Beremark for providing rewarding opportunities of industrial collabo-
ration. Thanks also to the product managers of Baan (now SSA Global) who par-
ticipated in the company-wide requirements management processes. Especially

306 Regnell and Brinkkemper

thanks to Pierre Breuls, Mike Chouinard, Wim van Rijswijk and Shirley Bode-
graven for their time and involvement.

References

1. Booth R, Regnell B, Aurum A, Jeffery R, Natt och Dag J (2001) Market-driven re-
quirements engineering challenges: An industrial case study of a process performance
declination. In: Proceedings of 6th Australian Workshop on Requirements Engineering
(AWRE'01), Sydney, Australia, pp.41 47

2. Brinkkemper S (2004) Requirements engineering research the industry is (and is Not)
waiting for. In: Proceedings of the 10th Anniversary International Workshop on Re-
quirements Engineering: Foundation of Software Quality, Regnell B, Kamsties E, Ger-
vasi V (Eds.), Essener Informatik Berichte, 9:251-264, ISBN 3-922602-91-6

3. Bodegraven S, Brinkkemper S (2004) Product software roadmap determination process:
Where marketing and technology come together. Technical report, ICS, Utrecht Uni-
versity

4. Chrissis MB, Konrad M, Shrum S (2003) CMMI: Guidelines for process integration and
product improvement. Addison-Wessley, ISBN: 0-321-15496-7

5. Carlshamre P (2002) A usability perspective on requirements engineering – From meth-
odology to product development. Dissertation No. 726, Linköping University, Sweden

6. Carlshamre P, Regnell B (2000) Requirements lifecycle management and release plan-
ning in market-driven requirements engineering processes. International Workshop on
the Requirements Engineering Process: Innovative Techniques, Models, and Tools to
support the RE Process (REP’00), September 6-8, Greenwich UK, pp.961 965

7. Carlshamre P, Sandahl K, Lindvall M, Regnell B. Natt och Dag J (2001) An industrial
survey of requirements interdependencies in software product release planning. In: Pro-
ceedings of 5th IEEE International Symposium on Requirements Engineering (RE’01),
August 27-31, Toronto, Canada, pp.84 92

8. Garcia M, Bray O (1998) Fundamentals of technology roadmapping. Sandia National
Laboratories, Technical Report, http://www.sandia.gov/Roadmap/home.htm

9. Greer D, Ruhe G (2004) Software release planning: an evolutionary and iterative ap-
proach. Information & Software Technology 46(4): 243 253

10. Höst M, Regnell B, Natt och Dag J, Nedstam J, Nyberg C (2001) Exploring bottlenecks
in market-driven requirements management processes with discrete event simulation.
Journal of Systems and Software, 59(3): 323 332

11. Hermann K, Brinkkemper S, Bubenko JA Jr, Farbey B, Greenspan SJ, Heitmeyer CL,
Leite JCS, Mead NR, Mylopoulos J, Siddiqi J (2002) Requirements engineering and
technology transfer: Obstacles and incentives. Requirements Engineering,
7(3):113 123

12. Kamsties E, Hörmann K, Schlich M (1998) Requirements engineering in small and me-
dium enterprises. Requirements Engineering, 3, pp.84–90

13. Karlsson J, Ryan K (1997) A cost-value approach for prioritizing requirements. IEEE
Software, Sept/Oct pp.67 74

14. Karlsson J, Wohlin C, Regnell B (1998) An evaluation of methods for prioritizing soft-
ware requirements. Information and Software Technology, 39(14-15): 939 947

13 Market-Driven Requirements Engineering for Software Products 307

15. Karlsson L, Dahlstedt ÅG, Natt och Dag J, Regnell B, Persson A (2002) Challenges in
market-driven requirements engineering - An industrial interview study. In: Proceed-
ings of 8th International Workshop on Requirements Engineering: Foundation for
Software Quality (REFSQ’02), September 09-10th, Essen, Germany, pp.37 49

16. Karlsson L, Regnell B (2004) Aligning the requirements engineering process with the
maturity of markets and products. In: Proceedings of 10th International Workshop on
Requirements Engineering: Foundation for Software Quality (REFSQ’04), June 7-8,
Riga, Latvia, pp.69 74

17. Karlsson L, Regnell B, Karlsson J, Olsson S (2003) Post-release analysis of require-
ments selection quality - An industrial case study. In: Proceedings of 9th International
Workshop on Requirements Engineering: Foundation for Software Quality
(REFSQ’03), June 16 -17, Klagenfurt/Velden, Austria, pp.47 56

18. Lauesen S, Vium JP (2004) Experiences from a tender process - The customer's dreams
and the supplier’s frustrations. In: Proceedings of 10th International Workshop on Re-
quirements Engineering: Foundation for Software Quality (REFSQ’04), June 7-8, Riga,
Latvia, pp.29 46

19. Lubars M, Potts C, Richter C (1993) A review of the state of the practice in require-
ments modeling. In: Proceedings of IEEE International Symposium on Requirements
Engineering (RE93), Los Alamitos, USA. IEEE Computer Society Press, pp.2–14

20. Morisio M, Torchiano M (2002) Definition and classification of COTS: A proposal. In:
Proceedings of 1st International Conference on COTS Based Software Systems
(ICCBBS), Orlando, February 4-6, pp.165 175

21. Natt och Dag J, Gervasi V, Brinkkemper S, Regnell B (2004) Speeding up requirements
management in a product software company: Linking customer wishes to product re-
quirements through linguistic engineering. In: Proceedings of 12th IEEE International
Conference on Requirements Engineering (RE’04), Kyoto, Japan, pp.283 295

22. Natt och Dag J, Regnell B, Carlshamre P, Andersson M, Karlsson J (2002) A feasibility
study of automated natural language requirements analysis in market-driven develop-
ment. Requirements Engineering, 7(1): 20 33

23. Natt och Dag J, Regnell B, Madsen OS, Aurum A (2001) An industrial case study of
us-ability evaluation in market-driven packaged software development. In: Proceedings
of 9th International Conference on Human-Computer Interaction (HCII'2001), August
5-10, New Orleans, USA, pp.425 429

24. Maiden NA, Ncube C (1998) Acquiring COTS software selection requirements. IEEE
Software, March/April, pp.46 56

25. Novorita RJ, Grube G (1996) Benefits of structured requirements methods for market-
based enterprises. In: Proceedings of 6th Annual International INCOSE Symposium.
Seattle, USA, INCOSE

26. Potts C (1995) Invented requirements and imagined customers: Requirements engineer-
ing for off-the-shelf software. In: Proceedings of Second IEEE International Sympo-
sium on Requirements Engineering (RE’95), pp.128–130 Los Alamitos, USA

27. Regnell B, Beremark P, Eklundh O (1998) A market-driven requirements engineering
process: Results from an industrial process improvement programme. Requirements
Engineering, 3(2):121 129

28. Regnell B, Höst M, Natt och Dag J, Beremark P, Hjelm T (2001) An industrial case
study on distributed prioritization in market-driven requirements engineering for pack-
aged software. Requirements Engineering, 6(1):51 62

308 Regnell and Brinkkemper

29. Regnell B, Karlsson L, Höst M (2003) An analytical model for requirements selection
quality evaluation in product software development. In: Proceedings of 11th IEEE In-
ter-national Conference on Requirements Engineering, (RE’03), September 8-12, Mon-
terey Bay, California USA, pp.254 263

30. Regnell B, Ljungquist B, Thelin T, Karlsson L (2004) Investigation of requirements se-
lection quality in market-driven software process using an open source discrete event
simulation framework. In: Proceedings of 5th International Workshop on Software
Process Simulation and Modeling (ProSim 2004), May 24-25, Edinburgh, UK

31. Ruhe G, Eberlein A, Pfahl D, (2003) Trade-off analysis for requirements selection.
Software Engineering and Knowledge Engineering, 13(4): 345 366

32. Schalken J, Brinkkemper S, van Vliet H (2004) Assessing the effects of facilitated
workshops in requirements engineering. In: Proceedings of 8th IEEE International Con-
ference on Empirical Assessment in Software Engineering (EASE2004), pp.135 144

33. Kostoff RN, Schaller RR, (2001) Science and technology roadmaps. IEEE Transactions
on Engineering Management, 48(2): 132 143

Author Biography

Dr. Björn Regnell is associate professor in Software Engineering at the Depart-
ment of Communication Systems, Lund University, Sweden, and senior member
of the Software Engineering Research Group (SERG). Dr. Regnell is the project
leader of the requirements engineering research at SERG. His research interests
include empirical software engineering, requirements engineering, and market-
driven software development. He has published one book and more than 40 refe-
reed papers in these areas. He was program co-chair of the International Work-
shop on Requirements Engineering – Foundation for Software Quality (REFSQ)
in 2002–2004, and he is a member of the program committee of the International
Conference on Requirements Engineering (RE) since 2002.

Dr. Sjaak Brinkkemper is professor in Organization and Information at the Insti-
tute of Information and Computing Sciences of the Utrecht University, the Nether-
lands. Previously he was a consultant at the Vanenburg Group and a Chief Archi-
tect at Baan Research and Development, where he was responsible for overall
software process improvement initiatives in Requirements Management, Architec-
ture and Design. He has published five books and more than 90 papers on soft-
ware product development and information systems methodology. He is a member
of the Editorial Board of the Requirements Engineering Journal, Journal of Data-
base Management, and Journal on Information Systems and e-Business Manage-
ment.

