
0 7 4 0 - 7 4 5 9 / 0 5 / $ 2 0 . 0 0 © 2 0 0 5 I E E E N o v e m b e r / D e c e m b e r 2 0 0 5 I E E E S O F T W A R E 4 7

feature

resource, budget, and risk constraints. A good
release plan should

■ provide maximum business value by offer-
ing the best possible blend of features in
the right sequence of releases,

■ satisfy the most important stakeholders
involved,

■ be feasible with available resources, and
■ reflect existing dependencies between

features.

Here we present two approaches to RP. The
art of RP approach relies on human intuition,
communication, and capabilities to negotiate
between conflicting objectives and constraints.
The science of RP approach formalizes the
problem and applies computational algo-
rithms to generate best solutions. We propose
creating a synergy between the two, integrat-

ing human and computational intelligence to
define optimal RP feature assignments.

The difficulties of creating
a release plan

Developing a release plan once you’ve
found an appropriate formal problem descrip-
tion is computationally complex, but even
finding the description in the first place can be
difficult owing to cognitive complexity. You
need a proper understanding of the planning
objectives and constraints as well as of the im-
portant stakeholders and their feature prefer-
ences. Although this information is often un-
certain and changing, it doesn’t mean RP is
necessarily ad hoc and based on intuition.

Yet, if we perform a comparative analysis of
existing methods, we see that most organiza-
tions select features informally.1,2 RP is typically
done ad hoc—even when the planning involves

The Art and Science
of Software Release
Planning

I
ncremental development provides customers with parts of a system
early, so they receive both a sense of value and an opportunity to pro-
vide feedback early in the process. Each system release is thus a col-
lection of features that the customer values. Furthermore, each release

serves to fix defects detected in former product variants. Release planning
(RP) addresses decisions related to selecting and assigning features to create
a sequence of consecutive product releases that satisfies important technical,

release planning

Günther Ruhe and Moshood Omolade Saliu, University of Calgary

A hybrid release
planning approach
integrates the
strength of
computational
intelligence and
the knowledge and
experience of
human experts.

several hundred features, it’s rarely based on
sound models and methodologies. Further-
more, optimally selecting and scheduling fea-
tures is inherently complex.3,4 Also, planning
and follow-up replanning are time-consuming
processes mainly owing to the need to elicit rel-
evant information and negotiate compromises
between stakeholders.5,6 Another problem is
that the planning scope is often limited to just
the next release.4

According to the Capability Maturity
Model Integration, project management in-
volves planning, monitoring, and controlling
activities, and the planning process should es-
tablish and maintain plans that define project
activities.7 This process includes developing
the project plan, involving stakeholders ap-
propriately, obtaining commitment to the
plan, and maintaining the plan. Guidelines
and standards (such as IEEE/EIA 12207.0) ex-
ist for the planning process in principle, but
they don’t explain how to operationally assign
features to releases to ensure maximal busi-
ness value. Not much is known about how to
effectively and efficiently perform this process.

The art of release planning
This approach addresses RP’s implicit and

tacit aspects. To the extent that RP is an ill-de-
fined problem, it requires human intuition and
capabilities to clarify the problem before seeking
a solution. One of the reasons for handling RP
as an art can be an organization’s lack of em-
phasis on processes in general, either intention-
ally or because they lack RP process maturity.

Agile development,8 which leverages the
well-known advantages of small, iterative
software releases to receive early customer
feedback and avoid the “big bang” syndrome,
also takes this more humanistic approach. RP
in agile development focuses on planning for
the next iteration, and this planning procedure
relies on physical meetings between the im-
portant stakeholders to discuss and negotiate
informally which features to develop next and
how much effort they require. (Note that the
number of features being considered is typi-
cally small.)

Unfortunately, RP in agile development
doesn’t provide guidance on how to decide on
features and priorities when multiple stake-
holders are involved.8 Nor does it suggest
techniques to balance conflicting demands be-
tween multiple stakeholders.

Even in more plan-driven environments, RP
is often done quite informally, relying on ele-
mentary tools such as spreadsheets. The release
decisions are made by contacting the main
stakeholders and manually balancing their in-
terests and preferences with available resources.
However, exponential growth in the number of
possible release plans surpasses the power of
manual plan generation, especially as the num-
ber of features and stakeholders grows.

The science of release planning
This approach is primarily based on the be-

lief that we can (at least approximately) for-
malize the problem, and that solving this for-
malized problem will produce meaningful
results. Some researchers have modeled the
problem as a specialized optimization prob-
lem. In formulating an optimization model for
RP, Anthony Bagnall and his colleagues assign
weights to customers according to their im-
portance to the software company.9 The ob-
jective is to find a subset of customers whose
features must be satisfied (within the budget).
Similarly, Ho-Won Jung’s approach selects
features that give maximum value for mini-
mum cost, considering the software system’s
budgeted costs.10 These optimization ap-
proaches cope better with larger problem
sizes, but they don’t give customers an oppor-
tunity to participate in RP decisions, and they
don’t plan beyond a single release.

Attempts to formalize certain aspects of the
RP problem while still using ad hoc methods in-
clude Mark Denne and Jane Cleland-Huang’s
incremental funding method11 and David
Penny’s maintenance planning.12 IFM differs
from other RP approaches because of its focus
on revenue projections, but it doesn’t consider
other RP constraints. Penny’s approach focuses
on release monitoring by ensuring a balance be-
tween required and available effort. However,
neither approach formalizes RP’s major impact-
ing factors.

The formulation we present here extends
one given elsewhere13 by offering greater flex-
ibility in the number of releases it addresses.
However, for simplicity, we only present the
case of K = 2 releases.

Decision variables
Suppose we have a collection of features F =

{f(1), f(2), …, f(n)}. This feature set might re-
late to new functionalities, customers’ change

4 8 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Not much is
known about

how to
effectively

and efficiently
perform the

planning
process.

requests, or defect corrections. We generally
refer to all three categories as a set. The goal
is to assign the features to a finite number K of
release options. This is described by decision
variables {x(1), x(2), …, x(n)}, where x(i) = k
if we assign requirement i to release option
k �{1, 2, … K}; otherwise, x(i) = 0.

Dependencies between features
Various dependencies between features are

possible, and most features are involved in
some sort of dependency relationship.14 In our
formulation, we consider two types of depend-
ency constraints: a coupling relation called C
and a precedence relation called P. Coupled
features should be released jointly because they
depend on each other. Precedence features
should be released in a certain order because
offering a particular feature might not make
sense if it depends on a related feature that
won’t appear until a later release.

Resource constraints
Resources are an essential part of RP. For

feature realization, project managers typically
must consider various resource constraints.
Usually, these constraints relate to either
budget or effort resources, and all constraints
include bounds on the maximum capacities
available for each resource type.

We assume that T resource types and ca-
pacities Cap(k, t) relate to all releases k = 1 …
K and to all resource types t = 1 … T. Every
feature f(i) requires an amount r(i, t) of re-
sources of type t. Thus, each release plan x as-
signing feature f(i) to release k expressed as
x(i) = k must satisfy

�x(i)=k r(i, t) � Cap(k, t) (1)

for all releases k and resource types t.

Stakeholders
Stakeholders are extremely important in

product planning, but not all stakeholders
have the same level of importance. Assume a
set of stakeholder S = {S(1), …, S(q)}. We can
assign a relative importance of �(p) � {1, …,
9} to each stakeholder p. We use an ordinal
nine-point scale to allow sufficient differentia-
tion in the degree of importance, so �(p) � {1,
3, 5, 7, 9} indicates very low, low, medium,
high, and extremely high importance, respec-
tively. Even numbers (such as �(p) = 2, 4, 6, 8)

indicate a value between the preceding and
succeeding odd-number values.

Feature prioritization
We can use different criteria to prioritize

features. Our current formulation expresses
priority in relation to value and urgency—
again using the nine-point scale. For the value
proposition, each stakeholder is asked to assign
an ordinal value, value(p, i) � {1, 2, …, 9}, to
each feature based on its assumed (relative)
impact on the product’s overall value. So,
value(p, i) = 1 and value(p, i) = 9 represent the
lowest and highest values, respectively.

Time-to-market concerns regarding certain
product features can motivate urgency. Assume
we’re planning two releases. Each stakeholder
has nine votes for each feature, which we’ll dis-
tribute among three possible options: assign to
release 1, assign to release 2, or postpone. The
higher the number of votes assigned to option
k, the more satisfied the stakeholder will be if
that feature is included in the respective op-
tion. So, an urgency vote urgency(p, i) = (9, 0,
0) indicates that stakeholder S(p) has assigned
the highest possible urgency to feature f(i) and
thus wants to include it in the first release. A
vote of urgency(p, i) = (0, 9, 0) indicates a
strong desire to include the feature in the sec-
ond release, while urgency(p, i) = (0, 0, 9) in-
dicates a strong desire to postpone the feature.
An urgency vote of (3, 3, 3) expresses no ur-
gency preference. Any combination of the
three cases expresses different degrees of these
three basic options.

Objective function
The planning objective is typically a mix-

ture of different aspects such as value, ur-
gency, risk, satisfaction or dissatisfaction, and
return on investment. The explicit function’s
actual form (equation 2) tries to bring to-
gether the different aspects in a balanced way.
In our model, we assume the following:

■ An additive function exists in which the to-
tal objective function value is determined as
the sum of the weighted average satisfac-
tion WAS(i, k) of stakeholder priorities for
all features f(i) when assigned to release k.

■ Each value WAS(i, k) is determined as the
weighted average of the products of the
two dimensions of prioritization described
earlier.

N o v e m b e r / D e c e m b e r 2 0 0 5 I E E E S O F T W A R E 4 9

Stakeholders
are extremely

important
in product
planning,
but not all

stakeholders
have the same

level of
importance.

■ Stakeholder S(p)’s degree of impact is de-
termined by the relative importance �(p).

■ For each release option k, normalized pa-
rameters �(k) describe each option’s rela-
tive importance.

■ A vector of urgency preference for each
stakeholder and each feature, given as ur-
gency(p, i) = (urgency(p, i, 1), urgency(p, i,
2), urgency(p, i, 3)).

According to these assumptions, the objec-
tive is to maximize a function F(x) among all
release plans x subject to the satisfaction of re-
source constraints (described in equation 1)
and dependency constraints (just given). F(x)
is given as

F(x) = �k = 1…K �i: x(i) = k WAS(i, k) (2)

where

WAS(i,k) = �(k)[�p=1…q�(p)�value(p,i)
�urgency(p, i, k)] (3)

A hybrid approach based on integer
linear programming

The formalized description we present in
equations 1 and 2 lets us apply efficient opti-
mization algorithms that offer optimal or
nearly optimal solutions. This fundamentally

differs from simple spreadsheet calculations,
which support merely a series of elementary
arithmetical operations. The problem is far
too complex to achieve (and guarantee) qual-
ity release plans using just spreadsheets.

The given formulation of the RP problem
constitutes a specialized integer linear pro-
gramming problem.15 All the stated objectives
and constraints are linear functions, and the
decision variables are integers. The solution al-
gorithms we’ve adopted are based on solving a
sequence of linear programming problems
without integer conditions. These relaxed
problems are well understood and can be effi-
ciently solved. We combine this approach with
heuristics to achieve integrality and to generate
not just one but a set of sufficiently good solu-
tions. We consider a solution to be sufficiently
good (or qualified) if it achieves at least 95 per-
cent of the maximum objective function value.
It’s more practical to offer a small set of solu-
tions, all of similar quality though different in
their structure, than to determine just one plan
for a vaguely defined problem.

So, our approach formulates a series of
problems as variants of the original formal
model. Then we solve these problem variants
to generate a set of qualified alternative solu-
tions. A human decision maker—such as the
project manager—evaluates the solutions
based on his or her experience and familiarity
with the problem context.

In this way, art and science complement
each other. The art-based approach has trou-
ble coping with the RP problem’s complexity
as the number of factors grows. The science-
based approach copes better with complexity
but can’t evaluate the problem with the same
analytical abilities as the human decision
maker. Our approach offers a high-level
framework stressing the continuous process
needed to perform planning and replanning
(see figure 1). We further refine our approach
by performing a variety of tasks during the
three phases of the planning process—model-
ing, exploration, and consolidation.

Phase 1: Modeling
The top of the triangle in figure 1 addresses

problem conceptualization. It focuses on the
formal description of the dynamic real world
to make it suitable for computational-intelli-
gence-based solution techniques. This phase
includes three main tasks.

5 0 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Iteration 2 Release 2

Iteration 1 Release 1

Human intelligence Computational intelligence

Iteration 3 Release 3

Figure 1. Our hybrid
approach combines art
and science in a high-
level framework that
stresses the continuous
process needed to
perform planning and
replanning.

Plan objectives and constraints. This task in-
volves formalizing the objective function that
models the underlying problem and all present
constraints. We discussed the process of realiz-
ing this task when we discussed the instantiation
of science-based RP modeling. All impacting
factors and prioritization schemes are contained
in the objective function and constraints.

Offer stakeholder voting. Stakeholders are the
people who directly or indirectly influence or
are influenced by the software release plans—
the developers, managers, customers, and
users. Giving them the opportunity to vote on
features according to their preferences is im-
portant because they set the project’s course
and decide the evaluation criteria for its suc-
cess. This activity assigns a set of feature pri-
orities according to stakeholder preferences.

Estimate resources. Estimates of the likely
amounts of various resources needed to imple-
ment each feature must be determined during
the modeling phase, because finding a solution
to the objective function during exploration
depends on it. Estimating the effort, cost, and
time required has always been a major soft-
ware engineering challenge. One reason for
this is that estimates made during an early
stage of the development life cycle are gener-
ally fraught with uncertainties. However, hy-
brid approaches that integrate the judgment of
human experts with formal techniques have
proven promising in this situation.

Phase 2: Exploration
During this phase, we generate the solution

plan based on the formal model. Because of
the model’s sophistication, we need efficient
special-purpose solution techniques. We devel-
oped specialized integer programming algo-
rithms to explore the solution space and gen-
erate solution alternatives.

Phase 3: Consolidation
During consolidation, the decision maker

evaluates the computational algorithm’s solu-
tion alternatives based on experience and the
problem context. This helps the decision
maker better understand the problem. Then, if
need be, he or she can modify parts of the un-
derlying model or make some local decisions
(perhaps preassigning some features to specific
releases). Typically, these decisions reduce the

problem’s size and complexity for the next it-
eration. Several iterations are possible until a
desirable solution alternative is derived.

After formalizing the problem, the decision
maker can perform what-if scenarios and can
base replanning on the results:

■ What if some of the stakeholder weights
change?

■ What if some of the capacities are in-
creased (or decreased)?

■ What if we modify the objective function
or some of the constraints?

A sample problem illustrating
the proposed approach

Table 1 presents key project data for a sam-
ple project that illustrates our proposed ap-
proach. Our trial project encompasses 15 fea-
tures to be included in the next two releases.

According to the project manager, the relative
importance of releases 1 and 2 are �(1) = 0.7 and
�(2) = 0.3, respectively. This indicates that release
1 is currently more important than release 2. For
simplicity, only two stakeholders, S(1) and S(2),
prioritize the features. Their degree of impor-
tance is �(1) = 4 and �(2) = 6, respectively.

Four resource types are involved in realizing
the features. Each has total capacity bounds
for the two release periods. We observe that
the total demand of all features exceeds the to-
tal capacity, so we can’t implement all the fea-
tures in the next two releases. Also, three cou-
pling and five precedence constraints exist:

{(7, 8), (9, 12), (13, 14)} � C
{(2, 1), (5, 6), (3, 11), (8, 9), (13, 15)} � P

For example, (7, 8) � C means we should im-
plement features f(7) and f(8) in the same re-
lease, and (2, 1) � P means we should imple-
ment f(2) before f(1), although we could
implement both in the same release.

Stakeholder urgency voting
To illustrate urgency voting, consider fea-

ture f(1). Stakeholder S(1) voted urgency(1,1)
= (5, 4, 0), implying that feature f(1) is desired
in release 1 but could also appear in release 2.
On the same feature, S(2) voted urgency(2, 1)
= (0, 3, 6)—he or she would prefer to post-
pone the feature but would consider assigning
it to release 2. This stakeholder is strongly
against having this feature in release 1.

N o v e m b e r / D e c e m b e r 2 0 0 5 I E E E S O F T W A R E 5 1

During
consolidation,
the decision

maker evaluates
the solution
alternatives

based on
experience and

the problem
context.

Computing the objective function value
So how do we compute the objective func-

tion value for each release? The objective
function value depends on the release to which
each feature is assigned.

If we assign feature f(1) to release 1, then

S(1): value(1, 1) = 6, urgency(1, 1, 1) = 5,
�(1) = 4

S(2): value(2, 1) = 2, urgency(2, 1, 1) = 0,
�(2) = 6

Using �(1) = 0.7, we can compute WAS(1, 1)
as 0.7[(4 � 6 � 5) + (6 � 2 � 0)] = 84.0. On the
other hand, if we assign f(1) to release 2, then

S(1): value(1, 1) = 6, urgency(1, 1, 2) = 4,
�(1) = 4

S(2): value(2, 1) = 2, urgency(2, 1, 2) = 3,
�(2) = 6

Using �(1) = 0.3, we can compute WAS(1, 2)
as 0.3[(4 � 6 � 4) + (6 � 2 � 3)] = 39.6. So, just
looking at these two options locally, it seems
more favorable to assign f(1) to release 1.

For each release plan, the F(x) sums the

WAS according to the assignment of all 15 fea-
tures. The goal (as formulated in equations 2
and 3) is to maximize the result.

Assume we’ve determined the two qualified
release plans shown in table 2. Both plans are
within the 95 percent quality range with re-
spect to the objective function. As an added
value, the two are structurally different, giving
the decision maker some additional flexibility.

Plans such as those generated in table 2 de-
rive from the power of modeling the problem
scientifically. The decision maker can then
evaluate them based on the “art” knowledge
and experience before making a final decision.

A marriage of art and science, such as
the one we have proposed, promises
to carry RP’s state of the practice to a

higher level, giving due consideration to

■ recognizing the need for a more sophisti-
cated methodology,

■ introducing more formalism that lets or-
ganizations easily plan projects containing
several hundred features,

5 2 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Table 1
Features, resource consumption, and stakeholder feature evaluations

Resources Stakeholder S (1) Stakeholder S (2)

Analyst & Budget (US$
designers (hrs) Developers (hrs) QA (hrs) in thousands) Value Urgency Value Urgency

Feature f (i) r (i,1) r (i,2) r (i,3) r (i,4) value(1,i) urgency(1,i) value(2,i) urgency(2,i)

1. Cost reduction of transceiver 150 120 20 1,000 6 (5, 4, 0) 2 (0, 3, 6)
2. Expand memory on BTS 75 10 8 200 7 (5, 0, 4) 5 (9, 0, 0)

controller
3. FCC out-of-band emissions 400 100 20 200 9 (9, 0, 0) 3 (2, 7, 0)
4. Software quality initiative 450 100 40 0 5 (2, 7, 0) 7 (7, 2, 0)
5. USEast Inc., Feature 1 100 500 40 0 3 (7, 2, 0) 2 (9, 0, 0)
6. USEast Inc., Feature 2 200 400 25 25 9 (7, 2, 0) 3 (5, 4, 0)
7. China Feature 1 50 250 20 500 5 (9, 0, 0) 3 (2, 7, 0)
8. China Feature 2 60 120 19 200 7 (8, 1, 0) 1 (0, 0, 9)
9. 12-carrier BTS for China 280 150 40 1,500 6 (9, 0, 0) 5 (0, 8, 1)

10. Pole-mount packaging 200 300 40 500 2 (5, 4, 0) 1 (0, 0, 9)
11. Next-generation BTS 250 375 50 150 1 (8, 1, 0) 5 (0, 7, 2)
12. India BTS variant 100 300 25 50 3 (9, 0, 0) 7 (0, 6, 3)
13. Common feature 01 100 250 20 50 7 (9, 0, 0) 9 (9, 0, 0)
14. Common feature 02 0 100 15 0 8 (9, 0, 0) 3 (6, 3, 0)
15. Common feature 03 200 150 10 0 1 (0, 0, 9) 5 (3, 6, 0)

Total resource consumption 2,615 3,225 392 4,375
Available capacity, Release 1 1,300 1,450 158 2,200
Available capacity, Release 2 1,046 1,300 65 1,750

■ formulating RP objectives with several im-
pacting criteria rather than concentrating
only on the values of the features,

■ letting human decision makers easily eval-
uate formally generated release plans so
they don’t have to deal with lots of infor-
mation without much visibility into the
problem’s structure, and

■ proactively evaluating possible planning
strategies to better understand the impact
of varying problem parameters.

We’ve implemented our decision-support
approach as part of the system solution Re-
leasePlanner (www.releaseplanner.com). Our
ongoing efforts are geared toward empirical
studies to collect and analyze quantitative and
qualitative measures for assessing our pro-
posed technique’s added value in industrial
settings. We’ve initiated this research through
two pilot industrial case studies,5,6 but a de-
tailed discussion of these empirical study re-
sults would require a separate article.

Acknowledgments
We thank the Alberta Informatics Circle of Re-

search Excellence (iCORE) for its financial support of
this research. We also thank the anonymous reviewers
for their detailed and valuable comments.

References
1. J. Karlsson and K. Ryan, “Prioritizing Requirements

Using a Cost-Value Approach,” IEEE Software, vol. 14,
no. 5, 1997, pp. 67–74.

2. L. Lehtola, M. Kauppinen, and S. Kujala, “Requirements
Prioritization Challenges in Practice,” Proc. 5th Int’l
Conf. Product-Focused Software Process Improvement
(PROFES 04), LNCS 3009, Springer, 2004, pp. 497–508.

3. B. Regnell, P. Beremark, and O. Eklundh, “A Market-
Driven Requirements Engineering Process—Results
from an Industrial Process Improvement Programme,”
Requirements Eng., vol. 3, no. 20, 1998, pp. 121–129.

4. P. Carlshamre, “Release Planning in Market-Driven Soft-
ware Product Development: Provoking an Understanding,”
Requirements Eng., vol. 7, no. 3, 2002, pp. 139–151.

5. A. Amandeep, G. Ruhe, and M. Stanford, “Intelligent
Support for Software Release Planning,” Proc. 5th Int’l
Conf. Product-Focused Software Process Improvement
(PROFES 04), LNCS 3009, Springer, 2004, pp. 248–262.

6. J.A. Momoh, “Applying Intelligent Decision Support to
Determine Operational Feasibility of Strategic Software
Release Planning,” master’s thesis, Dept. of Electrical and
Computer Eng., Univ. of Calgary, Canada, 2004.

7. CMMI Product Team, Capability Maturity Model Integra-
tion (CMMI) Version 1.1 Staged Representation, tech. re-
port CMU/SEI-2002-TR-029, Carnegie Mellon Univ., 2002.

8. B.A. Nejmeh and I. Thomas, “Business-Driven Product
Planning Using Feature Vectors and Increments,” IEEE
Software, vol. 9, no. 6, 2002, pp. 34–42.

9. A.J. Bagnall, V.J. Rayward-Smith, and J.M. Whittley,
“The Next Release Problem,” Information and Soft-
ware Technology, vol. 43, no. 14, 2001, pp. 883–890.

10. H.-W. Jung, “Optimizing Value and Cost in Requirements
Analysis,” IEEE Software, vol. 15, no. 4, 1998, pp. 74–78.

11. M. Denne and J. Cleland-Huang, “The Incremental
Funding Method: Data Driven Software Development,”
IEEE Software, vol. 21, no. 3, 2004, pp. 39–47.

12. D.A. Penny, “An Estimation-Based Management Frame-
work for Enhancive Maintenance in Commercial Software
Products,” Proc. Int’l Conf. Software Maintenance (ICSM
02), IEEE CS Press, 2002, pp. 122–130.

13. G. Ruhe and A. Ngo-The, “Hybrid Intelligence in Soft-
ware Release Planning,” Int’l J. Hybrid Intelligent Sys-
tems, vol. 1, no. 2, 2004, pp. 99–110.

14. P. Carlshamre et al., “An Industrial Survey of Require-
ments Interdependencies in Software Release Planning,”
Proc. 5th IEEE Int’l Symp. Requirements Eng., IEEE
CS Press, 2001, pp. 84–91.

15. L.A. Wolsey and G.L. Nemhauser, Integer and Combi-
natorial Optimization, John Wiley, 1998.

N o v e m b e r / D e c e m b e r 2 0 0 5 I E E E S O F T W A R E 5 3

Table 2
Two qualified release plan alternatives, listing

the release to which each feature is assigned and
each weighted average satisfaction

Release Plan x1 Release Plan x2

Feature f (i) x1(i) WAS(i,k) x2(i) WAS(i,k)

1. Cost reduction of transceiver 1 84.0 1 84.0
2. Expand memory on BTS controller 1 287.0 1 287.0
3. FCC out-of-band emissions 1 252.0 3 0.0
4. Software quality initiative 3 0.0 1 233.8
5. USEast, feature 1 1 134.4 3 0.0
6. USEast, feature 2 2 516.6 3 0.0
7. China feature 1 2 277.2 1 88.2
8. China feature 2 2 43.2 1 19.6
9. 12-carrier BTS for China 3 0.0 2 72.0

10. Pole-mount packaging 3 0.0 3 0.0
11. Next-generation BTS 3 0.0 3 0.0
12. India BTS variant 3 0.0 2 75.6
13. Common feature 01 1 37.8 1 516.6
14. Common feature 02 1 8.4 1 277.2
15. Common feature 03 2 54.0 2 54.0

Objective function value F(x) 1,694.6 1,708.0

About the Authors

Günther Ruhe is the Industrial Research Chair in Software Engineering at the University
of Calgary and is an iCORE (Informatics Circle of Research Excellence) professor. His research
interests include software engineering decision support, software release planning, require-
ments and COTS selection, measurement, simulation, and empirical research. He’s a member of
the ACM, IEEE Computer Society, and German Computer Society GI. Contact him at ICT Bldg.,
Rm. 545, Lab for Software Eng. Decision Support, Univ. of Calgary, 2500 University Dr. NW,
Calgary, Alberta, Canada T2N 1N4; ruhe@ucalgary.ca.

Moshood Omolade Saliu is a PhD candidate and an iCORE (Informatics Circle of Re-
search Excellence) scholar in the Computer Science Department at the University of Calgary,
Canada. His research interests include software metrics and measurement, software engineering
decision support, software process-related issues, and soft computing. He received his MS in
computer science from King Fahd University of Petroleum & Minerals, Saudi Arabia. He’s a
member of the IEEE Computer Society. Contact him at ICT Bldg., Rm. 633, Lab for Software Eng.
Decision Support, Univ. of Calgary, 2500 University Dr. NW, Calgary, Alberta, Canada T2N 1N4;
saliu@cpsc.ucalgary.ca.

