-unctional requirement styles

Data requirements specify the data to be stored in the system. In contrast,
functional requirements specify what data is to be used for, how it is recorded,
computed, transformed, updated, transmitted, etc. The user interface is in most
systems an important part of the functions because many data are recorded,
updated and shown through it.

In this chapter we will discuss some of the many styles for stating functional
requirements. These styles differ in several ways, in, for instance:

# their notation (diagrams, plain text, structured text),

their ease of validation (customer’s check),
® their ease of verification (developer’s check),

® whether they specify something about the surroundings or the product
functions,

# whether they simply identify the functions or give details of what they do.

Most of the styles in the chapter primarily identify the necessary functions. The last
styles from section 3.15 and on use indirect ways of specifying the functions, for
instance through standards or required development processes.

In this chapter we don’t describe styles that can specify details of what the
functions do. We have devoted Chapter 4 to this.

Real requirements specifications use a combination of styles. Most importantly, the
different kinds of interfaces need different styles. For instance, the user interface
needs a style that the expert user can validate, while the technical interfaces need
more precise styles aimed at IT professionals.

3.1 Human/computer - who does what?

71



72

In most systems the user interface is the most difficult to deal with, and in this
chapter we primari\y look at the styles from @ user interface viewpoint. Chapter 5
discusses special interfaces, for instance printed reports Of technical interfaces. In
those sections W€ show how to combine the yarious styles t© deal with the special
interface.

The proper combination of styles also depends on the type of project (in-house,
tender, COTS, etc.) and the way the project i carried out (up-front requirements, or
detailed analysis leading to design—\evel requirements; see section 1.7).

Func(xona\ requnemen\ styles 8
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have chosen the division of labor, and we have decided much of the future human
work and the business processes. That is a huge responsibility to the requirements
engineer. We should either do it very carefully at requirements time, or we should
avoid specifying product functions until design time.

Furthermore, if we want to base the future system wholly or partly on existing
commercial products, they already have their built-in functions and we shouldp’t
specify our own.

The rest of the chapter looks at ways of dealing with these fundamental issues.
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