-unctional requirement styles

Data requirements specify the data to be stored in the system. In contrast,
functional requirements specify what data is to be used for, how it is recorded,
computed, transformed, updated, transmitted, etc. The user interface is in most
systems an important part of the functions because many data are recorded,
updated and shown through it.

In this chapter we will discuss some of the many styles for stating functional
requirements. These styles differ in several ways, in, for instance:

their notation (diagrams, plain text, structured text),

their ease of validation (customer’s check),
® their ease of verification (developer’s check),

® whether they specify something about the surroundings or the product
functions,

whether they simply identify the functions or give details of what they do.

Most of the styles in the chapter primarily identify the necessary functions. The last
styles from section 3.15 and on use indirect ways of specifying the functions, for
instance through standards or required development processes.

In this chapter we don’t describe styles that can specify details of what the
functions do. We have devoted Chapter 4 to this.

Real requirements specifications use a combination of styles. Most importantly, the
different kinds of interfaces need different styles. For instance, the user interface
needs a style that the expert user can validate, while the technical interfaces need
more precise styles aimed at IT professionals.

3.1 Human/computer - who does what?

71

72

In most systems the user interface is the most difficult to deal with, and in this
chapter we primari\y look at the styles from @ user interface viewpoint. Chapter 5
discusses special interfaces, for instance printed reports Of technical interfaces. In
those sections W€ show how to combine the yarious styles t© deal with the special
interface.

The proper combination of styles also depends on the type of project (in-house,
tender, COTS, etc.) and the way the project i carried out (up-front requirements, or
detailed analysis leading to design—\evel requirements; see section 1.7).

Func(xona\ requnemen\ styles 8

3.1

Human/computer -

74

who does what?

Highlights
Domain model: humans and computers united.
Physical model: what each of them do.

Product requirements divide the work.
computer. The

between human and
I the requirements.

w the work is divided
d more or less throug

A pervading issue is ho
dvance, but is decide

division is not given ina

£t of the hotel system: how to find a
f the figure we se€ what human and computer
rooms and the guest's wishes, human
s the domairt model of

ure 3.1 illustrates the problem through a pa
e guest. At the top ©
Based on data about free
find a free room for the guest. We call thi

Fig
free room for th
must do together
and computer must
the functionality:

e used variou

rate the principle, but have
function that uses some data
t through other arrows.

pile of paper sheets.

s UML notations to illust
le dataflow diagrant. A bubble means a
the arrows and computes a result leaving i

‘files’ shown as double lines, suggesting a
division of labor between human

s the guest’s wishes and tells the

We could hav
chosen a simp
fed to it through
Data is stored in
art of the figure we se€ a possible

The receptionist (the user) receive
t the dates in question and the kind of rooms needed. The computer

ows a list of those available. The receptionist chooses
the choice for later use when the guest has been
model of functionality. In this model we have split

In the lower p
and computer.

computer abou
scans the list of rooms and sh

one of them. The computer saves
recorded, etc. This is the physical
the work between human and computer.
we may divide the work in other ways. We could for ins
computer choOs€ the first room on the list without asking the user.
the guest choose a room on the Web, seeing a floor map of the hotel. It is s
same domain task, but the division of labor is very different.

we study the pres there is no aut
¢ functions in the product. Some creativity {s necessaryr
ystem that is markedly better than the present one.
er. If we study the information used in the pré
new systé

ly specify the data to be stored in the
The functi

o this, then

tance let the
Or we could let

However,
till the

ent user tasks, omatic W&

No matter how carefully
A
orrec

of identifying the ‘c
particulaﬂy if we want a new s
With data requ
tasks, we can @

What should we specify as function
the product should have, for example,

sent

irements it is easi
Imost automatica

the product?

al requirements to
want? If we d

the screens We

Funclional requiremen\ styles 3

Jman/computer — who does what?

guest’s Domain model:

wishes \ parties joined
FindFree
Room \

guest name Rooms
+ chosen room# .

Physical model:
work split

guest’s
wishes

FindFreeRoom

period+room type

Product

free rooms

choice

guest name Rooms

chosen
room#

have chosen the division of labor, and we have decided much of the future human
work and the business processes. That is a huge responsibility to the requirements
engineer. We should either do it very carefully at requirements time, or we should
avoid specifying product functions until design time.

Furthermore, if we want to base the future system wholly or partly on existing
commercial products, they already have their built-in functions and we shouldp’t
specify our own.

The rest of the chapter looks at ways of dealing with these fundamental issues.

3.1 Human/computer - who does what?

75

