e

3.6 Task descriptions

What is it?

Structured text describing user tasks.

Easy 1O understand for user as well as developer.
Easy to specify yariants and complexity.

Simple o verify.

Doma‘m—level requirements _ also suited 1O coTs.

The new product must support various user tasks. Figure 3.6A shows a structured

way to describe them. The description consists of several parts, one for e

area, and one for each task in the work area.

[n Figure 3.6A, W€ have not only described the tasks; we also use them as

requirements:

R1 The product shall support tasks 1.1 to 1.5

This is a domain-level requirement. We have described the activities in th

and the requirement is to support these activities. The descriptio

n says what human

and computer should achieve together, and it doesn’t mention any

product features.

Many developers find this kind of requirement surprising. Can the requirements be
verified, they may ask. Yes, we can easily check that the final product can su

these activities- However, the support may be good or bad,

fficient or cumb

so we are left with a quality comparison. We might specify the desired quality, but it

{s not sure we can get it. In practice, the customer will more li

kely compare several

solutions and find the preferred one. More about that in sections 3.8

[f you are familiar with use cases, you will probably notice that t

ask descriptions
? The difference is

look very much like use case descriptions. What is the difference
whether we describe what humans do or what the computer does:

A task is what user and product do together to achieve some goal. (The Pr

is usually a computer system.)
A use case 1S mostly the product/s part of the task (see ™

A human task {s the user’s part of the task.

e between wha

When the customer gets a new product, he changes the balanc
user does and what the product does. Often, some Kkind of computer syst
used before, and with the new product the computer system t

the task. In some cases the human part of the task disappears
have a total automation of the task.

92 Fur\(;‘nona\ requhemen\ styles 3




3.6A Task descriptions

Work area: 1. Reception
Service guests - small and large issues.
Normally standing. Frequent interrupts.
Often alone, e.g. during night.

Users: Reception experience, IT novice.

R1: The product shall support tasks 1.1to 1.5

Missing
sub-task?

Task: 1.1 Booking

Purpose: Reserve room for a guest.
Task: 1.2 Checkin
Purpose: Give guest a room. Mark it as

occupied. Start account.

Trigger/
Precondition: A guest arrives.
Frequency: Average 0.5 checkins /room/day.
Critical: Group tour with 50 guests.
Sub-tasks:
i Find room
2. Record guest as checked in
3. Deliver key
Variants:
ia. Guest has booked in advance
1b. No suitable room
2a. Guest recorded at booking
2b. Regular customer

Task:

Purpose: Release room, invoice guest.

1.3 Checkout

The term task is traditional in ergonomics and human—-computer interaction, and it
has focus on the human part of the total task. The term use case is traditional in
UML and object-oriented analysis, and it focuses on the computer part of the total
task as explained in section 3.12. A few authors say that use cases really are tasks,
e.g. Stevens and Pooley (2000) and Wiegers (1999). Some developers use the term
‘user story’ to mean the same. To avoid these conflicting definitions, we use the
term task for the combined action of human and computer.

In Figure 3.6A we describe tasks by means of a template inspired by Cockburn’s
Use Cases with Goals (Cockburn 1997, 2000).

3.6 Task descriptions

93



—-—7

Requirements. Task descriptions can serve several purposes in requirements:

They can specify requirements without specifying anything about the product

features.

They can explain the purpose of traditional product requirements (explaine
section 3.7).

They can balance user demands against feasible solutions (exp\a’med in section 3.8).

Work area; background '\nformat'\on

Lgt us Jook at the details of Figure 3.6A. The example describes the work area

reception. In the hotel system we are using as an example, there is only this work

area, but a More realistic hotel system would also have WOTK areas such as staff
scheduling, purchas'mg, and room maintenance.

The work area description explains the overall purpose of the work, the work
env'rror\ment, the user proﬁ\e, etc. You might wonder whether this 'mformat'ron is

requirements. As it appears 11 the example, it is not. 118 background information that

helps the developer understand the domain. No matter how complete W€ try to m

the spec'\ﬁcation, most real-life design decisions aré based on developer intuition and

creativity. The background information sharpens the developer’s intuition.

In the example, the bz\ckgrouud information tells us that the system should support
several concurrent tasks because there are frequent interrupts; @ mouse might not be

ideal when standing at a reception desk; allowing computer games OF Web access
during night shifts might be an advantage to keep the receptionist awake, etc.

The work area description i the common background information for all the tasks
in that work area: Most authors don't use separate work area descriptions, but give
some description of the user (the actor) for each task. This duplicates information

pecause the same users perform many tasks. As a result, the backgrour\d
descriptions tend to be short. Collecting them in a work area description
encourages a more thorough description:

individual task descriptions

Below the work area description, W€ find descriptions of the individual tasks. Bach
task has @ specific goal or purpose: The user carries out the task and cither achieve®

the goa\ or cancels the whole activity-

In the example, W€ recognize the booking check-in, and check-out tasks. Let
look at check-in in detail.

purpose. The purpose of check-in 1 to give the guest a room, mark it as occupied:

and start the accounting for the stay: This translates well into state changes it the
database. 1f the user cancels the task, there should be no© traces in the database:

al reouuemem styles




Trigger/Precondition. The template has space for a trigger or a precondition. A
trigger says when the task starts, e.g. the event that initiates it. On Figure 3.6B the
trigger is the arrival of a guest — he reports at the reception desk. In some cases
there may be several triggers, for instance for the task look at your new e-mails, as
shown on Figure 3.6B. This task has at least three triggers, and the last one is a
weak trigger that occurs because “the user is curious”.

A precondition is something that must be fulfilled before the user can carry out the
task. In the check-in case we have specified a trigger, but not a precondition. There
is rarely a need for both. We explain more about preconditions below.

Frequency and critical. The fields for frequency and critical are very important in
practice. The requirement on Figure 3.6A is to support 0.5 check-ins per room per
day, and support critical activities with 50 guests arriving. What can that be used
for in development?

Imagine 50 guests arriving by bus and being checked in individually. Imagine that
each guest reports at the reception desk, the receptionist finds the guest, prints out
a sheet for the guest to sign, and then completes the check-in of that guest. This
could easily take over a minute per guest. The last guest will be extremely annoyed
at having to wait one hour! Maybe we should provide some way of printing out a
sheet for each guest in advance with his room number on it?

What about 0.5 check-ins per room per day? How many rooms are there? Well, a
large hotel has 500 rooms, meaning that there are approximately 250 check-ins per
day, with most guests probably arriving in peak hours. We definitely need a multi-
user system — so that the system can deal with concurrent check-ins and ensure that
no two customers end up being assigned to the same room. We can derive several
design constraints from these two lines.

Sub-tasks. Next comes a list of sub-tasks. The receptionist must find a suitable
room for the guest, record guest data, and record that the guest is checked in and
the room occupied. Finally he must give the guest the room key.

These sub-tasks are on the domain level. They specify what the user and the ¢
computer must do together. Who does what depends on the design of the product.
It is likely that the computer will help in finding free rooms, but the receptionist
will make the final choice. What about the sub-task Deliver key? Should that be
computer-supported too? Maybe. Some hotel systems provide electronic keys,
unique for each guest, but that is expensive. Obviously the solution has to be
decided later in the project, depending on the costs and benefits involved.

3.6 Task descriptions 95



—————

One of the advantages of task descriptions is that the customer readily understands
them. If we try to validate the check-in task with an experienced receptionist, he will
;mmediately notice that something important is missing: “In our hotel, we don’t
check guests in until we know they can pay- Usually we check their credit card, and
sometimes we ask for a cash deposit. Where s that in your task description?”

“Qops” said the analyst and added this line between sub-task 1 and 2:
9. Check credit card or get deposit
variants. Finally, there is a list of variants for the sub-tasks.

Sub-task 1 (find room) has two variants: (1a) The guest may have booked in advance,
50 a room is already assigned to him. (1b) There is no suitable room (suggests some
fommunication between receptionist and guest about what is available, prices, etc.).

Sub-task 2 (record guest) also has variants: (2a) The guest may have booked in
advance and is thus recorded already. (2b)Heis a regular customer with a record
in the database.

Variants are a blessing for customers as well as for developers. You don’t have to
describe rules or specify logic for the many special cases; simply list the variants to
be dealt with. Experienced developers say that as long as there are below 20
variants, this is manageable. Above that, consider redefining the task or splitting it
into several tasks.

Task sequence. Although the sub-tasks are enumerated for reference purposes, no
sequence is prescribed. In practice users often vary the sequence. It is a good idea
to show a typical sequence, but it doesn’t mean that it is the only one. In a small
hotel you may, for instance, see a regular guest arriving, and since the receptionist
knows him and knows that his favorite room is available, he hands him the key
and later records that he has checked in. The system should allow any sequence as
Jong as it makes sense.

Sometimes one or more sub-tasks are optional. Usually that is clear from the
context, or you may specify it in the sub-task. You may also specify itas a variant
of that sub-task, but that is cumbersome. As an example, let us look at the case
where a guest phones to change his booking. Here we have a clear event, but it is
not clear what kind of change we end up with. Maybe the guest just wants to
inform us of his new address; maybe he wants to book an additional room; maybe
he wants to bargain since he has found a cheaper alternative; maybe he ends up

canceling the booking.

Some analysts attempt to define separate tasks for each of these possibilities, but
that is cumbersome and doesn't reflect the true user situation. Figure 3.6B shows
how to solve the problem by using optional sub-tasks.

96 Functional requirement styles 3




3.6B Triggers, options, preconditions

Task: Look at your new e-mails
Purpose: Reply, file, forward, delete,
handle later.

Trigger: A mail arrives.

- Someone asks you to look.
- You have been in a meeting and
are curious about new mail.

Frequency:

FTask: Change booking
Purpose: g
Precondition: Guest has booked?

Trigger: Guest calls \
i gm
Sub-tasks: \@‘ie?/
1. Find booking -~
Modify guest data, e.g. address (optional)

2;
3. Modify room data, e.g. two rooms (optional)
4. Cancel booking (optional)

Preconditions and sub-tasks

Some developers find preconditions very important. Our experience is that they
may be important for use cases in order to help the programmer, but not for tasks.
(There are exceptions, as discussed below.)

As an example, Figure 3.6B shows the task change booking. 1t is logical to assume
that the guest actually has a booking, and the example shows it as a precondition.
This makes sense if the example specified what the computer should do. The
programmer would then know that some other part of the program had dhecked
that the guest has a booking, so his program part doesn’t have to check once again.
Use cases focus on what the computer should do, so here we have an example of
the usefulness of a precondition in a use case.

But is it really a precondition for the task? Are we sure that the guest actually has a
booking? And if not, which task specifies what to do if he believed he had a
booking, but actually had no booking?

The answer is simple. Sub-task 1 says what is necessary: the receptionist will find
the booking and thus see whether the guest has booked. Or rather, the receptionist
will find out whether the system has recorded a booking for that guest. (Maybe the
guest booked on a day when the system was down, so that the booking is on a slip
of paper somewhere.)

3.6 Task descriptions 97



—

Consequently, we shouldn't specify any precondition in this case. We might specify
a variant of sub-task 1, No booking recorded, but that s too obvious O specify.

As another example, some analysts insist that we specify @ precondition for check-in,
saying that the receptionist has to be logged on to the system. This makes more Sense
since the receptionist should get nowhere without logging On- On the other hand, this
is so obvious that there is NO need to mention it. Or we could claim that logon is not
an essential part of the task, and that it is more relevant as a security requirement.

As a final example, assume that we had split the check-in task into two: (1)
checking ina previously booked guest, (2) checking in an unbooked guest: It might
then make sense t© specify a precondition, for instance:

$ Check-in @ pooked guest
precondition: Guest has booked in advance

Even this use of precondition is dubious. It somehow suggests that the receptionist
knows for suré whether it is this case or not. In practice, the guest may pelieve that he is
checked in, and only during the task is it revealed whether the ‘precondition' is true. If it
is not, the receptionist has to back out of the task and select another path through the
system. This can be annoying, particuiariy if the receptionist has to enter guest data once
more. For this reason, the solution in Figure 3.6A treats the difference between booked
and non-booked guests as variants. Notice that the trigger event is the same in both cases.

Preconditions may be more relevant for sub-tasks in order to show restrictions on
the sequence- For instance We could have described check-in in this way:

Task: Check-in

Sub-tasks:

1 Find room

2 Record guest data

3 Record check-in (precondition: free rooms selected and guest data recorded)
4 Deliver key

The precondition on record check-in reflects that guest data as well as one of more
free rooms are needed to checkina guest. This is obvious to the user put may bea
useful hint to the developer.

[n some cases & sub-task is s0 big that it deserves @ separate task description-
Essentially, task A will call task B. In this case it may be useful to have a precondition
on task B stating what should have peen checked pefore task Bis started.

Extends, includes, etc.

Many analysts take great care to specify various relationships between use cases:
This is very useful if we think of what the computer should do, since it helps t@

structure the program- The same principles are sometimes useful on the task level
too. One task may; for instance:

98 Funciiona\ requv(erﬂer\i styles 3




g include another one as a sub-task (e.g. task A calling task B as above)

g extend another one, because it uses some additional variants
s be the equivalent to another one — only the names differ.

It can be useful to specify some of these things to avoid writing things twice and to
help designers use common solutions wherever possible. However, users find them
confusing, particularly if the analyst is dogmatic about the terms, which often
happens. (Many developers find the terms confusing too and spend hours
discussing what is what.)

Our best advice is to be pragmatic. Work on a task-oriented level that keeps the
number of task descriptions at a manageable level. Use variants rather than a
plethora of extends and includes. We have modeled large application areas by
means of twelve task descriptions, each with an average of four variants. We have
also seen systems of similar complexity modeled with 200 use cases on such a low
level that they failed to reflect true, closed tasks.

Useful for technical systems?

Task descriptions are primarily intended as domain-level requirements for the user
interface. What about the technical interfaces, for instance the interface between the
hotel system and the accounting system? There are two ways to deal with the issue:

Part of a larger task. A technical interface will ultimately serve some purpose to
humans, and in principle we could simply describe this user task. In the accounting
case, the accountant’s task is to balance the bank account, send invoices, etc. This
task is an indirect requirement to the technical interface, exactly as it is an indirect
requirement to the user interface. Section 5.3 explains this approach in detail.

Technical transaction. A task is a closed and meaningful piece of work for a
human user. What is the equivalent concept when two technical systems (actors)
communicate? It is a transaction. A transaction is an interchange of messages that
achieves something meaningful. Maybe a task description is a good way to
describe such a transaction, but T have not seen this done in practice. The
advantage should be that we don’t try to divide the work between the two
technical systems too early. This seems promising when a main contractor tries to
find suitable sub-contractors. However, if one of the systems already exists, we
might better use design-level requirements. Sections 4.9 and 5.5 show ways to
specify the interfaces between technical systems on the design level.

Advantages of task descriptions

Validation. Customers find it easy to validate the task descriptions because they
speak the customer’s language. Customers can also identify special cases to be
dealt with, and the requirements engineer can deal with them immediately, simply
by adding them as further sub-tasks or variants.

3.6 Task descriptions 99



Trace to development. Developers can easily understand the task descriptions, but
find it somewhat difficult to design the corresponding product functionality:
However, once a screen design is available, it is fairly straightforward to check that
it supports the task. The check can for instance be done as a walk-through of task
descriptions and associated screens. An expert user should participate in this.

verification. Checking the final system against the task descriptions is
straightforward. The task description and the variants generate good system test

cases. Verification 18 possible before the system is put into operation.

Domain-level. Task descriptions are on the domain-level and involve no product
design. Task descriptions improve the intuitive understanding of the domain,
omitting the need for a lot of detailed requirements.

Suitable for COTS. Task descriptions are excellent for COTS-based systems since
they are supplier-independent. Different COTS products have different user
dialogs, although they all support the same tasks. It i often the quality of their task
support rather than their features that makes one COTS system petter than another.

Complexity. Task descriptions can specify complexity and many variants in little space.

Disadvantages of task descriptions

No data specified. Nothing is shown about the data required for the tasks. In
principle, this information is needed for developers to produce appropriate screen
pictures and to check that the necessary data is available in the database. Often
intuition suffices but, if not, we suggest tasks with data (section 3.13) to overcome
the problem.

Non-task activities. Some activities may not be real work tasks, but they may still
require product functionality. Examples are ad hoc reports and surfing the Web
without precise goals. Section 3.10 give hints to deal with them.

Design is harder. Some developers find it difficult to translate the task descriptions
into good product functions. The naive solution would be to develop special
screens for each task, but this can result in to0 many screens, which is expensive
and may also confuse the user because the data can look different in the various
tasks. So, how do you get the same functionality with fewer screens? The Virtual
Windows technique (section 2.5) is one answer.

100 Funcl‘xonal requuemen\ styles




