Highlights

Closed task = meaningful user goal.
Check that you have identified all tasks.
gundle small, related tasks.

Don’t program the user dialog.

ndt makes a good task?

The task concept sounds simple. In practice,
poorly, choosing tasks that are too vague or

selecting good user tasks:

however, analysts often define tasks

too small. Here are some rules for

k must be nclosed”, i.e. finish with a meaningful goal

4 Closure rule. Each user tas
has achieved something.

that makes the user feel he

2 Session rule. Small closed tasks performed in the s

grouped together under a single task description.
th how the task is performed, the exact .

ame work session should be .

go into detail wi
ved, how to deal with special cases, etc.

inates from task analysis in human—computer
ful to the user. Completing the

s achieved something; maybe
e closed tasks sO
rather tha s_

3 Don’t program. Don’t
sequence of steps invol

The concept of “closure” orig
interaction. A closed task has a goal that is meaning

task gives the usera pleasant feeling — he feels he ha
he deserves a cup of coffee. Psychologists say that most of us lov
much that we prefer to do the small things that we can complete nOwW,

the large things that may take days.
ed, the sub-tasks in the description are usually so smat

While a task has to be clos
d consequently they are not real tasks.

that they aré not closed, an
when looked upon individually,
ngle session, SO they should be de
fficient support for the group ©

but they belong together:
scribed as a single tas
¢ tasks rather thett h

Some tasks are closed
and are carried outina si
The reason is that we want e

individual, small tasks.
o many details of the task, e.g. what to do if the bO ':’I‘

number is not correct, which conditions trigger alternative paths among the sut
tasks, etc. These ar€ programming details. At best they describe what is going €

inside the computer, but that is premature design; also, the custome

validate such details.

Some developers specify to



Good tasks:
= Closed: goal reached, pleasant feeling

. Session: Small, related tasks in one description
« Don’t program

Examples:

1 Manage rooms?

2 Book a guest?

3 Enter a guest name?
4 Check in a bus of tourists

5 Stay at the hotel?

6 Change the guest's address etc?
7 Change booking?

8 Cancel entire booking?

Frequent
mistake

How to deal
with that?

Got them all?
~ All events covered?

2 Critical tasks covered?

« At least as good as before?
» CRUD check

The task description should explain what the user does or wants to do, and users
are not programmed in the same way as computers. You should use variants to
handle the complexity, not programming.

Examples

Let us try to apply the rules to the examples in Figure 3.10. Which of the examples
are good user tasks? ¢

Manage rooms is an important activity, but it is not closed. You cannot say that now
you have finished managing the rooms. It is an ongoing activity and thus not a
good task. :

Book a guest is a good task. It is closed and, when the receptionist has done it,
something meaningful has been done. It may also be the time for a break — unless
other guests need attention.

Enter quest name is not a good task. There is no closure. Receptionists would not feel
that they have achieved something after entering the guest name. Entering the gues

3.10 Good ta




name is part of a larger, more meaningful activity, €8 booking the guest. Surprisingly
many tasks (use cases) seen in practice are defined on such a detailed, but
meaningless level. This also means that the number of use cases 18 much too high.

Check in a bus of tourists is a good task. Although checking in one of them may
be considered a closed task, the receptionist would feel that there is no time for a
break until all are dealt with. The small tasks form a single session to be
supported efficiently.

A stay at the hotel seems at first sight to be a strange task. It is not a task for the
receptionist, but if we look at the guestas a type of user, staying at the hotel is a
meaningful activity. Handling such activities is the whole purpose of the hotel. In
section 3.11 we shall look at this from the guest’s point of view and see how it gives
§ riseto business process re-engineering.

Change the guest’s name and address can be a closed task, for instance if a booked guest
phones and says that he has moved house and want the confirmation to be sent to
the new address. Change the booking and cancel the booking can also be separate closed
tasks. However, the three tasks are often done in the same session and should be
grouped into a single task description with optional sub-tasks like this:

Task: Change booking

Sub-tasks:

1 Find booking

2 Modify guest information (optional)

3 Cancel booking (optional)

ompleteness

How can we ensure that we identify all tasks? First of all, you need to interact with
users to learn about the tasks. Section 8.2 explains about using interviews,
observations, etc. to identify user tasks. Many developers try to guess the tasks by
means of logic and common sense, sitting in their offices, but they fail to really
understand what is going on-

However, even interviews and observations may not reveal all the tasks. How can
we ensure that all tasks have been covered? It is impossible to guarantee such
completeness, but here are some guidelines for getting close.

All domain events covered? An event is something that requests a service of our
system. If our “system” is the reception, a domain event requests a service from
reception. Examples are that the guest calls to make a booking, that a guest artive
etc. Each domain event gives rise to a User task. In this way we identify tasks for
booking, check-in, etc. You should make a list of the domain events and ensure
each has a corresponding task.




difficult, or performed under stress. Lt 1S important t0 1G€NUIy Mese vecaust ey
need careful support. When observing users, you may see the time-consuming and
frequent tasks, but rarely the difficult or stressful tasks; you have to ask about
them. In the hotel reception scenario above, you might only identify the busload of
tourists as a critical task if you asked about stressful and difficult situations.

At least as good as before? There is a difficult problem in this area: introducing a new
system may turn a non-critical task into a critical one. As an example, one
manufacturing company replaced their old IT system with a new COTS-based one. The
old system had a very sophisticated screen picture that gave an excellent overview of
pending repair jobs in the factory. However, the users were unaware that they used a
sophisticated screen. The new system only showed traditional lists of data records that
didn’t give the same overview, and it would be very expensive to create new
sophisticated screens. The old task using the repair list had not been stressful using the
old system, but it was using the new one. Although the analysts had catered for all
critical tasks, they had not realized that the new system would create a new critical task

This is one of the reasons the customer often wants a requirement like this:
R2 The product shall perform at least as well as our present product.

Suppliers strongly resist such requirements since it may be an immense task for
them to study the old system in the detail necessary to meet this requirement.
Verifying the requirement would be hard for the same reason. In this case, a skilled
analyst might have spotted the sophisticated screen when studying the users, and
identified it as something crucial.

Another technique that can help is to give the supplier a screen dump of all screen
in the system, thus allowing him to spot unusual screens. Goal-domain tracing ma
sometimes identify unnoticed, but critical, tasks. Section 8.7 explains the technique
and shows how it detected such a task in the shipyard.

CRUD check. CRUD stands for Create-Read-Update-Delete. In order to make a
CRUD check of the user tasks, you need a description of the data to be stored in th
system. (Any of the descriptions mentioned in Chapter 2 will do.) You now look a
each piece of data and ask yourself how that piece is created, read, updated, and
deleted, and whether some task description deals with it.

If no task description deals with it, you will probably have to add such a task.
Usually you identify some surprising new tasks in this way. In other cases there
may be good reasons for not adding the task, for instance because the data is
maintained in another system.

Some of the missing user tasks are often small tasks, such as updating the
customer’s address or deleting the customer. They may be grouped together
according to the session principle into larger maintenance tasks. Section 9.2.3
explains more about CRUD checks.

3.10 Good tas



I

Hard-to-catch activities Some activities may not be real work tasks oOr they may be
hard to identify, but they may still require product functionality. Examples are ad
hoc reports, games, surfing the Web without precise goals, supervisory functions
(e.g. checking that everything in the plant is running smoothly).

An example from the hotel system is the need for an estimate of staff numbers needed
in the next period (see section 3.4). Once this is suggested, the need is obvious, but
would you have identified that need? There is no clear task or external event dealing
with it, and there i probably no data in the database suggesting such a need.

We have no special remedy for identifying these activities. All we can suggest is

that you have to study the domain better to ensure that all such activities are

recognized; it is important to study all user groups: See Beyer and Holtzblatt (1998)

$ for good techniques in that area. Identifying the business goals and tracing them to
user activities and requirements may also help (see section 8.7).

New tasks may sometimes be created when the new product is introduced. Jan C.
Clausen (personal communication) has for instance pointed out that when automatic
workflow is introduced, a new task is created; the task of manually sorting out all
the electronic documents that don't find a receiver in the automated way.




