

4 Requirements Prioritization

Patrik Berander and Anneliese Andrews

Abstract: This chapter provides an overview of techniques for prioritization of
requirements for software products. Prioritization is a crucial step towards making
good decisions regarding product planning for single and multiple releases. Vari-
ous aspects of functionality are considered, such as importance, risk, cost, etc. Pri-
oritization decisions are made by stakeholders, including users, managers, devel-
opers, or their representatives. Methods are given how to combine individual
prioritizations based on overall objectives and constraints. A range of different
techniques and aspects are applied to an example to illustrate their use. Finally,
limitations and shortcomings of current methods are pointed out, and open re-
search questions in the area of requirements prioritization are discussed.

Keywords: Requirements analysis, software product planning, requirements pri-
oritization, decision support, trade offs.

4.1 Introduction

In everyday life, we make many decisions, e.g. when buying a DVD-player, food,
a telephone, etc. Often, we are not even conscious of making one. Usually, we do
not have more than a couple of choices to consider, such as which brand of mus-
tard to buy, or whether to take this bus or the next one. Even with just a couple of
choices, decisions can be difficult to make. When having tens, hundreds or even
thousands of alternatives, decision-making becomes much more difficult.

One of the keys to making the right decision is to prioritize between different al-
ternatives. It is often not obvious which choice is better, because several aspects
must be taken into consideration. For example, when buying a new car, it is rela-
tively easy to make a choice based on speed alone (one only needs to evaluate
which car is the fastest). When considering multiple aspects, such as price, safety,
comfort, or luggage load, the choice becomes much harder. When developing soft-
ware systems, similar trade-offs must be made. The functionality that is most im-
portant for the customers might not be as important when other aspects (e.g. price)
are factored in. We need to develop the functionality that is most desired by the
customers, as well as least risky, least costly, and so forth.

Prioritization helps to cope with these complex decision problems. This chapter
provides a description of available techniques and methods, and how to approach
a prioritization situation. The chapter is structured as follows: First, an overview
of the area of prioritization is given (Section 4.2). This is followed by a presenta-
tion and discussion of different aspects that could be used when prioritizing (Sec-

pba
Text Box
in Engineering and Managing Software Requirements, edited by A. Aurum and C. Wohlin, Springer Verlag

tion 4.3). Next, some prioritization techniques and characteristics are discussed
(Section 4.4), followed by a discussion of different stakeholders’ situations that af-
fect prioritization in Section 4.5. Section 4.6 discusses additional issues that arise
when prioritizing software requirements and Section 4.7 provides an example of a
prioritization. Section 4.8 discusses possible future research questions in the area.
Finally, Section 4.9 summarizes the chapter.

4.2 What is Requirements Prioritization?

Complex decision-making situations are not unique to software engineering. Other
disciplines, such as psychology, and organizational behavior have studied deci-
sion-making thoroughly [1]. Classical decision-making models have been mapped
to various requirements engineering activities to show the similarities [1]. Chapter
12 in this book provides a comprehensive overview of decision-making and deci-
sion support in requirements engineering. Current chapter primarily focuses on re-
quirements prioritization, an integral part of decision-making [49]. The intention is
to describe the current body of knowledge in the requirements prioritization area.

The quality of a software product is often determined by the ability to satisfy the
needs of the customers and users [7, 53]. Hence, eliciting (Chapter 2) and specify-
ing (Chapter 3) the correct requirements and planning suitable releases with the
right functionality is a major step towards the success of a project or product. If
the wrong requirements are implemented and users resist using the product, it does
not matter how solid the product is or how thoroughly it has been tested.

Most software projects have more candidate requirements than can be realized
within the time and cost constraints. Prioritization helps to identify the most valu-
able requirements from this set by distinguishing the critical few from the trivial
many. The process of prioritizing requirements provides support for the following
activities (e.g. [32, 55, 57, 58]):
• for stakeholders to decide on the core requirements for the system.
• to plan and select an ordered, optimal set of software requirements for imple-

mentation in successive releases.
• to trade off desired project scope against sometimes conflicting constraints such

as schedule, budget, resources, time to market, and quality.
• to balance the business benefit of each requirement against its cost.
• to balance implications of requirements on the software architecture and future

evolution of the product and its associated cost.
• to select only a subset of the requirements and still produce a system that will

satisfy the customer(s).
• to estimate expected customer satisfaction.
• to get a technical advantage and optimize market opportunity.
• to minimize rework and schedule slippage (plan stability).
• to handle contradictory requirements, focus the negotiation process, and resolve

disagreements between stakeholders (more about this in Chapter 7).

• to establish relative importance of each requirement to provide the greatest
value at the lowest cost.

The list above clearly shows the importance of prioritizing and deciding what
requirements to include in a product. This is a strategic process since these deci-
sions drive the development expenses and product revenue as well as making the
difference between market gain and market loss [1]. Further, the result of prioriti-
zation might form the basis of product and marketing plans, as well as being a
driving force during project planning. Ruhe et al. summarize this as: “The chal-
lenge is to select the ‘right’ requirements out of a given superset of candidate re-
quirements so that all the different key interests, technical constraints and prefer-
ences of the critical stakeholders are fulfilled and the overall business value of the
product is maximized” [48].

Of course, it is possible to rectify incorrect decisions later on via change man-
agement (more about change impact analysis in Chapter 6), but this can be very
costly since it is significantly more expensive to correct problems later in the de-
velopment process [5]. Frederick P. Brooks puts it in the following words: “The
hardest single part of building a software system is deciding precisely what to
build. […] No other part of the work so cripples the resulting system if done
wrong. No other part is more difficult to rectify later.” [10]. Hence, the most cost
effective way of developing software is to find the optimal set of requirements
early, and then to develop the software according to this set. To accomplish this, it
is crucial to prioritize the requirements to enable selection of the optimal set.

Besides the obvious benefits presented above, prioritizing requirements can
have other benefits. For example, it is possible to find requirements defects (e.g
misjudged, incorrect, and ambiguous requirements) since requirements are ana-
lyzed from a perspective that is different from that taken during reviews of re-
quirements [33].

Some authors consider requirements prioritization easy [55], some regard it of
medium difficulty [57], and some regard prioritization as one of the most complex
activities in the requirements process, claiming that few software companies have
effective and systematic methods for prioritizing requirements [40]. However, all
these sources consider requirements prioritization a fundamental activity for pro-
ject success. At the same time, some text books about requirements engineering
(e.g [9, 47]) do not discuss requirements prioritization to any real extent.

There is no “right” requirements process and the way of handling requirements
differs greatly between different domains and companies [1]. Further, require-
ments are typically vaguer early on and become more explicit as the understanding
of the product grows [50]. These circumstances imply that there is no specific
phase where prioritization is made, rather, it is performed throughout the devel-
opment process (more about this in Section 4.6.2) [13, 38]. Hence, prioritization is
an iterative process and might be performed at different abstraction levels and
with different information in different phases during the software lifecycle.

Prioritization techniques can roughly be divided into two categories: methods
and negotiation approaches. The methods are based on quantitatively assigning
values to different aspects of requirements while negotiation approaches focus on
giving priorities to requirements by reaching agreement between different stake-

holders [39]. Further, negotiation approaches are based on subjective measures
and are commonly used when analyses are contextual and when decision variables
are strongly interrelated. Quantitative methods make it easier to aggregate differ-
ent decision variables into an overall assessment and lead to faster decisions [15,
50]. In addition, one must be mindful of the social nature of prioritization. There is
more to requirements prioritization than simply asking stakeholders about priori-
ties. Stakeholders play roles and should act according to the goals of that role, but
they are also individuals with personalities and personal agendas. Additionally,
many organizational issues like power etc. need to be taken into account. Ignoring
such issues can raise the risk level for a project. Negotiation and goal modeling
are described in detail in Chapter 7 and 9, respectively, while this chapter focuses
primarily on quantitative methods for prioritizing requirements.

4.3 Aspects of Prioritization

Requirements can be prioritized taking many different aspects into account. An
aspect is a property or attribute of a project and its requirements that can be used
to prioritize requirements. Common aspects are importance, penalty, cost, time,
and risk. When prioritizing requirements based on a single aspect, it is easy to de-
cide which one is most desirable (recall the example about the speed of a car).
When involving other aspects, such as cost, customers can change their mind and
high priority requirements may turn out to be less important if they are very ex-
pensive to satisfy [36]. Often, the aspects interact and changes in one aspect could
result in an impact on another aspect [50]. Hence, it is essential to know what ef-
fects such conflicts may have, and it is vital to not only consider importance when
prioritizing requirements but also other aspects affecting software development
and satisfaction with the resulting product. Several aspects can be prioritized, and
it may not be practical to consider them all. Which ones to consider depend on the
specific situation, and a few examples of aspects suitable for software projects are
described below. Aspects are usually evaluated by stakeholders in a project (man-
agers, users, developers, etc.)

4.3.1 Importance

When prioritizing importance, the stakeholders should prioritize which require-
ments are most important for the system. However, importance could be an ex-
tremely multifaceted concept since it depends very much on which perspective the
stakeholder has. Importance could for example be urgency of implementation, im-
portance of a requirement for the product architecture, strategic importance for the
company, etc. [38]. Consequently, it is essential to specify which kind of impor-
tance the stakeholders should prioritize in each case.

4.3.2 Penalty

It is possible to evaluate the penalty that is introduced if a requirement is not ful-
filled [57]. Penalty is not just the opposite of importance. For example, failing to
conform to a standard could incur a high penalty even if it is of low importance for
the customer (i.e. the customer does not get excited if the requirement is fulfilled).
The same goes for implicit requirements that users take for granted, and whose ab-
sence could make the product unsuitable for the market.

4.3.3 Cost

The implementation cost is usually estimated by the developing organization.
Measures that influence cost include: complexity of the requirement, the ability to
reuse existing code, the amount of testing and documentation needed, etc. [57].
Cost is often expressed in terms of staff hours (effort) since the main cost in soft-
ware development is often primarily related to the number of hours spent. Cost (as
well as time, cf. Section 4.3.4.) could be prioritized by using any of the techniques
presented in Section 4.4, but also by simply estimating the actual cost on an abso-
lute or normalized scale.

4.3.4 Time

As can be seen in the section above, cost in software development is often related
to number of staff hours. However, time (i.e. lead time) is influenced by many
other factors such as degree of parallelism in development, training needs, need to
develop support infrastructure, complete industry standards, etc. [57].

4.3.5 Risk

Every project carries some amount of risk. In project management, risk manage-
ment is used to cope with both internal (technical and market risks) and external
risks (e.g. regulations, suppliers). Both likelihood and impact must be considered
when determining the level of risk of an item or activity [44]. Risk management
can also be used when planning requirements into products and releases by identi-
fying risks that are likely to cause difficulties during development [41, 57]. Such
risks could for example include performance risks, process risks, schedule risks
etc. [55]. Based on the estimated risk likelihood and risk impact for each require-
ment [1], it is possible to calculate the risk level of a project.

4.3.6 Volatility

Volatility of requirements is considered a risk factor and is sometimes handled as
part of the risk aspect [41]. Others think that volatility should be analyzed sepa-
rately and that volatility of requirements should be taken into account separately in
the prioritization process [36]. The reasons for requirements volatility vary, for
example: the market changes, business requirements change, legislative changes
occur, users change, or requirements become more clear during the software life
cycle [18, 50]. Irrespective of the reason, volatile requirements affect the stability
and planning of a project, and presumably increase the costs since changes during
development increase the cost of a project (see more about this issue in Chapter
6). Further, the cost of a project might increase because developers have to select
an architecture suited to change if volatility is known to be an issue [36].

4.3.7 Other Aspects

The above list of aspects has been considered important in the literature but it is
by no means exhaustive. Examples of other aspects are: financial benefit, strategic
benefit, competitors, competence/resources, release theme, ability to sell, etc. For
a company, we suggest that stakeholders develop a list of important aspects to use
in the decision-making. It is important that the stakeholders have the same inter-
pretation of the aspects as well as of the requirements. Studies have shown that it
is hard to interpret the results if no guidelines about the true meaning of an aspect
are present [37, 38].

4.3.8 Combining Different Aspects

In practice, it is important to consider multiple aspects before deciding if a re-
quirement should be implemented directly, later, or not at all. For example, in the
Cost-Value approach, both value (importance) and cost are prioritized to imple-
ment those requirements that give most value for the money [30]. The Planning
Game (from XP) uses a similar approach when importance, effort (cost), and risks
are prioritized [2]. Further, importance and stability (volatility) are suggested as
aspects that should be used when prioritizing while others suggest that dependen-
cies also must be considered [12, 36] (more about dependencies in Chapter 5). In
Wiegers’ approach, the relative value (importance) is divided by the relative cost
and the relative risk in order to determine the requirements that have the most fa-
vorable balance of value, cost, and risk [57]. This approach further allows differ-
ent weights for different aspects in order to favor the most important aspect (in the
specific situation).

There are many alternatives of combining different aspects. Which aspects to
consider depend very much on the specific situation and it is important to know
about possible aspects and how to combine them efficiently to suit the case at
hand.

4.4 Prioritization Techniques

The purpose of any prioritization is to assign values to distinct prioritization ob-
jects that allow establishment of a relative order between the objects in the set. In
our case, the objects are the requirements to prioritize. The prioritization can be
done with various measurement scales and types. The least powerful prioritization
scale is the ordinal scale, where the requirements are ordered so that it is possible
to see which requirements are more important than others, but not how much more
important. The ratio scale is more powerful since it is possible to quantify how
much more important one requirement is than another (the scale often ranges from
0 - 100 percent). An even more powerful scale is the absolute scale, which can be
used in situations where an absolute number can be assigned (e.g. number of
hours). With higher levels of measurement, more sophisticated evaluations and
calculations become possible [20].

Below, a number of different prioritization techniques are presented. Some
techniques assume that each requirement is associated with a priority, and others
group requirements by priority level. When examples are given, importance is
used as the aspect to prioritize even though other aspects can be evaluated with
each of the techniques. It should be noted that the presented techniques focus spe-
cifically on prioritization. Numerous methods exist that use these prioritization
techniques within a larger trade-off and decision making framework (e.g.
EVOLVE [24], Cost-Value [30] and Quantitative Win-Win [48]).

4.4.1 Analytical Hierarchy Process (AHP)

The Analytic Hierarchy Process (AHP) is a systematic decision-making method
that has been adapted for prioritization of software requirements [45, 51]. It is
conducted by comparing all possible pairs of hierarchically classified require-
ments, in order to determine which has higher priority, and to what extent (usually
on a scale from one to nine where one represents equal importance and nine repre-
sents absolutely more important). The total number of comparisons to perform
with AHP are n × (n-1)/2 (where n is the number of requirements) at each hierar-
chy level, which results in a dramatic increase in the number of comparisons as
the number of requirements increases. Studies have shown that AHP is not suit-
able for large numbers of requirements [39, 42]. Researchers have tried to find
ways to decrease the number of comparisons (e.g. [26, 54]) and variants of the
technique have been found to reduce the number of comparisons by as much as 75
percent [31].

In its original form, the redundancy of the pair-wise comparisons allows a con-
sistency check where judgment errors can be identified and a consistency ratio can
be calculated. When reducing the number of comparisons, the number of redun-
dant comparisons are also reduced, and consequently the ability to identify incon-
sistent judgments [33]. When using other techniques (explained below) a consis-
tency ratio is not necessary since all requirements are directly compared to each
other and consistency is always ensured. Some studies indicate that persons who

prioritize with AHP tend to mistrust the results since control is lost when only
comparing the requirements pair-wise [34, 39]. The result from a prioritization
with AHP is a weighted list on a ratio scale. More detailed information about AHP
can be found in [30], [51] and [52].

4.4.2 Cumulative Voting, the 100-Dollar Test

The 100-dollar test is a very straightforward prioritization technique where the
stakeholders are given 100 imaginary units (money, hours, etc.) to distribute be-
tween the requirements [37]. The result of the prioritization is presented on a ratio
scale. A problem with this technique arises when there are too many requirements
to prioritize. For example, if you have 25 requirements, there are on average four
points to distribute for each requirement. Regnell et al. faced this problem when
there were 17 groups of requirements to prioritize [45]. In the study, they used a
fictitious amount of $100,000 to have more freedom in the prioritizations. The
subjects in the study were positive about the technique, indicating the possibility
to use amounts other than 100 units (e.g. 1,000, 10,000 or 1 000,000). Another
possible problem with the 100-dollar test (especially when there are many re-
quirements) is that the person performing the prioritization miscalculates and the
points do not add up to 100 [3]. This can be prevented by using a tool that keeps
count of how many points have been used.

One should only perform the prioritization once one the same set of require-
ments, since the stakeholders might bias their evaluation the second time around if
they do not get one of their favorite requirements as a top priority. In such a situa-
tion, stakeholders could put all their money on one requirement, which might in-
fluence the result heavily. Similarly, some clever stakeholders might put all their
money on a favorite requirement that others do not prioritize as highly (e.g. Mac
compatibility) while not giving money to requirements that will get much money
anyway (e.g. response time). The solution could be to limit the amount spent on
individual requirements [37]. However, the risk with such an approach is that
stakeholders may be forced to not prioritize according to their actual priorities.

4.4.3 Numerical Assignment (Grouping)

Numerical assignment is the most common prioritization technique and is sug-
gested both in RFC 2119 [8] and IEEE Std. 830-1998 [29]. The approach is based
on grouping requirements into different priority groups. The number of groups can
vary, but in practice, three groups are very common (e.g. [37, 55]). When using
numerical assignment, it is important that each group represents something that
the stakeholders can relate to (e.g. critical, standard, optional), for a reliable classi-
fication. Using relative terms such as high, medium, and low will confuse the
stakeholders [57]. This seems to be especially important when there are stake-
holders with different views of what high, medium and low means. A clear defini-
tion of what a group really means minimizes such problems.

A further potential problem is that stakeholders tend to think that everything is
critical [36, 55]. If customers prioritize themselves, using three groups; critical,
standard, and optional, they will most likely consider 85 percent of the require-
ments as critical, 10 percent as standard, and 5 percent as optional [4, 57]. One
idea is to put restrictions on the allowed number of requirements in each group
(e.g. not less than 25 percent of the requirements in each group) [34]. However,
one problem with this approach is that the usefulness of the priorities diminishes
because the stakeholders are forced to divide requirements into certain groups
[32]. However, no empirical evidence of good or bad results with such restrictions
exists. The result of numerical assignment is requirements prioritized on an ordi-
nal scale. However, the requirements in each group have the same priority, which
means that each requirement does not get a unique priority.

4.4.4 Ranking

As in numerical assignment, ranking is based on an ordinal scale but the require-
ments are ranked without ties in rank. This means that the most important re-
quirement is ranked 1 and the least important is ranked n (for n requirements).
Each requirement has a unique rank (in comparison to numerical assignment) but
it is not possible to see the relative difference between the ranked items (as in
AHP or the 100-dollar test). The list of ranked requirements could be obtained in a
variety of ways, as for example by using the bubble sort or binary search tree algo-
rithms [33]. Independently of sorting algorithm, ranking seems to be more suitable
for a single stakeholder because it might be difficult to align several different
stakeholders’ views. Nevertheless, it is possible to combine the different views by
taking the mean priority of each requirement but this might result in ties for re-
quirements which this method wants to avoid.

4.4.5 Top-Ten Requirements

In the top-ten requirements approach, the stakeholders pick their top-ten require-
ments (from a larger set) without assigning an internal order between the require-
ments. This makes the approach especially suitable for multiple stakeholders of
equal importance [36]. The reason to not prioritize further is that it might create
unnecessary conflict when some stakeholders get support for their top priority and
others only for their third priority. One could assume that conflicts might arise
anyway if, for example, one customer gets three top-ten requirements into the
product while another gets six top-ten requirements into the product. However, it
is important to not just take an average across all stakeholders since it might lead
to some stakeholders not getting any of their top requirements [36]. Instead, it is
crucial that some essential requirements are satisfied for each stakeholder. This
could obviously result in a situation that dissatisfies all customers instead of satis-
fying a few customers completely. The main challenge in this technique is to bal-
ance these issues.

4.4.6 Which Prioritization Technique to Choose

Table 4.1 summarizes the presented prioritization techniques, based on measure-
ment scale, granularity of analysis, and level of sophistication of the technique.

Table 4. 1. Summary of Presented Techniques.
Technique Scale Granularity Sophistication
AHP Ratio Fine Very Complex
Hundred-dollar test Ratio Fine Complex
Ranking Ordinal Medium Easy
Numerical Assignment Ordinal Coarse Very Easy
Top-ten - Extremely Coarse Extremely Easy

A general advice is to use the simplest appropriate prioritization technique and
use more sophisticated ones when a more sensitive analysis is needed for resolv-
ing disagreements or to support the most critical decisions [42]. As more sophisti-
cated techniques generally are more time consuming, the simplest possible tech-
nique ensures cost effective decisions. The trade-off is to decide exactly how
“quick and dirty” the approach can be without letting the quality of the decisions
suffer. It should also be noted that there exist several commercial tools that facili-
tate the use of more sophisticated techniques (e.g. AHP) and that it is possible to
construct simple home-made tools (e.g. in spreadsheets) to facilitate the use of dif-
ferent prioritization techniques.

4.4.7 Combining Different Techniques

The techniques in Table 4.1 represent the most commonly referenced quantitative
prioritization techniques. It is possible to combine some of them to make prioriti-
zation easier or more efficient. Some combinations of the above techniques exist
and probably the best known example is Planning Game (PG) in eXtreme Pro-
gramming (XP) [2] (more about agile methods in requirements engineering in
Chapter 14). In PG, numerical assignment and ranking are combined by first di-
viding the different requirements into priority groups and then ranking require-
ments within each group [34]. Requirements triage is an approach where parallels
are drawn to medical treatment at hospitals [17]. Medical personnel divide victims
into three categories: those that will die whether treated or not, those who will re-
sume normal lives whether treated or not, and those for whom medical treatment
may make a significant difference. In requirements prioritization, there are re-
quirements that must be in the product (e.g. platform requirements), requirements
that the product clearly need not satisfy (e.g. very optional requirements), and re-
quirements that need more attention. This means that the requirements are as-
signed to one of three groups (numerical assignment) and requirements that need
more attention are prioritized by any of the other techniques (AHP, ranking, 100

points etc.). In this approach, not all requirements must be prioritized by a more
sophisticated technique, which decreases the effort.

The two examples above show that it is possible to combine different techniques
for higher efficiency or to make the process easier. Which method or combination
of methods is suitable often depends on the individual project.

4.5 Involved Stakeholders in the Prioritization Process

In Chapter 13, market-driven software development is discussed and similarities
and differences between market-driven and bespoke software development are
presented. As can be seen in Chapter 13, similarities and differences also apply
when prioritizing software requirements. In a bespoke project, only one or a few
stakeholders must be taken into consideration while everyone in the whole world
might serve as potential customers in market-driven development. Table 4.2 out-
lines some of the differences between market-driven and bespoke development
that affects requirements prioritization.

Table 4. 2. Differences between Market-driven and Bespoke Development [11].

Facet Bespoke Development Market-driven Development
Main stakeholder Customer organization Developing organization
Users Known or identifiable Unknown, may not exist until

product is on market
Distance to users Usually small Usually large
Requirements Conception Elicited, analyzed, vali-

dated
Invented (by market pull or tech-
nology push)

Lifecycle One release, then mainte-
nance

Several releases as long as there
is a market demand

Specific RE issues Elicitation, modeling,
validation, conflict resolu-
tion

Steady stream of requirements,
prioritization, cost estimating, re-
lease planning

Primary goal Compliance to specifica-
tion

Time-to-market

Measure of success Satisfaction, acceptance Sales, market share

As can be seen in Table 4.2, there are large differences between these two ex-
tremes and different projects have to consider different ways to handle, and hence
prioritize, requirements. Table 4.2 shows the two extremes in software develop-
ment; a real case probably falls somewhere in between. For example, it is possible
that a company delivers for a market, but the market is limited to a small number
of customers (e.g. telecommunication systems are only bought by telephone op-
erators). The discussion here focuses on three different “general” scenarios: one
customer, a number of “known” customers, and a mass-market.

4.5.1 One Customer

In a one customer situation, there is only one customer’s priorities that need to be
considered (from the customer/user perspective). Many of the present software
development processes are based on one customer and assume that this customer
is available throughout the project [11]. For example, eXtreme Programming has
an “on-site customer” as one of the core practices (the focus is on having one cus-
tomer even though this customer could represent a market) [2]. One important is-
sue to consider when having a one-customer situation is that the customer and the
end-user(s) are not always the same. In this case, the person who prioritizes and
the persons who will use the system may not have the same priorities [24]. Such
situations are of course undesirable since it may result in reduced use of the prod-
uct. In this case, it would be better to involve the end-users in prioritizing the re-
quirements since they are the ones who know what they need. For example, if the
customer is an employer, and the user is an employee of the company buying the
product, this may result in conflicts. It is possible to imagine features that are de-
sirable to an employer, but not an employee.

4.5.2 Several Known Customers

When having several customers, the issue of prioritization becomes more difficult
since the customers may have conflicting viewpoints and preferences [1]. This in-
troduces the challenge of drawing these different customer views together [38].
The ultimate goal in these situations is to create win-win conditions and make
every stakeholder a “winner” [6]. If one perspective is neglected the system might
be seen as a failure by one or several of the stakeholders [1]. Hence, it is of tre-
mendous importance that all stakeholders are involved in this process since the
success of the product ultimately is decided in this step. A discussion on how to
make trade-offs between different stakeholders is provided in Section 4.5.5.

4.5.3 Mass-Market

When developing for a mass-market, it is not possible to get all customers to pri-
oritize. When eliciting information for prioritization in a mass-market situation,
different sources exist [35]: internal records (e.g. shipments, sales records), mar-
keting intelligence (e.g. information from sales force, scientists), competitor intel-
ligence (e.g. information about competitors’ strategies, benchmarking competi-
tors’ products) and marketing research (e.g. surveys, focus groups). When
conducting marketing research, the sample must be representative for the intended
market segment (group of consumers with similar needs) [35]. For example, if de-
veloping products for large companies, it is meaningless to involve small compa-
nies in the focus groups or the surveys. Hence, it is very important to decide which
market segments should be the focus of the product before performing the prioriti-
zation.

The result from a prioritization for a mass-market product could provide a good
base for analyzing which requirements are high priorities for all different market
segments. By using this information, it is possible to identify which parts of a sys-
tem should be common for all market segments and which parts should be specifi-
cally developed for specific market segments. This way of dealing with require-
ments is valuable when developing software product lines [14].

One way of dealing with the problem that all possible users are not known or
accessible is to use the concept of ‘personas’ that originated in marketing and has
been used in system design [25]. These ‘personas’ are fictional persons, represent-
ing market segments. They have names, occupations, possessions, age, gender, so-
cioeconomic status, etc. They are based on and inspired by real people that are
supposed to use the developed product. This information is gathered from ethno-
graphies, market research, usability studies, interviews, observations, and so forth.
The intention is to help the developing organization focus the attention on ‘perso-
nas’ that the system is and is not designed for, and to give an understanding of
these target ‘personas’. Further, ‘personas’ enhance engagement and reality by
providing fictional users of the system. The developing organization can use the
‘personas’ in decision-making (and prioritization) by asking questions like: Why
are we building this feature (requirement)? Why are we building it like this? When
having such explicit but fictitious users of the system, the organization can get an
understanding of which choices the ‘personas’ would make in different situations.

4.5.4 Stakeholders Represented in the Prioritization

Since requirements can be prioritized from several different aspects, different
roles must also be involved in the prioritization process to get the correct views
(e.g. product managers prioritize strategic importance and project managers priori-
tize risks). At least three perspectives should always be represented: customers,
developers, and financial representatives [17]. Each of these stakeholders pro-
vides vital information that the other two may neglect or are unable to produce
since customers care about the user/customer value, developers know about the
technical difficulties, and financial representatives know and care for budgetary
constraints and risks [17]. Nevertheless, it is of course suitable to involve all per-
spectives (beside these three) that have a stake in the project or product.

4.5.5 Trade-Off between Different Stakeholders

In both market-driven and bespoke projects, there can be several different stake-
holders with different priorities and expectations of the system. How to make
trade-offs between several stakeholders with different priorities is an issue that is
commonly mentioned as a problem by product managers in software organiza-
tions. First, this could be a problem when having one or a few very strong stake-
holders since their wishes are often hard to neglect (i.e. when the big customer

says jump, the company jumps). Second, “squeaky wheel” customers often get
what they want [38, 58].

In such situations, it is important to have a structured way of handling different
stakeholders. Regnell et al. adjust the influence of each stakeholder by prioritize
for different aspects [45]. This can be done by weighting market segments based
on for example: revenue last year, profit last release, size of total market segment,
number of potential customers, etc. The weighting aspect depend on the strategy
most suitable in the current market phase ([43], cited in [45]). Priorities are then
used to weigh each stakeholder in the prioritization process. This approach is also
possible when dealing with specific stakeholders even though the aspects on
which the priorities are based might be different. The weighting of the stake-
holders could be performed in the same way as ordinary prioritization, and the
techniques described in Section 4.4 could be used to provide the weights (prefera-
bly the techniques based on a ratio scale since these will provide distances of im-
portance between the stakeholders).

4.6 Using Requirements Prioritization

Requirements prioritization needs to consider several different aspects, techniques,
and stakeholder situations. This section presents additional issues to consider and
ways of dealing with such issues.

4.6.1 Abstraction Level

Requirements are commonly represented at different levels of abstraction [23],
which causes problems when prioritizing requirements. One reason is that re-
quirements on higher abstraction levels tend to get higher priority in pair-wise
comparisons [39]. For example, if prioritizing requirements in a car, a lamp in the
dashboard cannot be compared with having a luggage boot. Most customers would
probably prefer a luggage boot over a lamp in the dashboard but if one had to
compare a lamp in the luggage boot and a lamp in the dashboard, the lamp in the
dashboard might have higher priority. Hence, it is really important that the re-
quirements are not mixed at different abstraction levels [57].

Deciding on the level of abstraction can be difficult and depend very much on
the number of requirements and their complexity. With a small number of re-
quirements, it might be possible to prioritize the requirements at a low level of ab-
straction while it might be a good idea to start with requirements at a high level
and prioritize lower levels within the higher levels later when having many re-
quirements to prioritize [57]. AHP supports this approach of decomposing re-
quirements into different hierarchical levels in order to decrease the number of
comparisons. In other cases, it might even be a good idea to just prioritize the high
level requirements, and then letting the subordinate requirements inherit the priori-

ties. If choosing this approach, it is important that all stakeholders are aware of
this inheritance [57].

Regnell et al. discuss the problem of having a lot of requirements to prioritize
[45]. They grouped the requirements to make the prioritization easier. The re-
quirements were divided into a low level (original requirements) and a higher
level (requirements were grouped based on relationships). This approach not only
reduces the number of requirements to prioritize but also deals with dependencies
of requirements [50]. Grouping requirements based on requirements dependencies
(e.g. which requirements must be implemented together) would make further
analysis of the requirements easier since requirements that are grouped together
would not compete for priorities (issues related to dependencies are further dis-
cussed in Chapter 5). According to the result of the study, forming coherent
groups was easy and the stakeholders successfully prioritized at both levels.

4.6.2 Reprioritization

When developing software products, it is likely that new requirements will arrive,
requirements are deleted, priorities of existing requirements change, or that the re-
quirements themselves change [24, 39]. Hence, it is of tremendous importance that
the prioritization process is able to deal with changing requirements and priorities
of already prioritized requirements. When prioritizations are on an ordinal (e.g.
ranking and numerical assignment) or absolute scale (estimating cost) this does
not introduce any major problems since the new or changed requirement just need
to be assigned a value, or a correct priority. Such iterations of the numerical as-
signment technique have been used successfully [17].

When using prioritization on a ratio scale (such as AHP), the situation becomes
more complex since all requirements should be compared to all others to establish
the correct relative priorities. However, it is possible to tailor this process by com-
paring new or modified requirements with certain reference requirements and
thereby estimating the relative value. For example, when using the 100-dollar test
it is possible to identify the two requirements with higher and lower ranking, and
then establish the relative value in comparison to these and normalize the weights
(of the complete requirements set). However, this means that the original process
is not followed and the result might differ from a complete reprioritization even
though the cost versus benefit of such a solution might be good enough. Cost and
benefit must be taken into consideration when choosing a prioritization technique.

Further, it is important to not forget that priorities of already implemented re-
quirements can change; especially non-functional requirements. Techniques such
as gap-analysis (see Section 4.6.5) could be successfully used to prioritize already
implemented requirements in order to take these into account in a reprioritization.

4.6.3 Non-Functional Requirements

Previously in this chapter, no differences in analyzing functional and non-
functional (quality attributes) requirements have been discussed. The previously
presented methods can be used with both kinds of requirements and sometimes it
is preferable to prioritize them together. Nevertheless, it is not always advisable to
prioritize functional and non-functional requirements together, for the same rea-
sons that requirements at different abstraction levels should not be prioritized to-
gether. Differences between functional and non-functional requirements include,
but are not limited to [36, 47, 56]:
• Functional requirements usually relate to specific functions while non-

functional requirements usually affect several functions (from a collection of
functions to the whole system).

• Non-functional requirements are properties that the functions or system must
have, implying that non-functional requirements are useless without functional
requirements.

• When implemented, functional requirements either work or not while non-
functional requirements often have a “sliding value scale” of good and bad.

• Non-functional requirements are often in conflict with each other, implying that
trade-offs between these requirements must be made.

Thus, it is not always possible or advisable to prioritize both types of require-
ments together. For example, if there is one functional requirement about a spe-
cific function and one non-functional requirement regarding performance, it could
be hard to prioritize between them. In such cases, it is possible to prioritize them
separately with the same or even with different techniques. Some techniques are
especially suitable for prioritizing non-functional requirements. One such ap-
proach (originating from marketing) is conjoint analysis where different product
alternatives are prioritized based on the definition of different attribute levels [22].
It should be noted that there does not seem to be a need to include all levels of all
attributes (e.g. faster response time is always preferable). Since trade-offs often
are present with such attributes (e.g. maintainability vs. performance), one idea is
to only include comparisons where trade-offs are taken into consideration.

4.6.4 Introducing Prioritization into an Organization

As with other technology transfer situations, it is recommended to start small with
one or a few of the practices (e.g. using numerical assignment to prioritize impor-
tance and cost) and then add more sophistication (and thereby complexity) as need
and knowledge increase. Since introducing and improving prioritization is a form
of process improvement, rules and guidelines for software process improvement
should be applied (e.g. changes should be done in small steps and should be tested
and adjusted accordingly [28]). A good idea could be to monitor future extensions
by measuring process adherence and satisfaction of the involved stakeholders
(both internally and externally). This way, it is possible to continuously measure

the process and thereby determine when the process gets too heavy by calculating
the cost versus benefit of each extension.

4.6.5 Evaluating Prioritization

Both for the reasons of improving and adjusting the prioritization process, and for
improving and adjusting a product, it is necessary to evaluate the result of prioriti-
zations in retrospect. For both purposes, it is important that information about the
priorities is kept since these provide the best information for analyzing both the
product and the process [38]. This includes information about both selected and
discarded requirements from a release [46]. When having access to this informa-
tion, it is possible to do post mortem analysis to evaluate if the correct require-
ments were selected and if they fulfilled the stakeholders’ expectations. If they did
not, it is possible to change the process and the product for subsequent prod-
ucts/releases to get better prioritizations and more satisfied stakeholders. One way
of evaluating if the correct priorities were assigned is through gap-analysis where
the ‘gap’ between perceived level of fulfillment of a requirement and the impor-
tance of the requirement is calculated [27]. The result shows how well each re-
quirement, or type of requirement, is fulfilled according to how important the
stakeholders think the requirements are. In this case, the requirements with the
largest gaps get the highest priorities for improvement (PFI) [27]. This makes it
possible to improve parts of the product with a low level of fulfillment, but it
could also be used to tune the process to avoid such situations again.

4.6.6 Using the Results of Requirements Prioritization

The results of a prioritization exercise must be used judiciously [39]. Dependen-
cies between requirements should be taken into consideration when choosing
which requirements to include. Dependencies could be related to cost, value,
changes, people, competence, technical precedence, etc. [16, 49]. Such dependen-
cies might force one requirement to be implemented before another, implying that
it is not possible to just follow the prioritization list (dependencies are further dis-
cussed in Chapter 5). Another reason for not being able to solely base the selected
requirements on the priority list is that when the priority list is presented to the
stakeholders, their initial priority might have emerged incorrectly [39]. This means
that when the stakeholders are confronted with the priority list, they want to
change priorities. This is a larger problem in techniques where the result is not
visible throughout the process (e.g. AHP).

The product may have some naturally built-in constraints. For example, projects
have constraints when it comes to effort, quality, duration, etc. [50]. Such con-
straints makes the selection of which requirements to include in a product more
complex than if the choice were solely based on the importance of each require-
ment. A common approach to make this selection is to propose a number of alter-
native solutions from which the stakeholders can choose the one that is most suit-

able based on all implicit context factors (e.g. [24, 38, 48, 50, 57]). By computer-
izing the process of selecting nominated solutions, it is possible to focus the stake-
holders’ attention on a relatively small number of candidate solutions instead of
wasting their time by discussing all possible alternatives [19]. In order to auto-
mate and to provide a small set of candidate solutions to choose from, it is neces-
sary to put some constraints on the final product. For example, there could be con-
straints that the product is not allowed to cost more than a specific amount, the
time for development is not allowed to exceed a limit, or the risk level is not al-
lowed to be over a specific threshold.

4.7 An Example of a Requirements Prioritization

To illustrate the different aspects, prioritization techniques, trade-offs between
stakeholders, and combinations of prioritization techniques and aspects, an exam-
ple of a prioritization situation is given. The method used in this example is influ-
enced by a model proposed by Wiegers but is tailored to fit this example [57]. The
example analyses 15 requirements (R1-R15) in a situation with three known cus-
tomers (see 4.5.2). The analysis is rather sophisticated to show different issues in
prioritization but still simple with a small amount of requirements. While many
more requirements are common in industry, it is easier to illustrate how the tech-
niques work on a smaller example. Each of the 15 requirements is prioritized ac-
cording to the different aspects presented in Section 4.3. Table 4.3 presents the as-
pects that are used in the example together with the method that is used to
prioritize the aspect and from which perspective it is prioritized.

Table 4. 3. Aspects to Prioritize.

Aspect Prioritization Technique Perspective
Strategic importance AHP Product Manager
Customer importance 100-dollar / Top-ten1 Customers
Penalty AHP Product Manager
Cost 100-dollar Developers
Time Numerical Assignment (7) Project Manager
Risk Numerical Assignment (3) Requirements Specialist
Volatility Ranking Requirements Specialist

As can be seen in Table 4.3, all prioritization techniques presented in Section

4.4 are used. However, two clarifications are in order. First, numerical assignment
for time (7) and risk (3) uses a different number of groups to show varying levels
of granularity. The customer importance is prioritized both by the top-ten tech-
nique and the 100-dollar technique depending how much time and cost the differ-
ent customers consider reasonable.

1 The top-ten technique is modified to a top-four technique in this example due to the lim-

ited number of requirements.

To make the prioritizations more effective, requirements are further refined.
First, requirements R1 and R2 are requirements that are absolutely necessary to
get the system to work at all. Hence, they are not prioritized by the customers but
they are estimated when it comes to cost, risk, etc. since R1 and R2 influence
these variables no matter what. This is a way of using the requirements triage ap-
proach presented in Section 4.4.7. Further, two groups of requirements have been
identified as having high dependencies (must be implemented together) and
should hence be prioritized together. Requirements R3, R4, and R5 are grouped
together as R345, and requirements R6 and R7 are grouped into R67.

The next step is to prioritize the importance of the requirements. In the case at
hand, the three known customers and the product manager prioritize the require-
ments. Furthermore, these four stakeholders are assigned different weights de-
pending on how important they are deemed by the company. This is done by using
the 100-dollar test to get the relative weights between the stakeholders (see Sec-
tion 4.5.5). Table 4.4 presents the result of the prioritization. In the table, the three
customers are denoted C1-C3 and the product manager is denoted PM.

Table 4. 4. Prioritization Results of Strategic and Customer Importance. Priority, P(RX) =
RPC1 × WC1 + RPC2 × WC2 + RPC3 × WC3 + RPPM × WPM, where RP is the requirement pri-
ority, and W is the weight of the stakeholder.

Requirement C1 (0.15) C2 (0.30) C3 (0.20) PM (0.35) Priority:
R8 0.25 0.24 0.16 0.15 0.19
R9 0.07 0.14 0.03 0.06
R10 0.25 0.05 0.13 0.29 0.18
R11 0.05 0.01 0.02 0.02
R12 0.16 0.04 0.01 0.06
R13 0.05 0.16 0.02 0.05
R14 0.25 0.02 0.10 0.10 0.10
R15 0.03 0.04 0.05 0.03
R345 0.04 0.18 0.17 0.11
R67 0.25 0.29 0.04 0.16 0.19
Total: 1 1 1 1 1

As can be seen in this table, the different stakeholders have different priorities,

and it is possible to combine their different views to an overall priority. The
weights (within parenthesis after each stakeholder) represent the importance of
each customer and in this case, the product manager is assigned the highest weight
(0.35). This is very project dependent. In this case, the mission of this product re-
lease is to invest in long-term requirements and attract new customers at the same
time as keeping existing ones. As also can be seen, C1 used the top-ten technique
and hence the priorities were evenly divided between the requirements that this
customer regarded as most important. The list to the far right presents the final
priority of the requirements with the different stakeholders and their weights taken
into consideration. This calculation is possible since a ratio scale has been used in-
stead of an ordinal scale.

The next step is to prioritize based on the other aspects. In this case, the Priority
from Table 4.4 is used to express Importance in Table 4.5. It should also be noted
that requirements R1 and R2 (absolutely necessary) have been added in Table 4.5.

Table 4. 5. Descending Priority List Based on Importance and Penalty (IP). IP(RX) = RPI ×
WI + RPP × WP, where RP is the requirement priority, and W is the weight of Importance
(I) and Penalty (P).

Requirement Importance
(0.7)

Penalty
(0.3)

IP Cost Time Risk Volatility

R1 1 1 1 0.11 3 1 2
R2 1 1 1 0.13 4 2 1
R8 0.19 0.2 0.20 0.07 1 3 7
R67 0.19 0.09 0.16 0.10 6 3 5
R10 0.18 0.01 0.13 0.24 2 3 11
R14 0.10 0.16 0.12 0.01 1 3 10
R345 0.11 0.02 0.08 0.03 3 2 8
R9 0.06 0.12 0.08 0.09 3 2 9
R15 0.03 0.17 0.08 0.05 5 1 4
R12 0.06 0.06 0.06 0.11 4 2 6
R11 0.02 0.14 0.06 0.02 3 1 3
R13 0.05 0.03 0.05 0.04 7 1 12
Total / Median: 3 3 3 1 3 2

Table 4.5 shows a prioritized list of the requirements (based on IP). With this in-

formation there are two options: 1) pick prioritized items from the top of the list
until the cost constraints are reached, 2) analyze further based on other prioritized
aspects, if prioritizations of additional aspects are available. The example has two
major constraints: 1) the project is not allowed to cost more than 65% of the total
cost of the elicited requirements, and 2) the median risk level of the requirements
included is not allowed to be higher than 2.5. Based on this, we first try to include
the requirements with the highest IP. The result of this is presented in Table 4.6
where the list was cut when the sum of costs reached 65% of the total cost of elic-
ited requirements.

Table 4. 6. Selected Requirements Based on IP and Cost.

Requirement IP Cost IP/Cost Time Risk Volatility
R1 1 0.11 9.09 3 1 2
R2 1 0.13 7.69 4 2 1
R8 0.20 0.07 2.80 1 3 7
R67 0.16 0.1 1.59 6 3 5
R10 0.13 0.24 0.54 2 3 11
Total / Median: 2.48 0.65 21.71 3 3

Table 4.6 shows that we managed to fit within the cost constraints but could not

satisfy the risk constraint. As a result, the project becomes too risky. Instead, an-

other approach is taken to find a suitable collection of requirements. In this ap-
proach, we take the IP/Cost ratio into consideration. This shows which require-
ments provide most IP at the least cost. In this case, we try to set up a limit of only
selecting requirements that have an IP/Cost-ratio higher than 1.0. The result is pre-
sented in Table 4.7.

Table 4. 7. Selected Requirements Based on Cost and IP/Cost Ratio.

Requirement IP Cost IP/Cost Time Risk Volatility
R1 1 0.11 9.09 3 1 2
R2 1 0.13 7.69 4 2 1
R8 0.20 0.07 2.80 1 3 7
R67 0.16 0.1 1.59 6 3 5
R14 0.12 0.01 11.70 1 3 10
R345 0.08 0.03 2.71 3 2 8
R15 0.08 0.05 1.50 5 1 4
R11 0.06 0.02 2.94 2 1 3
R13 0.05 0.04 1.17 7 1 12
Total / Median: 2.73 0.56 41.19 3 2

Table 4.7 shows the cost constraints are still met (even nine percent less cost)

while also satisfying the risk constraint. Comparing tables 4.6 and 4.7 shows that
the IP-value of the second candidate solution is higher which indicates that the
customers are more satisfied with the product and the IP/Cost ratio is almost dou-
bled. The second candidate solution satisfies 91 percent (2.73/3) of the IP aspect,
compared to 83 percent in the first candidate solution. The fact that the second al-
ternative costs less and is less risky also favors this choice. Nevertheless, the
above example is not optimal since cost was constrained at 0.65 and other combi-
nations of requirements may be more optimal for the selection.

This type of release planning is known in operational research as the binary
knapsack problem [13]: maximize value when the selection is bounded by an up-
per limit. However, the difference between a classical knapsack problem and the
problem faced above is that release planning is a “wicked problem” [13]. This
means that an optimal solution may not exist, that every release planning is
unique, and that no objective measure of success exists, etc. [13]. In addition, the
values of the aspects in the above example are estimates and subjective measures
in comparison to objective measures such a length, weight, and volume. Instead of
finding the optimal set, different alternative solutions should be discovered and the
alternative that seems most suitable should be chosen [13]. This implies that the
purpose with prioritization is not to come up with a list of final requirements, but
rather to provide support for good decisions. In comparison to the above example,
real projects generally have more requirements, and more complex dependencies
[13]. However, this example was meant to show how different aspects can be used
to handle trade-offs between different (sometimes conflicting) aspects. It is also
possible, as illustrated, to fine-tune an existing technique or method to suit a com-
pany specific situation.

4.8 Future Research in the Area of Requirements Prioritization

Requirements engineering is a field with much research activity. One journal, sev-
eral workshops, and one large annual international conference are devoted to re-
quirements engineering. Nevertheless, the existing work in the area of require-
ments prioritization is limited even though the need for prioritizing software
requirements is acknowledged in the research literature [32]. Especially, few em-
pirical validations of different prioritization techniques and methods exist. Instead,
it is common that new techniques and methods are introduced and they seem to
work well, but the scalability of the approach has not been tested (e.g. [48]). How-
ever, there exist some studies that have evaluated different prioritization tech-
niques (e.g. [33, 34]). Unfortunately, such empirical evaluations most often focus
on toy systems with a few requirements (seldom more than 20). This is not really
providing any evidence of whether one technique is better than another even
though some preliminary evidence could be found. One of the few industry stud-
ies, for example, found that AHP was not usable with more than 20 requirements
since the number of comparisons became too many for the practitioners [39].
Hence, more studies are needed when prioritization methods are used in industry.

A further question that seldom is addressed in requirements prioritization re-
search is the question of how much sophistication is actually needed. Many tech-
niques and methods are developed and they become more and more complex with
the goal to provide more help for practitioners but the results are seldom used in
industry. Instead, professionals use simple methods such as numerical assignment.
Practitioners live in a different environment than experimental subjects (often stu-
dents) and are more limited by time and cost constraints [4]. Hence, an important
question to answer is how much sophistication (and thereby complexity) is actu-
ally necessary and desirable by practitioners?

The above issues lead to another open question about when a technique or
method is suitable. Existing empirical studies seldom discuss factors such as com-
pany size, time-to-market limitations, number of stakeholders, domain, etc. In-
stead, focus is on whether a technique or method is better than another one. A
more sound approach would be to test different approaches in various environ-
ments to get some understanding when different prioritization techniques, aspects,
etc. are suitable. In [21] a framework for evaluating pair programming is sug-
gested and independent (e.g. technique), dependent (e.g. quality), and context
variables (e.g. type of task) are proposed for evaluating programming techniques.
A similar framework for requirements prioritization would be beneficial.

Another important question in the area of requirements prioritization concerns
dependencies between requirements. Dependencies are not covered in this chapter
since Chapter 5 discusses this in detail. Nevertheless, the impact of dependencies
can be tremendous. For example, prioritization techniques (such as AHP) assume
that requirements are independent even though we know that they seldom are [46].
We need to find better ways to handle dependencies in an efficient way.

As could be seen in Section 4.6.3, functional and non-functional requirements
are very different even though they have a serious impact on each other. Prioritiz-

ing these two entirely together or separately might not be the best solution. Ap-
proaches where prioritizations of functional and non-functional could be com-
bined in an efficient way are necessary. Different methods that seem suitable for
prioritizing non-functional requirements are available (e.g. Conjoint Analysis [22],
and Quality Grid [36]) and it would be interesting to evaluate these empirically in
industrial settings. Further, finding ways to combine such approaches with ap-
proaches more directed to functional requirements would be a challenge.

4.9 Summary

This chapter has presented a number of techniques, aspects, and other issues that
should be thought of when performing prioritizations. These different parts to-
gether form a basis for systematically prioritizing requirements during software
development. The result of prioritizations suggests which requirements should be
implemented, and in which release. Hence, the techniques could be a valuable
help for companies to get an understanding of what is important and what is not
for a project or a product. As with all evaluation methods, the results should be in-
terpreted and possibly adjusted by knowledgeable decision-makers rather than
simply accepted as a final decision.

References

1. Aurum A, Wohlin C (2003) The Fundamental Nature of Requirements Engineering
Activities as a Decision-Making Process. Information and Software Technology
45(14): 945-954

2. Beck K (1999) Extreme Programming Explained. Addison-Wesley, Upper Saddle
River

3. Berander P, Wohlin C (2004) Differences in Views between Development Roles in
Software Process Improvement – A Quantitative Comparison. Proceedings of the 8th
International Conference on Empirical Assessment in Software Engineering (EASE
2004). IEE, Stevenage, pp 57-66

4. Berander P (2004) Using Students as Subjects in Requirements Prioritization. Proceed-
ings of the 2004 International Symposium on Empirical Software Engineering
(ISESE’04). IEEE Computer Society, Los Alamitos, pp 167-176

5. Boehm BW (1981) Software Engineering Economics. Prentice Hall, Englewood Cliffs
6. Boehm BW, Ross R (1989) Theory-W Software Project Management: Principles and

Examples. IEEE Transactions on Software Engineering 15(7):902-916
7. Bergman B, Klefsjö B (2003) Quality from Customer Needs to Customer Satisfaction.

Published by Studentlitteratur AB, Lund
8. Bradner S (1997) RFC 2119. Internet <http://www.ietf.org/rfc/rfc2119.txt> (24 No-

vember 2004)
9. Bray IK (2002) An Introduction to Requirements Engineering. Pearson Education,

London

10. Brooks FP (1995) The Mythical Man-Month: Essays on Software Engineering. Addi-
son-Wesley Longman, Boston

11. Carlshamre P (2001) A Usability Perspective on Requirements Engineering – From
Methodology to Product Development. Ph.D. thesis, Linköping Institute of Technol-
ogy

12. Carlshamre P, Sandahl K, Lindvall M, Regnell B, Natt och Dag J (2001) An Industrial
Survey of Requirements Interdependencies in Software Release Planning. Proceedings
of the Fifth IEEE International Symposium on Requirements Engineering (RE’01).
IEEE Computer Society, Los Alamitos, pp 84-91

13. Carlshamre P (2002) Release Planning in Market-Driven Software Product Develop-
ment: Provoking an Understanding. Reguirements Engineering 7(3):139-151

14. Clements P, Northrop L (2002) Software Product Lines – Practices and Patterns. Addi-
son-Wesley, Upper Saddle River

15. Colombo E, Francalanci C (2004) Selecting CRM Packages Based on Architectural,
Functional, and Cost Requirements: Empirical Validation of a Hierarchical Ranking
Model. Requirements Engineering 9(3):186-203

16. Dahlstedt Å, Persson A (2003) Requirements Interdependencies – Moulding the State
of Research into a Research Agenda. Proceedings of the Ninth International Workshop
on Requirements Engineering: Foundation for Software Quality (REFSQ ’03). Univer-
sität Duisburg-Essen, Essen, pp. 71-80

17. Davis AM (2003) The Art of Requirements Triage. IEEE Computer 36(3):42-49
18. Ecklund EF, Delcambre LML, Freiling MJ (1996) Change Cases: Use Cases that Iden-

tify Future Requirements. Proceedings of the 11th ACM SIGPLAN Conference on Ob-
ject-Oriented Programming, Systems, Languages, and Applications (OOPSLA ’96).
ACM, USA, pp. 342-358

19. Feather MS, Menzies T (2002) Converging on the Optimal Attainment of Require-
ments. Proceedings of the IEEE Joint International Conference on Requirements Engi-
neering (RE’02). IEEE Computer Society, Los Alamitos, pp. 263-270

20. Fenton, NE, Pfleeger SL (1997) Software Metrics – A Rigorous and Practical Ap-
proach, 2nd Edition. PWS Publishing Company, Boston

21. Gallis H, Arisholm E, Dybå T (2003) An Initial Framework for Research on Pair Pro-
gramming. Proceedings of the 2003 International Symposium on Empirical Software
Engineering (ISESE’03). IEEE Computer Society, Los Alamitos, pp.132-142

22. Giesen, J, Völker A (2002) Requirements Interdependencies and Stakeholders Prefer-
ences. Proceedings of the IEEE Joint International Conference on Requirements Engi-
neering (RE’02). IEEE Computer Society, Los Alamitos, pp 206-209

23. Gorschek T (2004) Software Process Assessment & Improvement in Industrial Re-
quirements Engineering. Licentiate Thesis, Blekinge Institute of Technology

24. Greer D, Ruhe G (2004) Software Release Planning: an Evolutionary and Iterative Ap-
proach. Information and Software Technology 46(4):243-253

25. Grudin J, Pruitt J (2002) Personas, Participatory Design and Product Development: An
Infrastructure for Engagement. Participation and Design Conference (PDC2002).
Computer Professionals for Social Responsibility, Palo Alto, pp. 144-161

26. Harker PT (1987) Incomplete Pairwise Comparisons in the Analytic Hierarchy Proc-
ess. Mathematical Modelling 9(11):837-848

27. Hill N, Brierly J, MacDougall R (1999) How to Measure Customer Satisfaction.
Gower Publishing, Hampshire

28. Humphrey WS (1989) Managing the Software Process. Addison-Wesley, USA

29. IEEE Std 830-1998 (1998) IEEE Recommended Practice for Software Requirements
Specifications. IEEE Computer Society, Los Alamitos

30. Karlsson J, Ryan K (1997) A Cost-Value Approach for Prioritizing Requirements.
IEEE Software 14(5):67-74

31. Karlsson J, Olsson S, Ryan K (1997) Improved Practical Support for Large-Scale Re-
quirements Prioritizing. Requirements Engineering 2(1):51-60

32. Karlsson J (1998) A Systematic Approach for Prioritizing Software Requirements.
Ph.D. Thesis, Linköping Institute of Technology

33. Karlsson J, Wohlin C, Regnell B (1998) An Evaluation of Methods for Prioritizing
Software Requirements. Information and Software Technology 39(14-15):939-947

34. Karlsson L, Berander P, Regnell B, Wohlin C (2004) Requirements Prioritisation: An
Experiment on Exhaustive Pair-Wise Comparisons versus Planning Game Partitioning.
Proceedings of the 8th International Conference on Empirical Assessment in Software
Engineering (EASE 2004). IEE, Stevenage, pp. 145-154

35. Kotler P, Armstron G, Saunders J, Wong V (2002) Principles of Marketing, 3rd Euro-
pean Edition. Pearson Education, Essex

36. Lausen S (2002) Software Requirements – Styles and Techniques. Pearson Education,
Essex

37. Leffingwell D, Widrig D (2000) Managing Software Requirements – A Unified Ap-
proach. Addison-Wesley, Upper Saddle River

38. Lehtola L, Kauppinen M, Kujala S (2004) Requirements Prioritization Challenges in
Practice. Proceedings of 5th International Conference on Product Focused Software
Process Improvement, Lecture Notes in Computer Science (vol. 3009), Springer-
Verlag, Heidelberg, pp. 497-508

39. Lehtola L, Kauppinen M (2004) Empirical Evaluation of Two Requirements Prioritiza-
tion Methods in Product Development Projects, Proceedings of the European Software
Process Improvement Conference (EuroSPI 2004), Springer-Verlag, Berlin Heidel-
berg, pp. 161-170

40. Lubars M, Potts C, Richter C (1993) A Review of the State of Practice in Require-
ments Modeling. Proceedings of IEEE International Symposium on Requirements En-
gineering, IEEE Computer Society, Los Alamitos, pp. 2-14

41. Maciaszek LA (2001) Requirements Analysis and System Design – Developing In-
formation Systems with UML. Addison Wesley, London

42. Maiden NAM, Ncube C (1998) Acquiring COTS Software Selection Requirements.
IEEE Software 15(2):46-56

43. Moore G (1991) Crossing the Chasm. HarperCollins, New York
44. Nicholas JM (2001) Project Management for Business and Technology – Principles

and Practice, 2nd Edition. Prentice Hall, Upper Saddle River
45. Regnell B, Höst M, Natt och Dag J, Beremark P, Hjelm T (2001) An Industrial Case

Study on Distributed Prioritisation in Market-Driven Requirements Engineering for
Packaged Software. Requirements Engineering 6(1):51-62

46. Regnell B, Paech B, Aurum A, Wohlin C, Dutoit A, Natt och Dag J (2001) Require-
ments Mean Decisions! – Research Issues for Understanding and Supporting Decision-
Making in Requirements Engineering. First Swedish Conference on Software Engi-
neering Research and Practise (SERP’01): Proceedings, Blekinge Institute of Technol-
ogy, Ronneby, pp. 49-52

47. Robertson S, Robertson J (1999) Mastering the Requirements Process. ACM Press,
London

48. Ruhe G, Eberlein A, Pfahl D (2002) Quantitative WinWin – A New Method for Deci-
sion Support in Requirements Negotiation. Proceedings of the 14th International Con-
ference on Software Engineering and Knowledge Engineering (SEKE’02), ACM
Press, New York, pp. 159-166

49. Ruhe G (2003) Software Engineering Decision Support - A New Paradigm for Learn-
ing Software Organizations. Advances in Learning Software Organization, Lecture
Notes in Computer Science (vol. 2640), Springer-Verlag, pp. 104-115

50. Ruhe G, Eberlein A, Pfahl D (2003) Trade-off Analysis for Requirements Selection.
International Journal of Software Engineering and Knowledge Engineering 13(4): 345-
366

51. Saaty TL (1980) The Analytic Hierarchy Process. McGraw-Hill, New York
52. Saaty TL, Vargas LG (2001) Models, Methods, Concepts & Applications of the Ana-

lytic Hierarchy Process. Kluwer Academic Publishers, Norwell
53. Schulmeyer GG, McManus JI (1999) Handbook of Software Quality Assurance, 3rd

Edition. Prentice Hall, Upper Saddle River
54. Shen Y, Hoerl AE, McConnell W (1992) An Incomplete Design in the Analytical Hi-

erarchy Process. Mathematical Computer Modelling 16(5):121-129
55. Sommerville I, Sawyer P (1997) Requirements Engineering – A Good Practice Guide.

John Wiley and Sons, Chichester
56. Sommerville I (2001) Software Engineering, 6th Edition. Pearson Education, London
57. Wiegers K (1999) Software Requirements. Microsoft Press, Redmond
58. Yeh AC (1992) REQUirements Engineering Support Technique (REQUEST) – A

Market Driven Requirements Management Process. Proceedings of Second Sympo-
sium of Quality Software Development Tools. IEEE Computer Society, Piscataway,
pp. 211-223

Bio Data

Patrik Berander is a Ph.D. student in Software Engineering at the School of Engi-
neering at Blekinge Institute of Technology in Sweden. He received his degree of
Master of Science with a major in Software Engineering - specialized in Manage-
ment in 2002. His research interests are requirements engineering in general and
decisions related to requirements and products in particular. Further research in-
terests include software product management, software quality, economic issues in
software development, and software process management.

Dr. Anneliese Amschler Andrews is the Huie Rogers Endowed Chair in Software
Engineering at Washington State University. Dr. Andrews is the author of a text
book and over 130 articles in the area of Software Engineering, particularly soft-
ware testing and maintenance. Dr. Andrews holds an MS and PhD from Duke
University and a Dipl.-Inf. from the Technical University of Karlsruhe. She served
as Editor in Chief of the IEEE Transactions on Software Engineering. She has also
served on several other editorial boards including the IEEE Transactions on Reli-
ability, the Empirical Software Engineering Journal, the Software Quality Journal,
the Journal of Information and Software Technology, and the Journal of Software
Maintenance. She was Director of the Colorado Advanced Software Institute from

1995 to 2002. CASI's mission was to support technology transfer research related
to software through collaborations between industry and academia.

