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Markov chain Monte Carlo without likelihoods
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Many stochastic simulation approaches for generating observa-
tions from a posterior distribution depend on knowing a likelihood
function. However, for many complex probability models, such
likelihoods are either impossible or computationally prohibitive to
obtain. Here we present a Markov chain Monte Carlo method for
generating observations from a posterior distribution without the
use of likelihoods. It can also be used in frequentist applications, in
particular for maximum-likelihood estimation. The approach is
illustrated by an example of ancestral inference in population
genetics. A number of open problems are highlighted in the
discussion.

One of the basic problems in Bayesian statistics is the
computation of posterior distributions. We imagine data D
generated from a model M determined by parameters 6, the
prior density of which is denoted by m(60). We assume unless
otherwise stated that the data are discrete. The posterior
distribution of interest is f(6|D), which is given by

f(6] D) = P(D|6)m(6)/P(D), (1]

where P(D) = [ P(D|0)m(0)d0 is the normalizing constant.

In most scientific contexts, explicit formulae for such posterior
densities are few and far between, and we usually resort to
stochastic simulation to generate observations from f. Perhaps
the simplest approach for this is the rejection method:

Al. Generate 6 from (+).
A2. Accept 0 with probability 4 = P(D|6); return to AL

Accepted observations have distribution f( 0| D) (cf. ref. 1). The
computations can often be accelerated if an upper bound ¢ for
P(D|6) is known; & then is replaced by A /c. If § denotes the
maximum-likelihood estimator of 6, we could take ¢ = P(D]9).

There are many variations on this theme. Of particular
relevance here is the case in which the likelihood P(D|6) cannot
be computed explicitly. One obvious approach then is:

B1. Generate 0 from (-).
B2. Simulate D" from the model M with parameter 6.
B3. Accept 6 if D' = D; return to BI.

The success of this approach depends on the fact that the
underlying stochastic model M is easy to simulate. This approach
can be useful when computation of the likelihood is possible but
time-consuming.

The practicality of algorithms such as these depends crucially
on the size of P(D), because the probability of accepting an
observation is proportional to P(D). In cases where the accep-
tance rate is too small, one might resort to approximate methods
such as:

C1. Generate 6 from (+).

C2. Simulate D" from the model M with parameter 6.
C3. Calculate the distance p(D, D) between D’ and D.
C4. Accept 6 if p = g; return to CI.

This approach requires selection of a suitable metric p as well as
a choice of . As ¢ — = it generates observations from the prior.
If ¢ = 0, an observation D’ is accepted only if D' = D, and then
accepted observations come from the density f( 8] D). The choice
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of ¢ therefore reflects a tension between computability and
accuracy. The method is still honest in that, for a given p and e,
we are generating independent and identically distributed ob-
servations from f(0|p(D, D') = ).

When D is high-dimensional or continuous, this approach can
be impractical as well, and then the comparison of D’ with D can
be made by using lower-dimensional summaries of the data. The
motivation for this approach is that if the set of statistics S = (51,
..., S,) is sufficient for 6, in that P(D|S, ) is independent of
0, then f(0|D) = f(0|S). The normalizing constant P(S) is
typically larger than P(D), resulting in more acceptances. In
practice it will be hard, if not impossible, to identity a suitable
set of sufficient statistics, and we then might resort to a more
heuristic approach. Thus we seek to use knowledge of the
particular problem at hand to suggest summary statistics that
capture information about 6. With these statistics in hand, we
have the following approximate Bayesian computation scheme
for data D summarized by S:

D1. Generate 6 from (+).

D2. Simulate D’ from stochastic model M with parameter 6, and
compute the corresponding statistics S'.

D3. Calculate the distance p(S, S') between S and S'.

D4. Accept 6 if p = &, and return to DI.

There are several advantages to these rejection methods,
among them the fact that they are usually easy to code, they
generate independent observations (and thus can use embar-
rassingly parallel computation), and they readily provide
estimates of Bayes factors that can be used for model com-
parison. On the other hand, sampling from the prior in
complex probability models is unlikely to be sensible when the
posterior is a long way from the prior. Later we discuss Markov
chain Monte Carlo (MCMC) algorithms and provide an
alternative MCMC approach that does not require the eval-
uation of likelihoods.

Examples from Evolutionary Biology

Examples of these algorithms have appeared in the evolutionary
genetics literature. For example, inference problems in molec-
ular population genetics can be described as follows. We sample
the molecular variation present at several loci in a population,
obtaining a discrete variation data set D (DNA sequence data,
for example). Inference and estimation for population parame-
ters of interest such as mutation rates, recombination rates,
migration rates, and demographic parameters are then based on
a stochastic model M for D.

The coalescent (2) provides a commonly used modeling
framework in this setting. The coalescent is a stochastic model
for the ancestral relationships between the sampled sequences.
In the absence of recombination, these ancestral relationships
form a binary branching tree. Because the tree is not observed,
inference for parameters of interest can be thought of as a
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missing data problem (for reviews see, for example, refs. 3
and 4).

Examples of algorithm A are given by Tavaré et al. (5), of
algorithm C by Plagnol and Tavaré (6), and of algorithm D by Fu
and Li (7), Weiss and von Haeseler (8) and Pritchard et al. (9),
among others. Beaumont et al. (10) describe an interesting
generalization of the rejection method in which all observations
(6, S") generated by the first two steps of algorithm D are used
in a local-linear regression framework to generate observations
that follow more closely the required distribution f(6|D). This
reference also contains a number of other examples of these
approaches.

MCMC Methods

We begin by recalling the Metropolis—Hastings algorithm (11,
12) for generating observations from f(6| D) using output from
a Markov chain.

El. If now at 0, propose a move to 6" according to a transition
kernel g(6 — 0').
E2. Calculate

P(D|6")m(6)g(6' — 6
(D[6")m(6")g( )>- 2]

h:m4Lmemwm0+a>

E3. Move to 6’ with probability 4, else remain at 6; go to E1.

Under suitable regularity conditions, f is the stationary and
limiting distribution of the chain. The practical complexities of
implementing MCMC are described by Gilks et al. (13) for
example. In concert with dramatically increased computing
power, this approach has revolutionized Bayesian statistics over
the last 15 years (see, for example, refs. 14 and 15).

One comparison that can be made between algorithms A and
E is the way in which they use the likelihood P(D|6). In the
rejection method, the comparison is with ¢ = P(D|d) (a global
comparison), whereas in the Metropolis—Hastings algorithm
P(D|6) is compared to P(D|0') (a local comparison). One
therefore expects that MCMC approaches accept observations
more frequently, but the price paid for higher acceptance rates
is dependent outcomes.

Approximating the Likelihood Ratio. The theme of this note is
simulation of observations from a posterior when likelihoods
are either hard or impossible to calculate. The first such
approach is to approximate the likelihood ratio P(D|6")/
P(D|6) appearing in the acceptance probability in E3. This can
be done by estimating each term in the ratio separately. For a
given value of 0, estimate P(D|6) by simulation of B data sets
Dy, . .., Dp from the model M with parameter 6, and form the
point estimate

, 1<
P(DI0) = 5 2 1(D; = D),

j=1

where [(A4) is 1 if A is true and 0 otherwise. More sophisticated
estimates might also be used depending on the details of the
specific application. For example, an estimate of P(D|6) might
be precomputed and stored over a grid of 6 values.

This method also applies when the underlying data are
continuous, in which case the likelihood ratio is a ratio of
densities. In this case the B simulated observations can be used
in a kernel density-estimation routine, and the density at the
point D is returned. This approach can also be made dynamic,
in that B need not be fixed ahead of time. See Diggle and Gratton
(16) and the references contained therein for applications of this
approach in frequentist settings. Of course, the same methods
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can be applied for the approaches described in C and D above.
An example appears later.

MCMC Without Likelihoods. In this section we describe an MCMC
approach that is the natural analog of algorithm B in that no
likelihoods are used or estimated in its implementation. It is
based on the following steps:

F1. If now at 6 propose a move to 6" according to a transition
kernel g(6 — 0').

F2. Generate D’ using model M with parameters 6'.

F3. If D' = D, go to F4, and otherwise stay at 6 and return to
FI.

F4. Calculate

, : m(0)q(0" — 9))

h =h(6, ') = min <1, (0)q(6 — 0) )

F5. Accept 0" with probability 2 and otherwise stay at 6, then
return to F1.

The stationary distribution of the chain is indeed f(0|D), as is
demonstrated below.

Theorem. f(6| D) is the stationary distribution of the chain.
Proof: Denote the transition mechanism of the chain by (6 —
0"), and (without loss of generality) choose 6’ # 0 satisfying

w(0")g(6' — 0) _
w(0)q6 > 0) 3]

Then
f6|D)r(6 — 0') = f(6| D)g(6 — 6" )P(D|6")(6, 0')

_ P(D|o)m(0)
T P(D)

m(6)g(6" — 0)}
m(6)g(6 — 0')

{q(a — 0)P(D|6)

P(Dl0")w(0")
=W{CJ(0 — 0)P(D|6)}

=f(0'|D)g(6" — O)P(D|O)A(6', 0)
= f(0'| D)r(0 — ).

The argument when the ratio on the left of Eq. 3 is >1 is
analogous. Thus f( 0| D) satisfies the detailed balance equations,
which implies that indeed (0] D) is the stationary distribution of
the chain, and the proof is complete.

Assuming that the chain is ergodic (which occurs under the
same conditions that make the chain in algorithm E ergodic), we
can now simulate observations having approximately the distri-
bution (6| D). We also mention two special cases:

1. If q(6' — 6) = q(06 — 0') then & depends only on the prior.

2. If g is reversible with respect to 7 [so that m(0)q(0 — 0") =
(0" )g(0" — 0) for all 0 # 0'], then 4 = 1 and the algorithm
reduces to a rejection method with correlated outputs.

For the reasons discussed earlier this approach also may be
impractical, in which case we can resort to the equivalent of
algorithms C and D by replacing step F3 above with:

F3'. If p(D', D) = &, go to F4, and otherwise stay at 6 and
return to F1,

in which case the stationary distribution is f(6|p(D’, D) < &), or
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F3". If p(S’, §) = &, go to F4, and otherwise stay at 6 and return
to FI,

in which case the stationary distribution is f(6|p(S’, S) = e).
These methods can also be used when D is continuous.

An Example from Population Genetics

To illustrate these ideas, we use an example of ancestral infer-
ence from population genetics. The data are a sample of n = 63
Nuu Chah Nulth mtDNA sequences obtained by Ward et al. (17).
These sequences, of 360 bp in length, come from hypervariable
region I of the mitochondrial control region. The observed base
frequencies in the sequences are (w4, 7g, 7, mr) = (0.330,
0.112, 0.337, 0.221), there are H = 28 distinct sequences, and
V' = 26 base positions showed variation in the sample.

These data have been discussed in the coalescent framework
by Markovtsova et al. (18) and Markovtsova et al. (19). The
posterior distribution of the (rescaled) mutation parameter 6 and
the height I of the coalescent tree of the sample [i.e., the time
to the most recent common ancestor (MRCA) of the sample]
were found by MCMC methods using the full sequence data; we
use these results to calibrate those of the likelihood-free ap-
proach. Further details of the coalescent model and the mutation
model and its parameters may be found there. In particular, we
use Felsenstein’s mutation model (cf. ref. 20) with a transition-
transversion parameter of k = 100.

Implementing Algorithm F

The simplest form in which we could implement our method
would be to generate a new tree topology and set of mutations
each time we propose a new mutation rate. However, in this
example it is not effective to do so, because this rarely leads to
accepted parameter values. Instead we augment the state space
to include information about the tree topology and occurrence
of mutations on that topology to increase the acceptance rate.
See ref. 15, for example, for further information about data
augmentation and auxiliary variable approaches. Intuitively
speaking, the inclusion of more information within the state
space makes it easier to make more local moves in that state
space and therefore improve the acceptance rate. (Once the
algorithm has found a state that it can accept, it is able to explore
small changes to that state that will be more likely a priori to also
lead to states with a high acceptance probability.) This leads to
a higher acceptance rate, but the tradeoff is that the state space
becomes more complex, and therefore it is slower to move within
that space.

We implemented the following approach. Our state space
includes both the tree topology and the times of coalescence
events on that topology. Furthermore, we characterize muta-
tions by the time at which they occur, the branch on which they
happen (i.e., the individuals whose genome is modified by this
mutation), and their location on the genome. We additionally
include the number of mutations occurring between two
coalescent events. We did not record their location on the tree,
which is chosen uniformly among the branches of the tree when
we simulate the data. This was the minimal set of information
to include in the state space to lead to a reasonable acceptance
rate.

Given that state space, we update as follows: the topology of
the tree is updated by using a scheme described by Markovtsova
et al. (18). We update times between coalescence events by
adding a Gaussian random variable to the existing time. We
update the mutation rate by adding a uniform random variable
to the old rate. The new mutation rate, as well as the updated
times, define a new intensity for the Poisson random variable that
determines the number of mutations between each pair of
coalescence events. This number was updated by using the
following basic properties of a Poisson random variable:

15326 | www.pnas.org/cgi/doi/10.1073/pnas.0306899100

Table 1. Comparison of the three approaches using S = V, € = 2

Estimated No
Rejection* likelihood*® likelihood*

Acceptance rate 3.0% 50.6% 15.1%
TMRCA T

1st quartile 1.07 1.11 1.08

Mean 1.74 1.82 1.75

Median 1.48 1.55 1.53

3rd quartile 2.14 2.23 2.19
Mutation rate 6

1st quartile 0.015 0.014 0.015

Mean 0.019 0.019 0.019

Median 0.018 0.018 0.018

3rd quartile 0.023 0.022 0.022

*Algorithm D; based on 2,000 observations. Estimated SEM of T = 0.02.

Based on likelihoods estimated from B = 1,000 simulations; 1,000 observa-
tions after sampling every 200 steps. Estimated SEM of T = 0.03.

*Algorithm F; based on 1,000 observations after sampling every 10,000 steps.
Estimated SEM of T = 0.03.

1. If « < «' and Poisson («) and Poisson (o’ — «) are
independent Poisson random variables with the indicated
means, then their sum is Poisson (a').

2. If & > ' and from a Poisson («) number of events we keep
each with probability a'/«, then the number of kept events is
Poisson (a').

When a new mutation occurs we choose its location on the
genome and tree uniformly at random. When the number of
mutations decreases, we randomly select the necessary number
of mutations and erase them. There are many variations of this
scheme. For example, one could also keep track of the genotype
of the MRCA or of some information about the mutations
(which are transversions, for example). The underlying principle
is that the more information included in the state space, the
easier it is to simulate the exact data but the harder it is to move
effectively around the state space.

Results

Here we compare the rejection, estimated likelihood, and like-
lihood-free MCMC approaches in two settings: using the sum-
mary statistic § = V" and using the summary statistic S = (V, H).
We also discuss the effects of varying the tolerance e.

Using the Number of Variable Sites. We begin by summarizing the

data by using the number V' of variable (or segregating) sites.
Data sets are accepted if |/ — 26| < e. In Table 1, three methods

Table 2. Comparison of effects of £ using algorithm Fand S = V

g = 2% e=1% e =0"

Acceptance rate 15.1% 11.1% 4.8%
TMRCA T

1st quartile 1.08 1.12 1.14

Mean 1.75 1.77 1.82

Median 1.52 1.52 1.55

3rd quartile 2.19 2.15 2.26
Mutation rate 6

1st quartile 0.015 0.015 0.015

Mean 0.019 0.019 0.019

Median 0.018 0.018 0.018

3rd quartile 0.022 0.022 0.022

*Based on 1,000 observations after sampling every 10,000 steps.
TBased on 1,000 observations after sampling every 50,000 steps.
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Table 3. Comparison of the three approaches using S = (V, H), ¢

=2
Estimated No
Rejection* likelihood® likelihood*
Acceptance rate 0.0008% 16.9% 0.2%
TMRCA T
1st quartile 0.51 0.50 0.54
Mean 0.69 0.67 0.70
Median 0.64 0.63 0.66
3rd quartile 0.81 0.80 0.81
Mutation rate 6
1st quartile 0.024 0.025 0.024
Mean 0.029 0.031 0.029
Median 0.028 0.030 0.028
3rd quartile 0.033 0.035 0.033

*Algorithm D; based on 1,000 observations. Estimated SEM of T = 0.01.

tBased on likelihoods estimated from B = 200simulations; 1,000 observations
after sampling every 100 steps. Estimated SEM of T = 0.01.

*Algorithm F; based on 1,000 observations after sampling every 50,000 steps.
Estimated SEM of T = 0.01.

are compared in the case ¢ = 2. As expected, the methods
produce comparable results for the height 7" of the coalescent
tree of the sample and the mutation parameter 0. The methods
have quite different acceptance rates. In Table 2, the effects of
varying the parameter ¢ are shown for the no-likelihood ap-
proach. Under the coalescent prior, the mean height of the
coalescent tree is 1.97 units; the posterior means do not differ
substantially from this. The posterior for 7 using the full data D
can be found by an MCMC approach (cf. table 3, column 2, in
ref. 19). The posterior mean of 7 was estimated to be 0.68. We
note the substantial difference between the results using § = V/
and the “true” result. This suggests that summarizing the data by
using only V'results in a loss of information. The effects of adding
the number of haplotypes to this summary are explored in the
next section.

Using the Number of Variable Sites and Haplotypes. We report
inference about 6 and T using the summary statistic S = (V, H).
In this case a simulated data set was kept if
|H—-28|=e, |V—-26=e.

Results are given in Table 3 for the case ¢ = 2. We note that
the MCMC method has a substantially higher acceptance rate
than the rejection method, although it is still quite low. The
estimated-likelihood approach is at the edge of feasibility in
this case, but it does have a good acceptance rate. The key
feature of these results is that the posterior based on these
summary statistics is very close to the full posterior; addition
of the summary statistic H has moved the posterior mean from
~1.75 to 0.69, in comparison with the full posterior mean
of 0.68.

In Table 4 we present results for the no-likelihood approach
for various values of . In the cases € = 1 and 0, the rejection
method and the estimated-likelihood approach are not feasi-
ble. This example shows that the MCMC method that uses no
likelihoods can provide a good approximation to the “right”
answer in a case where rejection methods are too time-
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Table 4. Comparison of effects of ¢ using algorithm F and S =

(V. H)

e = 2% e=1% e =0"

Acceptance rate 0.2% 0.04% 0.005%
TMRCA T

1st quartile 0.54 0.49 0.46

Mean 0.70 0.64 0.59

Median 0.66 0.60 0.55

3rd quartile 0.81 0.74 0.69
Mutation rate 6

1st quartile 0.024 0.025 0.026

Mean 0.029 0.030 0.030

Median 0.028 0.030 0.031

3rd quartile 0.033 0.035 0.034

*Based on 1,000 observations after sampling every 50,000 steps.
fBased on 1,000 observations after sampling every 200,000 steps.

consuming to use. We sound a note of caution, however: The
effects on the posterior of summarizing the data can be
unexpected. See ref. 10 for further examples in the coalescent
context.

To illustrate how the likelihood-free MCMC approach works,
we compared the approximate Bayesian computation results
with the true result obtained for the full data. Typically this will
not be possible; the point is to use this approach when there are
no feasible alternatives. Further research is required to identify
good methods for combining summary statistics to obtain better
estimates of the posterior.

Discussion

We have described a number of approaches for simulating
observations from posterior distributions when likelihoods are
hard or impossible to compute. Problems such as this arise
frequently in scientific applications, where it is often the case that
a probability model for the data can be simulated rapidly but is
sufficiently complicated that explicit formulae for the appropri-
ate probability distributions are intractable. In particular, we
provided an MCMC approach that does not require the use of
likelihood ratios in its implementation. The development of
more sophisticated MCMC methods that do not use likelihoods
is clearly of practical importance.

In practice, these methods might not work well for complex
data, and it is often useful to replace the full data by a number
of judiciously chosen summary statistics. The resulting approx-
imate Bayesian computation allows us to explore scenarios that
are intractable if the full data are used. Motivated by consider-
ations of sufficiency, the choice of summary statistics is crucial.
There is scope for research on practical methods for identifying
approximately sufficient statistics (cf. refs. 21 and 22), and
for assessing the adequacy of the approximate posterior
distributions.
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