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Abstract Approximate Bayesian Computation (ABC) meth-
ods, also known as likelihood-free techniques, have ap-
peared in the past ten years as the most satisfactory approach
to intractable likelihood problems, first in genetics then in a
broader spectrum of applications. However, these methods
suffer to some degree from calibration difficulties that make
them rather volatile in their implementation and thus render
them suspicious to the users of more traditional Monte Carlo
methods. In this survey, we study the various improvements
and extensions brought on the original ABC algorithm in
recent years.

Keywords Likelihood-free methods · Bayesian statistics ·
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1 Introduction

Conducting a Bayesian analysis in situations where the like-
lihood function �(θ |y) is not available raises a computa-
tional issue. The likelihood may be unavailable
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– for mathematical reasons: it is not available in closed from
as a function of θ , or

– for computational reasons: it is too expensive too calcu-
late.

In some specific settings, the likelihood is expressed as an
intractable multidimensional integral

�(θ |y) =
∫

��(θ |y,u)du,

where y ∈ D ⊆ R
n is observed, u ∈ R

p a latent vector and
θ ∈ R

d the parameter of interest. For instance, when facing
coalecent models in population genetics (see, e.g. Tavaré et
al. 1997), y is the genotypes of the present sample, while
u stands for their genealogical tree and the genotypes of
their ancestors. In the particular set-up of hierarchical mod-
els with partly conjugate priors, it may be that the corre-
sponding conditional distributions can be simulated and this
property leads to a Gibbs sampler (Gelfand and Smith 1990).
Such a decomposition is not available in general and there
is no generic way to implement an MCMC algorithm like
the Metropolis–Hastings algorithm (see, e.g., Robert and
Casella 2004; Marin and Robert 2007). Typically, the in-
crease in dimension induced by the data augmentation from
θ to u may be such that the convergence properties of the
corresponding MCMC algorithms are too poor for the algo-
rithm to be considered in practice.

In others situations, the normalizing constant of the like-
lihood Zθ is unknown

�(θ |y) = �1(θ |y)/Zθ .

This is typically the case of Gibbs random fields used to
model the dependency within spatially correlated data, with
applications in epidemiology and image analysis, among
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others (e.g. Rue and Held 2005). For such models, a solu-
tion relying on the simulation of pseudo-samples has been
proposed by Møller et al. (2006). However the dependency
of this solution on a pseudo-target distribution makes it dif-
ficult to calibrate (Cucala et al. 2009; Friel and Pettitt 2008)
in general settings.

Bayesian inference thus faces a large class of settings
where the likelihood function is not completely known,
e.g. �(θ |y) = �1(θ |y)�2(θ) with �2 unknown, and where ex-
act simulation from the corresponding posterior distribution
is impractical or even impossible. Such settings call for prac-
tical if cruder approximations methods. In the past, Laplace
approximations (Tierney and Kadane 1986) and variational
Bayes solutions (Jaakkola and Jordan 2000) have been ad-
vanced for such problems. However, Laplace approxima-
tions require some analytic knowledge of the posterior dis-
tribution, while variational Bayes solutions replace the true
model with another pseudo-model which is usually much
simpler and thus misses some of the features of the original
model.

The ABC methodology, where ABC stands for approxi-
mate Bayesian computation, was mentioned as early as 1984
through a pedagogical and philosophical argument in Rubin
(1984). It offers an almost automated resolution of the dif-
ficulty with models which are intractable but can be simu-
lated from. It was first proposed in population genetics by
Tavaré et al. (1997), who introduced Approximate Bayesian
Computation methods as a rejection technique bypassing
the computation of the likelihood function via a simulation
from the corresponding distribution. The exact version of the
method can only be implemented in a small range of cases.
Pritchard et al. (1999) produce a generalisation based on an
approximation of the target. We study here the foundations
as well as the implementation of the ABC method, with il-
lustrations from time series.

This survey describes the genesis of the ABC approach
and its justifications (Sect. 2), the calibration of the method
(Sect. 3), recent sequential improvements (Sect. 4), post-
processing of ABC outputs (Sect. 5), and the specific appli-
cation of ABC to model choice (Sect. 6). The illustrations
of the ABC methodology are based on the posteriors of the
MA(2) and MA(1) models for which the true posterior dis-
tribution can be computed; the impact of the ABC approx-
imation can thus be assessed. We do not cover the increas-
ingly wide array of applications of ABC here; see Csillèry
et al. (2010a) for a survey of implementations of ABC in ge-
nomics and ecology. Neither do we address the controversy
raised by Templeton (2008, 2010) about the lack of validity
of the ABC approach in statistical testing. Answers to those
criticisms are provided in Beaumont et al. (2010), Csillèry
et al. (2010b), Berger et al. (2010), among others.

2 Genesis of the ABC approach and justifications

Prehistory Rubin (1984) advances a visionary statement
that ‘Bayesian statistics and Monte Carlo methods are ide-
ally suited to the task of passing many models over one
dataset’. Furthermore, he produces in this paper a descrip-
tion of the first ABC algorithm. Followed by Tavaré et al.
(1997), the original ABC algorithm is in fact a special case
of an accept-reject method (see, e.g., Robert and Casella
2004), where the parameter θ is generated from the prior
π(θ) and the acceptance is conditional on the correspond-
ing simulation of a sample being ‘almost’ identical to the
(true) observed sample, which is denoted y throughout this
paper. For the original algorithm given below (and solely for
this algorithm), we suppose that y takes values in a finite or
countable set D.

Algorithm 1 Likelihood-free rejection sampler 1
for i = 1 to N do

repeat
Generate θ ′ from the prior distribution π(·)
Generate z from the likelihood f (·|θ ′)

until z = y
set θ i = θ ′,

end for

It is straightforward to show that the outcome
(
θ1,

θ2, . . . , θN

)
resulting from this algorithm is an iid sample

from the posterior distribution since

f (θ i ) ∝
∑
z∈D

π(θ i )f (z|θ i )Iy(z) = π(θ i )f (y|θ i )

∝ π(θ i |y).

Rubin (1984) does not promote this simulation method in
situations where the likelihood is not available but rather ex-
hibits it as an intuitive way to understand posterior distri-
butions from a frequentist perspective, because parameters
from the posterior are more likely to be those that could have
generated the observed data. (The issue of the zero proba-
bility of the exact equality between simulated and observed
data in continuous settings is not addressed in the original
paper, presumably because the very notion of a ‘match’ be-
tween simulated and observed data is not precisely defined.)

The first ABC In a population genetics setting, Pritchard et
al. (1999) extend the above algorithm to the case of contin-
uous sample spaces, producing the first genuine ABC algo-
rithm, defined as follows



Stat Comput (2012) 22:1167–1180 1169

Algorithm 2 Likelihood-free rejection sampler 2
for i = 1 to N do

repeat
Generate θ ′ from the prior distribution π(·)
Generate z from the likelihood f (·|θ ′)

until ρ{η(z), η(y)} ≤ ε

set θ i = θ ′,
end for

where the parameters of the algorithm are

– η, a function on D defining a statistic which most often is
not sufficient,

– ρ > 0, a distance on η(D),
– ε > 0, a tolerance level.

The likelihood-free algorithm above thus samples from
the marginal in z of the joint distribution

πε(θ , z|y) = π(θ)f (z|θ)IAε,y(z)∫
Aε,y×θ π(θ)f (z|θ)dzdθ

, (1)

where IB(·) denotes the indicator function of the set B and

Aε,y = {z ∈ D|ρ{η(z), η(y)} ≤ ε}.
The basic idea behind ABC is that using a representative
(enough) summary statistic η coupled with a small (enough)
tolerance ε should produce a good (enough) approximation
to the posterior distribution, namely that

πε(θ |y) =
∫

πε(θ , z|y)dz ≈ π(θ |y).

Before moving to the extensions of the above algorithm,
let us consider a simple dynamic example.

Example The MA(q) process is a stochastic process (yk)k∈N∗
defined by

yk = uk +
q∑

i=1

θiuk−i , (2)

where (uk)k∈Z is an iid sequence of standard Gaussians
N (0,1). Even though a Bayesian analysis can handle non-
identifiable settings and still estimate properly identifiable
quantities (see, e.g., Marin and Robert 2007, Chap. 5),
we will impose a standard identifiability condition on this
model, namely that the roots of the polynomial

Q(x) = 1 −
q∑

i=1

θix
i

are all outside the unit circle in the complex plane. A simple
prior distribution is therefore the uniform distribution over

the corresponding range of θi ’s, especially when q is small
and the set of resulting parameters is easy to describe. In the
case processed in the figures below for q = 2, we obtain the
triangle

−2 < θ1 < 2, θ1 + θ2 > −1, θ1 − θ2 < 1.

Although the prior on θ is very simple, and despite the
Gaussian nature of the random variables, the likelihood as-
sociated with a series (yk)1≤k≤n is more complex because of
the need to integrate out u−q+1, . . . , u−1, u0. (The easier al-
ternative is to condition on (yk)1≤k≤q , see Marin and Robert
2007, even though the general case can also be handled by
MCMC simulations as the likelihood is available, at least for
small values of n.)

Running one iteration of ABC in this setting then simply
requires

(a) simulating the MA(q) coefficients θ uniformly over the
acceptable range,

(b) generating an iid sequence (uk)−q<k≤n,
(c) producing a simulated series (zk)1≤k≤n.

Depending on the focus of the analysis, the distance can be
the raw distance between the series

ρ2{(zk)1≤k≤n, (yk)1≤k≤n} =
n∑

k=1

(yk − zk)
2

or the quadratic distance between summary statistics like the
first q autocovariances

τj =
n∑

k=j+1

ykyk−j

which is our choice for the illustration provided in Fig. 1.
This experiment shows how an ABC sample fits the level
sets of the true posterior density for a simulated sample of
length 100 using the parameters (θ1, θ2) = (0.6,0.2) and a
tolerance level equal to the 0.1% quantile of the sample of
the distances. (The level sets were computed from the ex-
act likelihood for the MA(2) model and a grid of values of
θ over the acceptable range.) This plot illustrates how the
distribution of the sample points departs from true poste-
rior: the approximation does not reconstruct the posterior
perfectly. Decreasing ε would lead to a better concentration
of the posterior density on the level sets, but at the expense
of the size of the resulting sample or at a higher computing
cost.

MCMC-ABC In practice, using simulations from a non in-
formative prior distribution π(·) is very inefficient because
this does not account for the data at the proposal stage and
thus leads to proposed values located in low posterior proba-
bility regions. As an answer to this problem, Marjoram et al.
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Fig. 1 (Color online) Comparison of the level sets (in black) of the
true posterior distribution with the scatter plot (in blue) of an ABC
sample when using autocovariances as summary statistics. The thresh-
old ε is chosen so that 0.1% of the N = 106 simulated datasets are
accepted. The observed dataset has been drawn from an MA(2) model
with n = 100 epochs and parameter θ = (0.6,0.2) (the red dot). The
triangle is the range of acceptable values of θ

(2003) introduce an MCMC-ABC algorithm (Algorithm 3)
targeting the approximate posterior distribution πε of (1).

Algorithm 3 Likelihood-free MCMC sampler

Use Algorithm 2 to get a realisation (θ (0), z(0)) from the
ABC target distribution πε(θ , z|y)

for t = 1 to N do
Generate θ ′ from the Markov kernel q(·|θ (t−1)),
Generate z′ from the likelihood f (·|θ ′),
Generate u from U[0,1],
if u ≤ π(θ ′)q(θ (t−1)|θ ′)

π(θ (t−1))q(θ ′|θ (t−1))
and ρ{η(z′), η(y)} ≤ ε then

set (θ (t), z(t)) = (θ ′, z′)
else

(θ (t), z(t)) = (θ (t−1), z(t−1)),
end if

end for

The acceptance probability used in Algorithm 3 does not
involve the calculation of the likelihood and it thus satisfies
ABC requirements. It also produces an MCMC algorithm
which exactly targets πε(θ , z|y) as its stationary distribution.
Indeed,

πε(θ
′, z′|y)

πε(θ
(t−1), z(t−1)|y)

× q(θ (t−1)|θ ′)f (z(t−1)|θ (t−1))

q(θ ′|θ (t−1))f (z′|θ ′)

= π(θ ′)f (z′|θ ′)IAε,y(z
′)

π(θ (t−1))f (z(t−1)|θ (t−1))IAε,y(z(t−1))

× q(θ (t−1)|θ ′)f (z(t−1)|θ (t−1))

q(θ ′|θ (t−1))f (z′|θ ′)

= π(θ ′)q(θ (t−1)|θ ′)
π(θ (t−1))q(θ ′|θ (t−1))

IAε,y(z
′).

The initialisation of the MCMC sampler with the re-
jection sampler (Algorithm 2) can be bypassed since the
Markov chain forgets its initial state. The computational
cost of the initialisation is then reduced. But then we have
to run the MCMC longer to achieve convergence and omit
the burn-in first iterations from the output, which also has a
computational cost.

As noted above, the ABC approximation depends on tun-
ing parameters (the summary statistic η, the tolerance ε, and
the distance ρ) that have to be chosen prior to running the
algorithm and the calibration of which is discussed in most
of the literature. The tolerance ε is somewhat the easiest as-
pect of this calibration issue in that, when ε goes to zero, the
ABC algorithm becomes exact.

Noisy ABC Wilkinson (2008) proposes to switch perspec-
tive, replacing the approximation error resulting from the
loose acceptance condition in the above likelihood-free sam-
plers with an exact inference from a controlled approxima-
tion of the target, essentially a convolution of the regular
target with an arbitrary kernel function. The corresponding
ABC target is thus

πε(θ , z|y) = π(θ)f (z|θ)Kε(y − z)∫
π(θ)f (z|θ)Kε(y − z)dzdθ

, (3)

where Kε is a well-chosen kernel parameterised by the
bandwidth ε. This perspective is interesting in that the out-
come is completely controlled, due to the degree of free-
dom brought by the choice of the kernel. Wilkinson (2008)
makes the valuable point that if the model includes an error
term, then taking the distribution of that error term to be Kε

leads to an ABC algorithm which simulates exactly from the
error-in-variables posterior. In practice, Wilkinson’s (2008)
approach requires a modification of the standard ABC algo-
rithms, taking into account the kernel Kε for the simulation
of z. The new algorithm which includes an accept-reject step
imposes an upper bound on the convolution kernel Kε .

This perspective of the “noisy ABC” is also adopted by
Fearnhead and Prangle (2010) who study the convergence
of ABC based inference. They show that the convolution in-
duced by the kernel representation leads to the true parame-
ter being the maximum of the integrated log-likelihood and
thus that a Bayes estimator is converging to the true value
when the number of observations goes to infinity and the
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tolerance level goes to zero. They also stress the connec-
tion with the econometrics approach of indirect inference
(Gouriéroux et al. 1993).

ABC filtering Jasra et al. (2011) propose an ABC scheme
for filtering when the distribution of the observables con-
ditioned on the hidden state is not available pointwise, re-
lated to the convolution particle filter of Campillo and Rossi
(2009). It is particularly appealing in that it allows com-
plex (hence realistic) statistical models for filtering. Theo-
retical arguments are given to prove that the ABC approx-
imation of the filter does not accumulate errors along the
sequence of observables, when the model has good mixing
properties. Dean et al. (2011) illustrate this implementation
in the specific case of hidden Markov (HMM) models, relat-
ing the ABC implementation with Wilkinson’s (2008) per-
spective and demonstrating that the pseudo (or noisy) model
for which ABC is exact also is an HMM. Using this rep-
resentation, they further establish ABC consistency. While
Dean et al. (2011) establish that ABC leads to an asymptotic
bias for a fixed value of the tolerance ε, they also prove that
an arbitrary accuracy can be attained with enough data and
a small enough ε. We note that the restriction to summary
statistics that preserve the HMM structure is paramount for
the results in the paper to apply, hence preventing the use of
truly summarizing statistics that would not grow in dimen-
sion with the size of the HMM series. We also note that the
approach of Jasra et al. (2011) has been rediscovered by Cal-
vet and Czellar (2011) and that there are some similar ideas
in Gauchi and Vila (2011). Finally, the convergence result
central to Dean et al. (2011) is also connected with Fearn-
head and Prangle’s (2010) version, mentioned above, in that
they both rely on pseudo-likelihood consistency arguments.

3 Calibration of ABC

Summary statistics Several authors have considered the
fundamental difficulty associated with the choice of the
summary statistic, η(y), which one would like to consider
as a quasi-sufficient statistic. First, for most real problems
(a notable exception being found in Grelaud et al. 2009 in
the case of Gibbs random fields), it is impossible to find suf-
ficient statistics. Second, the summary statistics of interest
are usually determined by the problem at hand and chosen
by the experimenters in the field.

Assuming a large collection of summary statistics is
available, Joyce and Marjoram (2008) consider the sequen-
tial inclusion of those statistics into the ABC target. The in-
clusion of a new statistic within the set of summary statis-
tics is assessed in terms of a likelihood ratio test, with-
out taking into account the sequential nature of the tests.
We have reservations about the method, first and foremost

that the construction of the statistics is not discussed, while
the method is not independent from parametrisation, and
also that the order in which the statistics are considered
is paramount for their inclusion/exclusion. A regularisation
of the method proposed at the end of the paper is to use
a forward-backward selection mechanism to address this
last issue. However, this correction does not address an-
other issue, namely the impact of the correlation between the
summary statistics. Note at last that Joyce and Marjoram’s
(2008) method still depends on an approximation factor that
needs to be calibrated prior to running the algorithm. In his
thesis, Ratmann (2009) proposes a similar examination of
the successive inclusion of various statistics.

A related perspective is that of McKinley et al. (2009).
They perform a simulation experiment comparing ABC-
MCMC and ABC-SMC (discussed below) with regular data
augmentation MCMC. The authors test strategies to select
the tolerance level, and to choose the distance ρ and the
summary statistics. The conclusions are not very surprising,
in that

(a) repeating simulations of the data points given one sim-
ulated parameter does not seem to contribute to an im-
proved approximation of the posterior by the ABC sam-
ple,

(b) the tolerance level does not seem to have a strong influ-
ence,

(c) the choice of the distance, of the summary statistics and
of the calibration factors are paramount to the success of
the approximation, and

(d) ABC-SMC outperforms ABC-MCMC (MCMC remain-
ing the reference).

Fearnhead and Prangle (2010) study the selection of sum-
mary statistics with the interesting perspective that ABC is
then considered from a purely inferential viewpoint and cal-
ibrated for estimation purposes. (This contrasts with most
alternative perspectives that envision ABC as a poor man’s
non-parametric estimation of the posterior distribution.)
Fearnhead and Prangle (2010) rely on a randomised ver-
sion of the summary statistics from which they derive a
well-calibrated version of ABC, i.e. an algorithm that gives
proper predictions of given quantities. The authors consider
choices of summary statistics, and establish that the poste-
rior expectations of the parameters of interest are optimal
summary statistics, although this follows from their choice
of loss function.

Tolerance threshold and ABC approximation error As
noted above, the choice of the tolerance level ε is mostly
a matter of computational power: smaller ε’s are associated
with higher computational costs and the standard practice
(Beaumont et al. 2002) is to select ε as a small percentile
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of the simulated distances ρ{η(z), η(y)}. An alternative de-
scribed below is to set the ABC algorithm within the non-
parametric setting of density estimation, in which case ε

is understood as a bandwidth and can be derived from the
simulated population. As noted in Fearnhead and Prangle
(2010), this perspective implies that the optimal ε is then
different from zero.

Standing rather apart from other contributions to the field,
Ratmann et al. (2009) provide an intrinsically novel way of
looking at the ABC approximation error (and hence at the
tolerance). It is presented as a tool assessing the goodness
of fit of a given model. The fundamental idea there is to
use the tolerance ε as an additional parameter of the model,
simulating from a joint posterior distribution

f (θ , ε|y) ∝ ξ(ε|y, θ)πθ (θ)πε(ε),

where ξ(ε|y, θ) plays the role of the likelihood, and πθ and
πε are the corresponding priors on θ and ε. In this approach,
ξ(ε|y, θ) is the prior predictive density of ρ{η(z), η(y)}
given θ and y when z is distributed from f (z|θ). We note
here a connection with Wilkinson’s (2008) target (3) in that
π(θ)f (z|θ)Kε(y − z) is identical to the above once we re-
place y − z by ε.

Ratmann et al. (2009) then derive an ABC algorithm they
call ABCμ to simulate an MCMC chain targeting this joint
distribution, replacing ξ(ε|y, θ) with a non-parametric ker-
nel approximation. For each model under comparison, the
marginal posterior distribution on the error ε is then used to
assess the fit of the model, the logic being that this posterior
should include 0 in a reasonable credible interval. While the
authors stress they use the data once, they also define the
above target by using simultaneously a prior distribution on
ε and a conditional distribution on the same ε that they in-
terpret as the likelihood in (ε, θ). The product is most often
defined as a density in (ε, θ), so it can be simulated from,
but the Bayesian interpretation of the outcome is delicate,
especially because it seems the prior on ε contributes sig-
nificantly to the final assessment of the model. As discussed
in Robert et al. (2010), some of the choices of Ratmann et
al. (2009) can be argued about, in particular the ambivalent
role of the approximation error. The most important aspect
of the paper is that the original motivation of running ABC
for conducting inference on the parameters of a model is re-
placed by the alternative goal of running ABC for assessing
a model; see Ratmann et al.’s (2010) reply to the remarks
made by Robert et al. (2010).

Example Returning to the MA(2) model, we study the im-
pact of the choice of the distance and of the tolerance on
the approximation. In this example, we simulated a sample
of size 50 from a MA(2) model based on the same param-
eters as above. First, we compare the impact of using the
raw distance between the complete datasets instead of the

Fig. 2 (Color online) Scattering of two ABC samples when the com-
putations are based on the autocovariance distance (left) and the raw
distance (right), using different quantiles on the simulated distance for
ε (1% in blue, 1� in red, and 0.1� in yellow). The level sets of the
posterior density are exhibited in black

distance between the autocovariances (introduced above).
Figure 2 shows that the raw distance between the observed
and the simulated time series is inefficient and fairly non-
discriminative. For the raw distance, the spread of the pa-
rameters accepted after the ABC step is indeed much wider
than for the second distance, especially when compared with
the level sets of the posterior density. We thus use only the
distance between the autocovariances in the remainder of the
paper.

We now turn to the tolerance ε. Figure 3 shows that de-
creasing ε along empirical quantiles of the simulated dis-
tances ρ(η(z), η(y)) improves the approximation, although
we never reach the true marginal densities (this is particu-
larly true for the parameter θ2). The marginal densities of
the ABC samples were obtained by the R default density
estimator and the true marginal densities by numerical inte-
gration.

4 Sequential improvements

Importance sampling Sequential techniques can enhance
the efficiency of the ABC algorithm by learning about the
target distribution, as in Sisson et al.’s (2007) partial rejec-
tion control (PRC) version. The ABC-PRC modification in-
troduced by Sisson et al. (2007) consists of producing sam-
ples (θ

(t)
1 , . . . , θ

(t)
N ) at each iteration 1 ≤ t ≤ T of the algo-

rithm by using a particle filter methodology. Starting with
a regular ABC step, the generation of the θ

(t)
i ’s relies on
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Fig. 3 (Color online) Evolution of the distribution of ABC samples
using different quantiles for ε (10% in blue, 1% in red, and 0.1% in
yellow) when compared with the true marginal densities. The dataset is
the same as in Fig. 2

Markov transition kernels Kt ,

θ
(t)
i ∼ Kt(θ |θ�),

until z ∼ f (z|θ (t)
i ) is such that ρ(η(z), η(y)) ≤ ε, where θ�

is selected at random among the previous θ
(t−1)
i ’s with prob-

abilities ω
(t−1)
i . The probability ω

(t)
i is derived by an impor-

tance sampling argument as

ω
(t)
i ∝ π(θ

(t)
i )Lt−1(θ

�|θ (t)
i )

π(θ�)Kt (θ
(t)
i |θ�)

,

where Lt−1 is an arbitrary transition kernel. While this
method is based upon the theoretical work of Del Moral et
al. (2006) and their SMC sampler, the application to approx-
imate Bayesian computation results in a bias in the approxi-
mation to the posterior, because the likelihood is removed in
a standard ABC fashion (Sisson et al. 2009). Replacing the
likelihood with the indicator function provides an unbiased
estimator of the likelihood that cannot be used as such in the
denominator of a Metropolis–Hastings acceptance probabil-
ity, hence the resulting bias.

An alternative version called ABC-PMC and based
on genuine importance sampling arguments, proposed by
Beaumont et al. (2009), bypasses this difficulty, in connec-
tion with the population Monte Carlo method of Douc et
al. (2007). It includes an automatic scaling of the forward
kernel. The correction published in Sisson et al. (2009) ac-
knowledges the existence of a bias and suggests a correction
essentially identical to the PMC solution of Beaumont et al.
(2009).

As illustrated in the pseudo-code below, ABC-PMC con-
structs a kernel approximation to the target distribution
based on earlier simulations and estimates the random walk
scale (which is also the kernel bandwidth) from those simu-
lations, using in addition a decreasing sequence of tolerance
thresholds ε1 ≥ · · · ≥ εT :

Algorithm 4 Likelihood-free population Monte Carlo sam-
pler

At iteration t = 1,
for i = 1 to N do

repeat
Simulate θ

(1)
i ∼ π(θ) and z ∼ f (z | θ (1)

i )

until ρ(η(z), η(y)) ≤ ε1

Set ω
(1)
i = 1/N

end for
Take Σ1 as twice the empirical variance of the θ

(1)
i ’s

for t = 2 to T do
for i = 1 to N do

repeat
Pick θ�

i from the θ
(t−1)
j ’s with probabilities ω

(t−1)
j

Generate θ
(t)
i ∼ N (θ�

i ,Σt−1) and z ∼ f (z | θ (t)
i )

until ρ(η(z), η(y)) ≤ εt

Set
ω

(t)
i ∝π(θ

(t)
i )/

∑N
j=1 ω

(t−1)
j ϕ{Σ−1/2

t−1 (θ
(t)
i − θ

(t−1)
j )}

end for
Take Σt as twice the weighted variance of the θ

(t)
i ’s

end for

Another related paper is Toni et al.’s (2009) proposal of
a parallel sequential ABC algorithm. Just like ABC-PMC,
the ABC-SMC algorithm (an acronym found in several pa-
pers) developed therein is based on a sequence of simulated
samples, Markov transition kernels, and importance weights
rather than SMC justifications. The unavailable likelihood
is estimated by the indicator of the tolerance zone or an av-
erage of indicators as in Marjoram et al. (2003). The bulk
of the paper is dedicated to the analysis of ODEs, using uni-
form distributions as transition kernels. The adaptivity of the
ABC-SMC algorithm is restricted to a progressive reduction
of the tolerance, εt , since the kernels Kt ’s remain the same
across iterations, in contrast with the ABC-PMC motivation
for tuning the Kt ’s to the target. The paper also contains a
comparison with ABC-PRC, which shows a bias in the vari-
ance of the ABC-PRC output, in line with Beaumont et al.
(2009).

McKinley et al. (2009) have coded the parallel sequential
ABC algorithm on an infectious disease model (a recent out-
break of Ebola Haemorrhagic Fever in the Democratic Re-
public of the Congo—for which there is no known treatment
and which is responsible for an 88% decline in observed
chimpanzee populations since 2003!). They show that the
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ABC-SMC sampler outperforms ABC-MCMC (MCMC re-
maining the reference). The comparison experiment is based
on a single dataset, with fixed random walk variances for the
MCMC algorithms; note that the prior used in the simulation
might be too highly peaked around the true value (gamma
rates of 0.1). Some of the ABC scenarios do produce esti-
mates that are rather far away from the references given by
MCMC, for instance CABC-MCMC when the threshold ε

is 10 and the number of repeats R is 100.

Backward kernels and SMC Del Moral et al. (2011) ex-
hibit the connection between the ABC algorithm and the
foundational SMC paper of Del Moral et al. (2006) that in-
spired Sisson et al. (2007). As opposed to the latter, and de-
spite a common framework, this ABC-SMC paper properly
relies on the idea of using backward kernels Lt to simplify
the importance weights and to remove from these weights
the dependence on the unknown likelihood. A major as-
sumption of Del Moral et al. (2011) is that the forward ker-
nels Kt are supposed to be invariant against the true target
(which is a tempered-like version of the true posterior in se-
quential Monte Carlo), a choice not explicitely made in Sis-
son et al. (2007). One of the novelties in the paper is that the
authors rely on M repeated simulations of the pseudo-data
z given the parameter, rather than using a single simulation.
In that perspective, each simulated parameter gets a non-
zero weight that is proportional to the number of accepted
z’s. The limiting case M → ∞ brings in an exact simulation
from the tempered targets πεt ’s, so there is a convergence
principle and the stabilisation of the approximation could be
assessed to calibrate M . The adaptivity in the ABC-SMC
algorithm is found in the on-line construction of the thresh-
olds: the thresholds decrease slowly enough to keep a large
number of accepted transitions from the previous sample.
An important feature is that the update in the importance
weights simplifies to the ratio of the proportions of surviving
particles, due to the choice of the reversal backward kernels
Lt and to the use of invariant transition forward kernels Kt .

In a very related manner, Drovandi and Pettitt (2010) use
a combination of particles and of MCMC moves to adapt a
proposal to the true target, with acceptance probability

min

{
1,

π(θ∗)K(θ c|θ∗)
π(θ∗)K(θ∗|θc)

}

where θ∗ is the proposed value, θc is the current value
(picked at random from the particle population), and K is
a proposal kernel used to simulate the proposed value. The
algorithm is adaptive in that the previous population of parti-
cles is used to make the choice of the proposal K , as well as
of the tolerance level εt . The level of novelty of the method
compared with Del Moral et al. (2011) is quite limited, since
the paper adapts the tolerance on-line as an α-quantile of
the previous particle population. The convergence analysis

which is omitted by Drovandi and Pettitt (2010) is perhaps
not so standard, mainly because the MCMC is applied only
to half of the particle system. The only strong methodolog-
ical difference between the two papers is that the MCMC
steps are now repeated ‘numerous times’. However, this
partly cancels the appeal of an O(N) order method versus
the O(N2) order ABC-PMC and ABC-SMC methods. An
interesting remark there is that advances are needed in cases
when simulating the pseudo-observations is very costly, as
in Ising models. However, replacing exact simulation by a
few steps from a Gibbs sampler as in Grelaud et al. (2009)
cannot be very detrimental to the convergence of an approx-
imate algorithm.

5 Post-processing of ABC output

Local linear regression Improvements to the general ABC
scheme have been achieved by viewing the problem as a
conditional density estimation and developing techniques to
allow for larger ε (Beaumont et al. 2002). This is a post-
processing scheme in that the simulation process per se does
not change but the analysis of the ABC output does. The au-
thors endeavour to include all simulated summary statistics,
even those far away from the observed summary statistic, by
shrinking the corresponding parameters in a linear manner.
More specifically, they replace the simulated θ ’s with

θ∗ = θ − {η(z) − η(y)}Tβ̂,

where β̂ is obtained by a weighted least squares regression
of θ on (η(z) − η(y)), using weights of the form

Kδ {ρ{η(z), η(y)}} ,

where Kδ is a non-parametric kernel with bandwidth δ.

Example We implement this correction of Beaumont et al.
(2002) in the MA(2) model, again using the first two auto-
covariances as summary statistic η(z), and we apply a non-
parametric local regression based on the Epanechnikov ker-
nel (Wasserman 2007). We keep δ equal to the value of the
tolerance ε used in the regular ABC scheme. Figures 4 and 5
summarise the results. When using a 0.1% quantile, the two
density estimates are identical in the case of the parameter
θ2. The post-processed density estimate of θ1 is closer to
the true posterior. When using a 20% quantile, the impact of
the local regression is more spectacular. We recover results
close to those obtained with the 0.1% quantile. This exhibits
the point that local regression strongly attenuates the impact
of the truncation brought by ε.
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Fig. 4 (Color online) Comparison of the density estimates of the dis-
tributions of the parameters using an ABC approximation with ε as
the 0.1% quantile on the autocovariance distances (in blue) and the
Beaumont et al. (2002) correction (in red). The red and blue curves are
confounded for the parameter θ2

Fig. 5 (Color online) Comparison of the approximate distributions of
the parameters using an ABC approximation with ε as the 20% quantile
on the autocovariance distance (in blue) and the Beaumont et al. (2002)
correction (in red)

Nonlinear regression Blum and François (2010) propose
a generalisation of Beaumont et al.’s (2002) ABC post-
processing where the local linear regression of the parameter
θ on the summary statistics η(z) is replaced by a nonlinear
regression with heteroskedasticity. In this new approach, the

nonlinear mean and variance are estimated by a neural net
with one hidden layer, using the R package nnet (R Devel-
opment Core Team 2006). The result is interesting in that it
seems to allow for the inclusion of more or even all the sim-
ulated pairs (θ , z), compared with Beaumont et al. (2002).
This is somehow to be expected since the nonlinear fit adapts
differently to different parts of the space. Therefore, weight-
ing simulated (θ , z)’s by a kernel Kδ(z − y) is not very rel-
evant and it is thus not surprising that the bandwith δ is
not influential, in contrast with basic ABC and even (Beau-
mont et al. 2002) where δ has a different meaning. The non-
parametric perspective adopted in the paper is nonetheless
of the highest importance, as it proves the most fruitful ap-
proach to the interpretation of ABC methods. In connection
with this paper, Blum (2010) provides a good review of the
non-parametric handling of ABC techniques. The true diffi-
culty with the non-parametric perspective lies with the curse
of dimensionality. This issue might be addressed by mixing
dimension reduction with recycling by shrinking as in Beau-
mont et al. (2002).

Inverse regression Leuenberger et al. (2010) also relate to
the local regression ideas in Beaumont et al. (2002). As in
the earlier work by Wilkinson (2008), the approximation to
the distribution of the parameters given the observed sum-
mary statistics is central to the paper. In opposition to Beau-
mont et al. (2002), there is no clear shrinkage for sum-
mary statistics that are far away from the observed sum-
mary statistics: all accepted parameters are weighted simi-
larly in the Gaussian linear approximation to the truncated
prior. The other difference with Beaumont et al. (2002) is
that the authors model z given θ rather than θ given z, in an
inverse regression perspective, followed by a sort of Laplace
approximation reminding Rue et al. (2009).

6 ABC and model choice

6.1 Bayesian model choice

Model choice is one particular aspect of Bayesian analysis
that involves computational complexity, if only because sev-
eral models are considered simultaneously (see, e.g., Robert
2001, Marin and Robert 2010). In addition to the parame-
ters of each model, the inference considers the model in-
dex M, which is associated with its own prior distribution
π(M = m) (m = 1, . . . ,M) as well as a prior distribution
on the parameters conditional on the value m of the model
index, πm(θm), defined on the parameter space Θm. The
choice between these models is then driven by the poste-
rior distribution of M, a challenging computational target
where ABC brings a straightforward solution. Indeed, once
M is incorporated within the parameters, the ABC approx-
imation to the posterior follows from the same principles
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Fig. 6 Boxplots of the
evolution [against ε] of ABC
approximations to the Bayes
factor. The representation is
made in terms of frequencies of
visits to [accepted proposals
from] models MA(1) (left) and
MA(2) (right) during an ABC
simulation when ε corresponds
to the 10,1,0.1,0.01%
quantiles on the simulated
autocovariance distances. The
data are the same as in Fig. 5.
The true Bayes factor B21 is
equal to 17.71, corresponding to
posterior probabilities of 0.05
and 0.95 for the MA(1) and
MA(2) models respectively

as regular ABC, as shown by the following pseudo-code,
where η(z) = (η1(z), . . . , ηM(z)) is the concatenation of the
summary statistics used for all models (with elimination of
duplicates).

Algorithm 5 Likelihood-free model choice sampler (ABC-
MC)

for i = 1 to N do
repeat

Generate m from the prior π(M = m)

Generate θm from the prior πm(θm)

Generate z from the model fm(z|θm)

until ρ{η(z),η(y)} < ε

Set m(i) = m and θ (i) = θm

end for

The ABC estimate of the posterior probability π(M =
m|y) is then the acceptance frequency from model m,
namely

1

N

N∑
i=1

Im(i)=m.

This also corresponds to the proportion of simulated datasets
that are closer to the data y than the tolerance ε. Cor-

nuet et al. (2008) follow the rationale that led to the lo-
cal linear regression in Beaumont et al. (2002) and rely on
a weighted polychotomous logistic regression to estimate
π(M = m|y). This modeling clearly brings some further
stability to the above estimate of π(M = m|y) and is im-
plemented in the DIYABC software described in Cornuet et
al. (2008).

Example Returning once again to our benchmark MA(2)

model, we compare the computation of the model poste-
rior probabilities based on an ABC sample (acceptance fre-
quency within each model) with the true value of the Bayes
factor, which was obtained by numerical integration. The
dataset used in the experiment is a time-series simulated
and we wish to choose between two models: a MA(2) or
a MA(1) model. Figure 6 shows our estimates for data sim-
ulated from AR MA(2) model. The weight of the MA(2)

model increases slightly as ε decreases. However, even for
the quantile at 0.01% the estimated posterior probability for
the MA(2) model is equal to 0.72 which is far from the true
value 0.95. Figure 7 shows a similar phenomenon for data
simulated from an MA(1) model.

The discrepancy in the above example shows the limita-
tions of the ABC approximation of Bayes factors exposed
in Robert et al. (2011). While we could expect to obtain a



Stat Comput (2012) 22:1167–1180 1177

Fig. 7 Boxplots of evolution of
Bayes factor approximations in
terms of frequencies of visits to
models MA(1) (left) and MA(2)

(right) using an ABC
approximation with
10,1, .1, .01% quantiles on the
autocovariance distance as ε.
The dataset is a sample of 50
points from a MA(1) model
with θ1 = 0.6. The true Bayes
factor B21 is equal to .004
corresponding to posterior
probabilities of 0.996 and 0.004
for the MA(1) and MA(2)
models respectively

better approximation with a massive computational effort,
it may be that the use of different summary statistics for
different models prevents us from converging to the true
value. In other words, the concatenation of sufficient statis-
tics for individual models does not always constitute a suf-
ficient statistic for model choice, as discussed in the next
paragraph.

6.2 The case of Gibbs random fields

Grelaud et al. (2009) show that, for Gibbs random fields and
in particular for Potts models, where the goal is to compare
several neighbourhood structures, the computation of the
posterior probabilities of the models under competition can
be operated by likelihood-free simulation techniques. We re-
call first that Gibbs random fields are probabilistic models
associated with the likelihood function

�(θ |y) = 1

Zθ
exp{θTη(y)},

where y is a vector of dimension n taking values over a fi-
nite set X (possibly a lattice), η(·) is the potential function
defining the random field, taking values in R

p , θ ∈ R
p is the

associated parameter, and Zθ is the corresponding normalis-
ing constant. A special but important case of Gibbs random
fields is associated with a neighbourhood structure denoted

by i ∼ i′ (meaning that i and i′ are neighbours), in that

η(y) =
∑
i′∼i

I{yi=yi′ },

where
∑

i′∼i indicates that the summation is over all the
pairs of neighbours. In that case, θ is a scalar.

The central property ensuring an ABC resolution for
Gibbs random fields is that, due to their exponential family
structure, there exists a sufficient statistic vector that runs
across models and which allows for an exact (ε = 0) simu-
lation from the posterior probabilities of the models. Indeed,
model choice involves M Gibbs random fields in competi-
tion; each field is associated with a potential function ηm

(1 ≤ m ≤ M), i.e. with the corresponding likelihood

�m(θm|y) = exp
{
θT

mηm(y)
}/

Zθm,m,

where θm ∈ Θm and Zθm,m is the unknown normalising
constant. From a Bayesian perspective, considering an ex-
tended parameter space Θ = ⋃M

m=1{m} × Θm that includes
the model index M, the computational target is thus the
model posterior probability

π(M = m|y) ∝
∫

Θm

�m(θm|y)πm(θm)dθmπ(M = m),
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i.e. the marginal in M of the posterior distribution on
(M, θ1, . . . , θM) given y. Each model has its own suffi-
cient statistic ηm(·). Then, for each individual model, the
vector of statistics η(·) = (η1(·), . . . , ηM(·)) is clearly suffi-
cient. However Grelaud et al. (2009) exposed the fact that η

is also sufficient for the joint parameter (M, θ1, . . . , θM).
That the concatenation of the sufficient statistics of each

model is also a sufficient statistic for the joint parameter
across models is clearly a property that is specific to expo-
nential families. As shown by Didelot et al. (2011), ABC-
based model choice can process exponential families by
creating inter-model sufficient statistics that incorporate the
intra-model sufficient statistics as well as possibly the dom-
inating measures for all models. The Gibbs random field
above is a specific case of this sufficiency. However, outside
exponential families, the possibility of creating a sufficient
statistic of a dimension that is much lower than the dimen-
sion of the data is impossible, as explained in Robert et al.
(2011).

6.3 General issues

Toni et al. (2009) and Toni and Stumpf (2010) review ABC-
based model choice, inclusive of the above Gibbs random
field example. The authors study in particular the conse-
quences of implementing a sequential algorithm like ABC-
PMC in this set-up. The ABC algorithm is modified to incor-
porate the model index, resorting to the previous assessment
of π(M = m|y) to propose the model indices of the next
population. The importance sampling features of this setting
imply that the posterior probability can be estimated from
the importance weights. However, the adaptivity at the core
of ABC-PMC and ABC-SMC implies adapting an approx-
imation kernel for each model. As most other perspectives
on ABC, Toni and Stumpf (2010) do not question the role of
the ABC distance in model choice settings. The Bayes fac-
tors are observed to be sensitive to the choice of the prior
distributions, of the tolerance levels, and to the variances of
the kernels Kt (see Sect. 4), a dependence that should not
occur, since this is a simulation parameter that is unrelated
with the statistical problem.

It is worth pointing out the remark made by Leuenberger
et al. (2010) about model choice and the use of the approxi-
mation of the normalising constant resulting from the mod-
elling to get to the marginal likelihood and the computa-
tion of the Bayes factor. This relates to earlier comments
about the ABC acceptance rate approximating the marginal
and a recent paper by Bartolucci et al. (2006) studying ways
of computing marginal probabilities by Rao–Blackwellising
reversible jump acceptance probabilities.

Grelaud et al. (2009) also make the most of this ABC
feature for Ising models, since an exact ABC (corresponding
to ε = 0) algorithm is then available for model selection.

A (minor) Bayesian issue mentioned by Ratmann et al.
(2009) is the fact that both θ and ε are taken to be the same
across models. In a classical Bayesian perspective, modulo
the reparameterisation, θ cannot be entirely different from
one model to the next, but using the same prior on ε over
all models under comparison is more of an issue. The paper
also considers the impact of testing for the adequacy of a
model as testing for the hypothesis H0 : ε = 0, an interest-
ing if controversial stance, since even when the model fits, ε

necessarily varies around zero.
At this stage, the most perplexing feature of ABC model

choice is the lack of convergence guarantees. As exposed in
Robert et al. (2011), most settings where ABC model choice
is implemented do not allow for inter-model sufficiency in
the selection of the summary statistics, because some mod-
els are not within exponential families and because using the
whole data is too demanding. As shown by the MA example
above. this lack of sufficiency may be quite detrimental to
the quality of the ABC approximation of the Bayes factors.
There is therefore currently no theoretical support for the
use of ABC approximations of Bayes factors and posterior
model probabilities, and we thus advise for more empirical
assessments in the spirit of Ratmann et al. (2009) that eval-
uate the model fit within each model without concluding by
exact figures of the probabilities of the different models.

7 Discussion

Approximate Bayesian Computation allows for inference
from a wide class of models which would otherwise be un-
available. As such, it has spawned interest in both theoret-
ical issues and applications. Recent advances regarding the
calibration of the method lead to an approximation that is
good enough to be highly useful in many situations. The ef-
ficiency of the method can be greatly improved with sequen-
tial techniques and post-processing regression on the output.

Nonetheless, ABC is not a silver bullet. In the current
state of the art, it can only be used for model choice in a
limited range of models. Future advances must at the same
time expand further the tools to make ABC useful in a wider
class of models, extend pre- and post-processing methods
to control the approximation, and establish more clearly in
which cases ABC reaches its limitations.

ABC methods are currently under an intense scrutiny
by both statisticians and practitioners, hence the object of
an unparalleled development. While this rapid development
provides answers to some interrogations from the statistical
community about the validity of the approach and from the
practitioners about a higher efficiency of the method, some
issues remain unsolved, among which:

– the convergence results obtained so far are unpractical in
that they require either the tolerance to go to zero or the
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sample size to go to infinity. Obtaining exact error bounds
for positive tolerances and finite sample sizes would bring
a strong improvement in both the implementation of the
method and in the assessment of its worth. As cleverly
suggested by a referee, one could consider the L1 error
bound and analyze the decomposition:

E

{∣∣∣∣∣
1

N

N∑
i=1

φ (θ i ) − π(φ)

∣∣∣∣∣
}

≤ E

{∣∣∣∣∣
1

N

N∑
i=1

φ (θ i ) − πε(φ)

∣∣∣∣∣
}

+ |πε(φ) − π(φ)|

where φ : R
d → R is some test-function, π(φ) =∫

φ(θ)π(θ |y)dθ and the expectation is taken with respect
to the uncertainty generated by the Monte Carlo algo-
rithm which has produced θ1, . . . , θN . For the first term,
one can deal with the convergence rate as with any Monte
Carlo method and the second term is the deterministic
bias brought about by the ABC approximation.

– even though ABC is often presented as a converging
method that approximates Bayesian inference, it can also
be perceived as an inference technique per se and hence
analysed in its own right. Connections with indirect infer-
ence have already been drawn, however the fine asymp-
totic analysis of ABC would be most useful to derive.
Moreover, it could indirectly provide indications about
the optimal calibration of the algorithm.

– in connection with the above, the connection of ABC-
based inference with other approximative methods like
variational Bayes inference is so far unexplored. Com-
paring and interbreeding those different methods should
become a research focus as well.

– the construction and selection of the summary statistics
is so far highly empirical. An automated approach based
on the principles of data analysis and approximate suf-
ficiency would be much more attractive and convincing,
especially in non-standard and complex settings.

– the debate about ABC-based model choice is so far in-
conclusive in that we cannot guarantee the validity of the
approximation, while considering that a “large enough”
collection of summary statistics provides an acceptable
level of approximation. Evaluating the discrepancy by ex-
ploratory methods like the bootstrap would shed a much
more satisfactory light on this issue.

– the method necessarily faces limitations imposed by large
datasets or complex models, in that simulating pseudo-
data may itself become an impossible task. Dimension-
reducing technique that would simulate directly the sum-
mary statistics will quickly become necessary.
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