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From data to decisions

I Data

I Models

I Predictions

I Decisions
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Various approaches for going from data to decision

I Non-probabilistic approach
I Models describe generalizations of earlier experience.
I Can we be certain the same will happen again?
I What about observed variability in outcome?

I Probabilistic approach: Classical (frequentist) statistics
I Select a set of probabilistic or stochastic models using context

knowledge.
I Estimate parameters and choose models using, e.g., significance

testing.
I Make predictions from models and select decisions based on

predictions.
I Some ad-hoc choices need to be done.

I Probabilistic approach: Bayesian statistics
I Using probabilistic models for knowledge about something, not for

the thing itself.
I Provides seamless general theory from data to decision, as we shall

see.
I Can be computationally challenging.
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Conceptual example: North sea oil production

I Context: The data about some new oil field consists of seismic data
and observations from a test well producing some oil.

I Questions: How much oil does the field contain? Exactly where is it
located?

I Decisions: Where to drill production wells? How many? How big
infrastructure?
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A non-probabilistic approach

I Using experience and scientific knowledge, make a best-guess model
of what the reservoir looks like.

I Can we really trust the predictions from such a model?

I Observations are very indirect, there are large uncertainties. And
uncertainties in various parts of the model will interact!

I Generally one uses probability theory, and probabilistic models, to
understand and model the uncertainties and their interactions.

I NOTE: There exists only one oil reservoir! Classical probability
theory deals with repeatable events, but the reservoir is not
“repeatable”??
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A probabilistic classical statistics approach

I Based on general knowledge of reservoirs, make a probabilistic
model, with unknown parameters.

I Use statistics to estimate the parameters from observed data.

I Make probabilistic predictions from the model. Use these to select
optimal decisions.

I How to estimate the parameters? How good are the decisions? Can
they be trusted?
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A probabilistic Bayesian approach

I A stochastic model (probabilistic model) of “all” possible
“reasonable” reservoirs is built.

I A posterior stochastic model which takes into account the observed
data is obtained, simply by finding the conditional probability
distribution.

I Predictions for the consequences of various decisions are obtained
from the posterior model. Predictions automatically come with
uncertainties.

I The decision with the optimal expected benefits can be computed
(in principle).

I NOTE: As soon as the initial stochastic model has been built, there
are no more methodological choices that need to be made.

I NOTE: Knowledge about the reservoir is modelled, not the reservoir
itself!

I NOTE: Recommended decisions are necessarily optimal, as long as
the original model of the original knowledge of the reservoir is
correct. Trust boils down to evaluating whether this initial model is
reasonable (and all computations are correct mathematically).
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Frequentist issue 1: Interpretation

Example:

I We assume the numbers 4.2, 5.6 and 4.6 is a random sample from a
normal distribution with expectation µ and fixed variance 1.
As the numbers have mean 4.8, a 95% confidence interval for µ can
then be computed as[

4.8− 1.96 · 1√
3
, 4.8 + 1.96 · 1√

3

]
= [3.67, 5.93]

I A possible interpretation: If three numbers are resampled from the
distribution many times, the re-computed confidence intervals will
contain µ with probability 95%.

I Another common interpretation: The interval [3.67, 5.93] contains µ
with 95% probability.
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Some attitudes towards misinterpretations of the
confidence interval

I People need to be better educated about the correct interpretation.

I I don’t care: As long as I as a mathematician/scientist compute and
present correct results, it is not my problem how it is interpreted.

I The difference between the two interpretations above is so small it is
unimportant.

I Other?
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Frequentist issue 2: Objectivity

Example:

I Assume we have a sequence of independent trials each resulting in
success (1) or failure (0), with a probability of succes equal to p.
Assume we have observed the following data:

0, 1, 0, 0, 1, 0, 0, 1

We then make the estimate 3/8 = 0.375 for p. How ”good” is this
estimate?

I It is often said that an estimator that is unbiased is ”good”. Is this
estimator unbiased? It depends on which estimator we have used!

I Alternative 1: The estimator is: Make 8 trials, let X be the number
of successes, and compute p̂ = X/8.

I Alternative 2: The estimator is: Make trials until you have produced
3 successful trials, let X be the number of trials you needed to do,
and compute p̂ = 3/X .
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Continuation of example

I Exercise: Prove that the estimator in alternative 1 is unbiased (easy),
and that the estimator in alternative 2 is biased (more difficult).

I Our point here: If we use the biasedness of the estimator to judge
whether the estimate 0.375 is good, the result depends on which
estimator we are using, which depends on what went on in the head
(the plans) of the person doing the experiments.
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Continuation of example

I In the same situation as above, and the same observations, we want
to make a hypothesis test with H0 : p ≥ 0.6, and alternative
hypothesis H1 : p < 0.6. What is the p-value?

I To answer the question, we need to know which test statistic should
be used.

I Alternative 1: The test statistic is: Make 8 trials and let X be the
number of successes. Then, assuming p = 0.6, we get
X ∼ Binomial(8, 0.6). The possible values for X and their
probabilities are

0 1 2 3 4 5 6 7 8
0.001 0.008 0.041 0.124 0.232 0.279 0.209 0.090 0.017

We get that the p-value becomes 0.174; the sum of the probabilities
for X = 0, 1, 2, 3.
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Continuation of example

I Alternative 2: The test statistic is: Make trials until 3 successes
have appeared and let X the number of trials necessary. Then,
assuming p = 0.6, we get X ∼ Neg-Binomial(3, 0.6). The possible
values for X and their probabilities are

3 4 5 6 7 8 9 10 11
0.216 0.259 0.207 0.138 0.083 0.046 0.025 0.013 0.006

12 13 14 15 16,17,. . .
0.003 0.001 0.001 0.000 total 0.000

We get the p-value 0.095; the sum of the probabilities for
8, 9, 10, . . . .

I Note that if we use a significance level of 0.1, we will reject the null
hypothesis using the second test statistic, but not using the first test
statistic.
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Frequentist issue 3: Contextual information

I Assume you want to find out if a coin is ”fair”, i.e., if the probability
p for heads is 0.5. You throw the coin 8 times and get heads 2
times. What do you believe about the probability p, and how certain
can you be?

I Assume you are a doctor who has received permission for a new
experimental surgical procedure. After 8 procedures, 2 are
unsuccessful. What do you believe about the probability p for an
unsuccessful procedure, and how certain can you be?

I Assume you work at a factory and you want to make a quality
control of a product. Out of 8 randomly chosen items, 2 were faulty.
What do you believe about the probability p that an item is faulty,
and how certain can you be?

I We saw earlier that what people generally want from a statistical
analysis are probabilistic predictions about future observations.
Generally, such predictions will need to take the context into
account. If p is simply regarded as an ”unknown parameter”, this
cannot be done.
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Frequentist issue 4: Repeatability

Example: Stochastic modelling of oil reservoirs: There is only ONE
reservoir, how can one talk about probabilities?
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The Bayesian paradigm for statistics

I A set of variables (discrete and/or continuous) are chosen to
represent or describe some part of the real world, The variables
include

I Variables representing observed quantities.
I Variables representing things you want to know or predict.
I Ancillary variables.

I A function over all possible combinations of values of the variables is
established, representing a joint probability distribution: This
represents our knowledge before we have looked at the data.

I Some of the variables are observed (i.e., fixed) and the probability
model conditional on fixing these variables is found.

I Predictions for observable quantities are made from the conditional
model.
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Some comments on the Bayesian approach

I Our goal is to build stochastic models (probabilistic models) for the
real world, corresponding to our knowledge, and to use these models
to make probabilistic predictions.

I Probability is a feature of knowledge of the real world, not of the
real world itself.

I It is not useful to try to separate between ”unknown parameters”
and ”random variables” in these models: All are known/unknown to
some extent, and they should all be treated as random variables.

I The stochastic models are personal (as they model knowledge), but
rational persons with the same knowledge about some part of reality
should obtain the sams stochastic models for that part of reality.
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Bayesian comments on example from frequentist issue 3

I Note that predictions are key!

I Note that predictions might vary, in that they might use different
information. They are personal. There is no ”correct” prediction.

I You would model the probability p for a successful procedure as a
random variable, not as a parameter.

I You would model the probability density for p without taking into
account the experiment where 2 of 8 procedures succeded: The prior
for p.

I You then compute the probaility density for p taking into account
the dat from the experment: This is the posterior for p.
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Statistics as learning, not ”estimation”

I Assume a stochastic model includes a variable X modelling some
real world quantity. Assume that quantity is observed to have the
value x . Then our updated model should be the stochastic model
conditioned on the information X = x .

I Technically, this conditioning will correspond to using Bayes
theorem, which is why this is called Bayesian statistics.

I In fact, all scientific learning is based on making observations. If a
scientific theory is represented as a stochastic model, the process of
scientific learning can be represented, to a certain approximation, as
a Bayesian update of this model.
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Example: Stochastic modelling of oil reservoirs

I The variable of interest might be the amount of oil, the data might
be geological observations along a trial well. Many other variables
describe the geological geometry.

I Not useful to estimate ”parameters” from data: Knowledge about
geological geometry will only increase somewhat with this particular
data.

I Important to take the residual uncertainty in parameters into
consideration, when predicting!
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Frequentist vs Bayesian statistics

I The frequentist and Bayesian paradigms, when used on the same
problem, often yield similar or identical practical results. Why?

I The two methods should share the same likelihood model. A
frequentist approach for estimation followed by prediction in many
cases correspond computationally to a particular choice of prior
distribution on the parameters. When this prior corresponds to the
one used in the Bayesian analysis, the two approaches give similar
results in practice.

I Example: Learning about a proportion p from repeated experiments.
A uniform prior on [0, 1] yields Bayesian results corresponding to
classical ones.
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Example: Intervals for expectations of normal distributions

I We assume data x1, . . . , xn is a random sample from a normal
distribution with expectation µ and known variance σ2 = 1.

I A frequentist analysis can compute from x1, . . . , xn a 95%
confidence interval, say [0.42, 0.73], for µ.

I People tend to interpret this as P(0.42 ≤ µ ≤ 0.73) = 0.95. (This
interpretation is not correct).

I However, if we assume a flat prior for µ and do a Bayesian analysis,
we derive at the 95% credibility interval [0.42, 0.73]. The correct
interpretation of this is exactly P(0.42 ≤ µ ≤ 0.73) = 0.95.

I Note: We here expand the set of probability distributions to include
also improper distributions, i.e., those that integrate (or sum) to ∞.

I For many, but not all, situations, a flat prior may be reasonable.
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