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Review of Lecture 2

I Basic concepts: Prior, posterior, ...

I Conjugate priors. Computations.

I The prior predictive and posterior predictive. Computations.

I The exponential family of distributions.
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Mixtures of conjugate priors

I A family of conjugate priors, with limited flexibility, can be greatly
extended by also considering linear combinations of these prior
densities.

I Example: The Poisson-Gamma conjugacy: Assume
π(x | θ) = e−θθx/x! and π(θ) ∝θ θα−1 exp(−βθ) so that
π(θ | x) ∝θ θα+x−1 exp(−(β + 1)θ). Then a linear combination prior

π(θ) = C1θ
α1−1 exp(−β1θ) + C2θ

α2−1 exp(−β2θ)

will result in a linear combination posterior

π(θ | x) ∝θ C1θ
α1+x−1 exp(−(β1+1)θ)+C2θ

α2+x−1 exp(−(β2+1)θ).

I This works for any conjugate family, and any linear combination of
priors from it.

I Note however that the weigts of the densities in the linear
combination are updated!
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Mixtures of conjugate priors: Formulas

I Assume π(θ | λ) is a family of conjugate priors to π(x | θ). Given
λ1, . . . , λn, let gi (θ | x) and fi (x) denote the posterior and the prior
predictive, respectively, when using the prior π(θ | λi ). Then

π(x | θ)π(θ | λi ) = gi (θ | x)fi (x).

I Assume we use a linear combination prior

π(θ) =
n∑

i=1

wiπ(θ | λi ) where
n∑

i=1

wi = 1.

I For the prior predictive we get

π(x) =

∫
π(x | θ)

n∑
i=1

wiπ(θ | λi ) dθ =
n∑

i=1

wi fi (x).

I for the posterior we get

π(θ | x) =
π(x | θ)π(θ)

π(x)
=
π(x | θ)

∑n
j=1 wjπ(θ | λj)∑n

i=1 wi fi (x)

=

∑n
j=1 wj fj(x)gj(θ | x)∑n

i=1 wi fi (x)
=

n∑
j=1

w ′j gj(θ | x) where wj =
wj fj(x)∑n
i=1 wi fi (x)

.
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Example of mixtures

I We use a Binomial likelihood Binomial(4, p), with 3 successes
observed in 4 trials.

I We use a mixture prior

π(p) = 0.5 · Beta(p; 2.5, 2.5) + 0.5 · Beta(p; 11, 31)

I Recall that if x | p ∼ Binomial(n, p) and p ∼ Beta(α, β) then the
prior predictive becomes

π(x) =

(
n

x

)
B(α + x , β + n − x)

B(α, β)

I Thus the first updated weight becomes

w ′1 =
0.5 ·

(
4
3

)B(2.5+3,2.5+1)
B(2.5,2.5)

0.5 ·
(
4
3

)B(2.5+3,2.5+1)
B(2.5,2.5) + 0.5 ·

(
4
3

)B(11+3,31+1)
B(11,31)

and similar for the second updated weight w ′2.
I The posterior becomes

π(p | x) = w ′1 Beta(x ; 2.5 + 3, 2.5 + 1) + w ′2 Beta(x ; 11 + 3, 31 + 1).
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Multivariate conjugacy example: The normal likelihood, no
parameters known

I Assume X ∼ Normal(µ, 1/τ), with both µ and τ uncertain. The
likelihood becomes

π(x | µ, τ) ∝µ,τ τ 1/2 exp
(
−τ

2
(x − µ)2

)
I Then the Normal-Gamma family is conjugate: The pair (µ, τ) has a

Normal-Gamma distribution with parameters µ0, λ > 0, α > 0, β > 0
if the density has the form

π(µ, τ | µ0, λ, α, β) =
βα
√
λ

Γ(α)
√

2π
τα−1/2 exp

(
−βτ − λτ

2
(µ− µ0)2

)
I Note: If (µ, τ) has the Normal-Gamma distribution above, we have
τ ∼ Gamma(α, β) and µ | τ ∼ Normal(µ0, 1/(λτ)).
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Example

I Assume x = (x1, x2, . . . , xn) observed from Normal(µ, 1/τ).
I Assume prior

τ ∼ Gamma(α, β) and µ | τ ∼ Normal(µ0, 1/(λτ))

I The posterior becomes (compute or use Wikipedia...)

τ | x ∼ Gamma

(
α +

n

2
, β +

1

2

n∑
=1

(xi − x)2 +
nλ

λ+ n

(x − µ0)2

2

)

µ | τ, x ∼ Normal

(
λµ0 + nx

λ+ n
,

1

(λ+ n)τ

)
I Numerical example: x = (3.1, 4.2, 2.9, 3.7, 3.9). Plot:

I Likelihood
I Prior

τ ∼ Gamma(1, 1/3) and µ | τ ∼ Normal(3, 3/τ)

I Posterior

τ ∼ Gamma(3.5, 0.9783) and µ | τ ∼ Normal(3.525, 1/(5.33 · τ))
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The prior

I Where does the prior come from?

I From “other information” than the current data; possibly older data.
The context.

I What if the context indicates “no prior information”?

I For many likelihood models there exist “non-informative priors”.

I For the Normal-Gamma prior to the Normal distribution, try the
prior α = −1/2, β = λ = µ0 = 0.

I NOTE: The posterior now becomes
τ ∼ Gamma( n−1

2 , 12
∑n

i=1(xi − x)2) and µ | τ ∼ Normal(x , 1
nτ ),

corresponding to standard frequentist analysis.

I NOTE: Plugging in the suggested parameters into the prior density
gives π(µ, τ) ∝µ,τ τ−1. The prior is an improper prior: It does not
integrate to 1!
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Stepwise Bayesian updating

I Assume x = (x1, . . . , xm) is a random sample, so that

π(x | θ) =
m∏
i=1

π(xi | θ)

I Using a prior π(θ) the posterior becomes

π(θ | x) ∝θ

m∏
i=1

π(xi | θ)π(θ)

I If we first update only with the observations x1, . . . , xk , we get the
posterior

π(θ | x1, . . . , xk) ∝θ

k∏
i=1

π(xi | θ)π(θ)

I We see that if we use this as the prior and update with the remaining data
(xk+1, . . . , xm), we get the same result as before.

I In Bayesian statistics, we may subdivide the data into data subsets and
update the model stepwise with the data, as long as all the data sets are
mutually independent given the model parameter θ.
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Multinomial-Dirichlet conjugacy

I Assume x = (x1, . . . , xn) ∼ Multinomial(m, θ1, θ2, . . . , θn), with
θ1 + · · ·+ θn = 1, so that xi counts the number of results of type i
in m independent trials, if results of type i have probability θi . The
probability mass function is

π(x | θ1, . . . , θn) =
m!

x1! . . . xk !
θx11 . . . θxnn

I (θ1, . . . , θn) has a Dirichlet distribution with parameters α1, . . . , αn

if the density can be written as

π(θ1, . . . , θn | α1, . . . , αn) =
Γ(α1 + · · ·+ αn)

Γ(α1) . . . Γ(αn)
θα1−1
1 . . . θαn−1

n

I Prove that the Dirichlet family is a conjugate family to the
Multinomial likelhiood!
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Applied example: Forensic DNA matches

I DNA matching between a trace and a person may be used as proof
in criminal cases.

I Given that there is a match, how strong is the evidence? Could the
match have been by chance?

I DNA traces collect information from (mostly independent) loci (i.e.,
locations) in the genome. At these loci, each person has two copies
of an allele, various alleles may exist in the population.

I Popular forensic loci are STRs, where alleles differ by the number of
repetitions of a short sequence (such as, e.g., CGTT).

I To answer question above, one needs to establish the probaility of
observing in a random person each possible allele. For this databases
are collected.

I Lets say a (toy) database of size 16 contans the counts: 14: 3; 15:
9, 16: 3, 17: 0, 18: 1. What is the population probabilities of each
allele? How certain can you be?

I It is then common, and advantageous, to use the
Multinomial-Dirichlet model, with pseudocounts.
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Laws of total expectation, total variance

Assume you have a joint density π(x , θ). Note the formulas

E(x) = E(E(x | θ))

and
Var(x) = E(Var(x | θ)) + Var(E(x | θ)).

You should be able to use and prove these formulas.
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The multivariate normal distribution

I We say X has a multivariate (n-variate) normal distribution, if it is a
vector of length n with density

π(X ) =
1

|2πΣ|1/2
exp

(
−1

2
(X − µ)Σ−1(X − µ)t

)
where the vector µ is the expectation and the n × n symmetric
matrix Σ is the covariance matrix. |2πΣ| is the determinant of 2πΣ.

I We write X ∼ Normal(µ,Σ).

I Just as in the 1-dimensional case: If Y | X ∼ Normal(AX + B,Σ1)
and X ∼ Normal(µ,Σ0), and if we look at Y | X as a likelihood and
π(X ) as a prior, then this is a conjugate prior.

I We usually express this by using that
I In the case above, the joint density for X and Y is multivariate

normal.
I For a multivariate normal vector, the conditional vector when fixing

one or more components in the vector is also multivariate normal.
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The joint multivariate normal distribution

I Assume Y | X ∼ Normal(AX + B,Σ1) and X ∼ Normal(µ,Σ0).
Then (

X
Y

)
∼ Normal

([
µ

Aµ+ B

]
,

[
Σ0 Σ0A

t

AΣ0 AΣ0A
t + Σ1

])
I One can prove this directly from the definitions, or use

I Prove first that the joint distribution must be multivariate normal.
I Then, compute the expectation and the covariance matrix of the

joint vector, using, e.g., the formulas for total expectation and
variation, or matrix algebra.
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The conditional and the marginal in a multivariate normal
distribution

Assume the joint distribution for two vectors X and Y is multivariate
normal. Then

I If we integrate out one of them, e.g. Y , the marginal for X , the
remaining one, is multivariate normal. The parameters can be read
off the expectation and the covariance matrix of the joint
distribution.

I If we fix Y , then the conditional distribution X | Y is also
multivariate normal. In fact, if(

X
Y

)
∼ Normal

([
µ1

µ2

]
,

[
P11 P12

P21 P22

]−1
)

we have

X | Y ∼ Normal(µ1 − P−1
11 P12(Y − µ2),P−1

11 )
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Elements of a proof

I Prove the algebraic matrix identity([
θ1
θ2

]
−
[
µ1

µ2

])t [
P11 P12

P21 P22

]([
θ1
θ2

]
−
[
µ1

µ2

])
=

(
θ1 − µ1 + P−1

11 P12(θ2 − µ2)
)t
P11

(
θ1 − µ1 + P−1

11 P12(θ2 − µ2)
)

+(θ2 − µ2)t(P22 − P21P
−1
11 P12)(θ2 − µ2).

I Use the definition of the joint density for X and Y , and rewrite it as
two factors, one depending only on Y .

6 / 6


	lecture3.1
	lecture3.2
	lecture3.3
	lecture3.4

