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Overview of Bayesian inference so far

» A stochastic model (joint probability density) for all variables is
constructed.
> Variables represent data (x), unknown parmeters (6), and values
you want to predict (xnew ).
> Generally, the joint model is presented as
w(x, xnew, 0) = 7(x, xnew | 6)w(0), where () the prior. Often we
have independence given the parameter 6, so that
w(x, xnew | 0) = 7(x | O)m(xnew | 0) where (x| 0) is the likelihood.
> Generally, the goal is to make posterior predictions of xygy/, so to
describe the posterior predictive m(xyew | x). Either one may do
this directly, or first find the posterior 7(6 | x) and then the posterior
predictive m(xnew | x) = [ w(xnew | 0)7 (0 | x) db.
» In the simplest models, the posterior and posterior predictive can be
computed analytically using conjugacy.
» When the total number of unknown variables in the model is small
(1-3?) you may use numerical discretization to find the posterior.

» In all other cases, we need other methods.
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next idea: Bayesian inference using simulation

Assume we have a model 7(x, xyew, 8). Do inference in two steps:

> Generate 01,0,,...,0y as an (approximate) sample from the
posterior 7(6 | x).
> Use these 6 values to obtain information about the posterior of 6 or
the posterior predictive for xyew:
> The posterior distribution of # can be investigated by approximating
it with 917 92, . ,9/\/.
> The predictions for xyew can be obtain by averaging the predictions
7T(XNEW | 9) over 01, e ,9/\/.
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Monte Carlo Integration

Assume 61, 6,,...,0y is a random sample from (6 | x).
> Pr(9 > Z) ~ #O;SIillbove z
» We can rewrite as
Eoix(1(0 > 2)) = //(9 > z)m(0 | x) Z 1(6; > z)

> More generally, Eg(f(0)) ~ % Zi:l f(0;).
» Formally, according to the Strong Law of large numbers,

lim fo ) = Egx(£(9)).

N—oo N

» Making predictions:

m(xnew | )7 (0 | x) dO = Eg|x(7(Xnew | )

N
E ™ XNEW | 6
i=1

7T(XNEW | X) =

|
S~

Q
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Accuracy of Monte Carlo integration

Assume 61, 6,,...,0y is a random sample from (6 | x).
» The Central Limit Theorem (CLT) states that, approximately,

y arg x(f(0
%Z f(6;) ~ Normal (Eex(f(e))’ VON(())>

i=1
as long as the first two moments of f(f) exist.

» Thus a traditional 95% approximate confidence interval for
Eox(f(0)) is

1 & 1
N ; £(0;) + 1.96ﬁ Varg (£ (6)).
> If we write £(6) = vazl f(6;)/N and estimate
1 )2
Varg,(£(8) = s> = == D (F(6:) ~ F(9))

i=1
we get the approximate confidence interval Z,N:l f(0;) £ 1.962~.
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Example: Estimating a proportion

> Assume f(0) = I(g(0) < @) so that we want to estimate the
posterior probability p = Pr(g(f) < «) that g(6) is below «.

> Following the above, the estimate p = Z,N:l f(6;)/N consists of
counting the proportion of the g(§;) that is below c.

> We get

Var(I(g(0 < @))) = E(/(g(¢ < @) — E(I(g(0 < )))* = p — p*.

Thus the relative variability of an estimate can be estimated as

ValF8) b
E(F(9)) 5

which is large when p is small.

> In other words: Estimating a tail quantile for a probability
distribution by counting the number of times sampled values are in
the tail may not give the desired accuracy.
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Example: Approximating quantiles by simulation

To compute an approximate interval containing, e.g., 90% of the
probability for a random variable X:

» Simlulate xq, ..., x, from X.
» Order them by size and fiind the 5’th and 95'th empirical percentile.

» In R, use, e.g., quantile(..).
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Example: Our old friend the Beta-Binomial conjugacy

> 6 successes in 19 trials observed. Probability of success p has a flat
prior on [0, 1]. What is the probability of 4 or more successes in 7
new trials?

> y: number of successes in first trials. y,: number of successes in
new trials. Stochastic model:

7y, ¥n, p) = 7(y | pP)7(yn | p)m(p) = Binomial(y; 19, p)-Binomial(y,; 7, p)

» The prior for p can be expressed as Beta(1,1) and because of
conjugacy the posterior for p then becomes Beta(7,14).
» Three alternative ways to compute with R the answer to the
question above:
» Use simulation from the posterior for p.
> Use conjugacy to to compute the posterior predictive for y, given y.
> Use discretization.
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Simulation of random variables

» As discussed above, we would like to obtain an (approximate)
sample 61, ...,0y from the posterior (6 | x). How do we do it?

» 6 may be high dimensional, and the posteior 7(0 | x) may be a
complicated function, maybe known only up to a constant if it is
computed using 7(0 | x) oo w(x | )7 (6).

» In this course we will mainly simulate with Markov chain Monte
Carlo (MCMC) in such cases.

» But first, we go through some simpler simulation methods:

» Some basic simulation methods
> Rejection sampling
» Slice sampling (in later lecture)
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Simulation from a uniform distribution

» Simulation from Uniform[0, 1] is the basis of all computer based
simulation.

» What does it mean that xq,. .., x, ~ Uniform[0, 1] is "random”? A
possible interpretation: We have no way to predict the coming
numbers; the best guess for their distribution is Uniform[0, 1].

» The computer uses a deterministic function applied to a seed

(" pseudo-random” ). The seed can be set (in R with
set.seed(...)) or is taken from the computer clock.

> It should be in practice impossible to apply any kind of visualiation
or compute any kind of statistic which has properties other than
those predicted when the sequence xi, ..., x, is iid Uniform[0, 1].
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Simulating from discrete distributions

» If X is a random variable on a finite set of real numbers, the
cumulative distribution can be computed in a vector. X can be
simulated by comparing a uniform random variable U to the
numbers in this vector. Example: Binomial distribution.

» If X is a random variable on a countable set of real numbers, one
can use a list of the probabilities of the most probable outcomes,
and expand this list as needed, if extreme values are simulated in a
uniform distribution. Example: The Poisson distribution.
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The inverse transform

» Let X be a random variable with invertible cumulative distribution
function F(x). If U ~ Uniform[0,1], then F~1(U) is a random
sample from X.

> Note:
Pr(F~*(U) < a) = Pr(F(F*(V)) < F(a)) = Pr(U < F(a)) = F(a)

» Example: The exponential distribution Exp(\) has density
m(X) = Aexp(—xA) and cumulative distribution

F(x) =1—exp(—Ax)
F(x) = u gives F~1(u) = —1/Xlog(1l — u). As 1 — u is also uniform,

we can simulate with
—1/Mog(u)
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The inverse transform, cont.

» Example: Logistic distribution. Best defined by defining its
cumulative distribution (for standard logistic distribution):

F(x) = 1/(1+ exp(—x))

Easy to invert. The distribution can be adjusted with changing the
mean and the scale.

» Example: Cauchy distribution. Density:
7(x) = 1/(7(1 4 x?)).
The cumulative distribution is
F(x) =1/2 4 1/m arctan(x)

Easy to invert.
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Transforming samples

» Example: One can prove that, if Xi,..., X, is a random sample
from Exp(1) then

ﬁZX,- ~ Gamma(n, B)

i=1

» Example: One can prove that, if Xi,..., X, is a random sample
from Exp(1) then
a
? X
Zé% ~ Beta(a, b).
Zi:l Xi

» Example: One can prove that, if Uy, U is a random sample from
Uniform[0, 1], then

(\/ —2log(Uy) cos(2m Uy), \/Tg(Ul)sin(QﬂUz)>

is a random sample from the bivariate distribution

)
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Transformation of random variables

> Recall from basic probability theory: If f(x) is a density function,
and x = h(y) is a monotone transformation, then the density
function for y is

f(h(y))Ih'(y)|

> If we apply the INVERSE of h on a variable with known density, we
get the density of the resulting variable using the formula above.

» Example application: The non-informative prior for the precision 7
of a Normal distribution is the improper distribution with " density"”
7(7) oc 1/7. We have that 7 = h(0?) = 1/02. With h(x) = 1/x we
get that h'(x) = —1/x2. Thus the corresponding non-informative
prior for the variance o2 of a normal distribution is given as

~ 1
1/0?

1

(02)?

1

0?2’

n(0?)
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Transformation of multivariate random variables

» If x is a vector, if f(x) is a multivariate density function, and if
x = h(y) is a bijective differentiable transformation, then the
multivariate density function for y is

F(h(y))J(y)]

where |J(y)| is the determinant of the Jacobian matrix for the vector
function h(y).

» One application of this is in the proof of the formula used above to
sample from the bivariate normal distribution.
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Rejection sampling

» Sometimes we cannot easily simulate from a density f(x), (the
"target density”) but we can simulate from an "instrumental”
density g(x) that approximates f(x).

» If we can find a constant M such that f(x)/g(x) < M for all x (and
if f and g have the same support), we can use rejection sampling to
sample from f:

> Sample X using g(x).
> Draw u uniformly on [0, 1].

> If u- M- g(x) < f(x) accept x as a sample, otherwise reject x and
start again.
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Rejection sampling, cont.

» NOTE: Applicable in any dimension.

» The acceptance rate is 1/M (when both f and g are actual
densities), so we want to use a small M.

» NOTE: We may in fact do this with f(x) and g(x) equal to the
densities up to a constant, still a valid method!

» NOTE: When g(x) integrates to 1, the integral of f(x) can be
approximated as the acceptance rate multiplied by M.

» Example: Random variables with log-concave densities can be
simulated with this method.
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Simulating from the multivariate normal

Recall that x ~ Normal,(p, X) if

v

106) = g o0 (500 0 EHx - )

v

NOTE: If x1,...,xk are i.i.d Normal(0,1) then
x = (X1,...,%)" ~ Normalk(0, /).
If x ~ Normal,(0, /) then Ax ~ Normal(0, AA").
THUS: To simulate from Normal(yu, X):
» Simulate k independent standard normal random variables into a
vector x.
» Compute the (lower triangular) Choleski decomposition S of ¥: We
then have that ¥ = SS°*.
» Compute Sx + p: It is multivariate normal, and has the right
expectation and covariance matrix.

v

v
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Simulating from a marginal distribution

» Generally: If you have a sample (x1, 1), (x2, ¥2), - - -, (Xn, ¥n) from a
joint distribution of X and Y/, then xi, x>, ..., X, is a sample from
the marginal distribution of X.

» Simple application: If 7 ~ Gamma(k/2,1/2) and
x | 7 ~ Normal(0,1/7), then the marginal distribution of x is a
Student t-distribution with k degrees of freedom. To simulate:

» Draw 7 from Gamma(k/2,1/2).
> Then draw x from Normal(0,1/7).

» Much more generally: To simulate for example from the predictive
distribution for xygw in a Bayesian model, simulate from the joint
distribution with density 7(xyew, 6 | x), where x is the data and 6 is
the parameters. Then take the coordinates of the sample pertaining
to Xnew -
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