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Overview of Bayesian inference so far

I A stochastic model (joint probability density) for all variables is
constructed.

I Variables represent data (x), unknown parmeters (θ), and values
you want to predict (xNEW ).

I Generally, the joint model is presented as
π(x , xNEW , θ) = π(x , xNEW | θ)π(θ), where π(θ) the prior. Often we
have independence given the parameter θ, so that
π(x , xNEW | θ) = π(x | θ)π(xNEW | θ) where π(x | θ) is the likelihood.

I Generally, the goal is to make posterior predictions of xNEW , so to
describe the posterior predictive π(xNEW | x). Either one may do
this directly, or first find the posterior π(θ | x) and then the posterior
predictive π(xNEW | x) =

∫
π(xNEW | θ)π(θ | x) dθ.

I In the simplest models, the posterior and posterior predictive can be
computed analytically using conjugacy.

I When the total number of unknown variables in the model is small
(1-3?) you may use numerical discretization to find the posterior.

I In all other cases, we need other methods.
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The next idea: Bayesian inference using simulation

Assume we have a model π(x , xNEW , θ). Do inference in two steps:

I Generate θ1, θ2, . . . , θN as an (approximate) sample from the
posterior π(θ | x).

I Use these θ values to obtain information about the posterior of θ or
the posterior predictive for xNEW :

I The posterior distribution of θ can be investigated by approximating
it with θ1, θ2, . . . , θN .

I The predictions for xNEW can be obtain by averaging the predictions
π(xNEW | θ) over θ1, . . . , θN .
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Monte Carlo Integration

Assume θ1, θ2, . . . , θN is a random sample from π(θ | x).
I Pr(θ > z) ≈ # θi ’s above z

N .
I We can rewrite as

Eθ|x(I (θ > z)) =

∫
I (θ > z)π(θ | x) dx ≈ 1

N

N∑
i=1

I (θi > z).

I More generally, Eθ|x(f (θ)) ≈ 1
N

∑N
i=1 f (θi ).

I Formally, according to the Strong Law of large numbers,

lim
N→∞

1

N

N∑
i=1

f (θi ) = Eθ|x(f (θ)).

I Making predictions:

π(xNEW | x) =

∫
π(xNEW | θ)π(θ | x) dθ = Eθ|x(π(xnew | θ))

≈ 1

N

N∑
i=1

π(xNEW | θi )
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Accuracy of Monte Carlo integration

Assume θ1, θ2, . . . , θN is a random sample from π(θ | x).
I The Central Limit Theorem (CLT) states that, approximately,

1

N

N∑
i=1

f (θi ) ∼ Normal

(
Eθ|x(f (θ)),

Varθ|x(f (θ))

N

)
as long as the first two moments of f (θ) exist.

I Thus a traditional 95% approximate confidence interval for
Eθ|x(f (θ)) is

1

N

N∑
i=1

f (θi )± 1.96
1√
N

√
Varθ|x(f (θ)).

I If we write f (θ) =
∑N

i=1 f (θi )/N and estimate

Varθ|x(f (θ)) ≈ s2 =
1

N − 1

N∑
i=1

(
f (θi )− f (θ)

)2
we get the approximate confidence interval 1

N

∑N
i=1 f (θi )± 1.96 s√

N
.
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Example: Estimating a proportion

I Assume f (θ) = I (g(θ) ≤ α) so that we want to estimate the
posterior probability p = Pr(g(θ) ≤ α) that g(θ) is below α.

I Following the above, the estimate p̂ =
∑N

i=1 f (θi )/N consists of
counting the proportion of the g(θi ) that is below α.

I We get

Var(I (g(θ ≤ α))) = E(I (g(θ ≤ α)))− E(I (g(θ ≤ α)))2 = p − p2.

Thus the relative variability of an estimate can be estimated as√
Var(f (θ))

E(f (θ))
≈

√
p̂ − p̂2

p̂
=

√
1/p̂ − 1.

which is large when p̂ is small.

I In other words: Estimating a tail quantile for a probability
distribution by counting the number of times sampled values are in
the tail may not give the desired accuracy.
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Example: Approximating quantiles by simulation

To compute an approximate interval containing, e.g., 90% of the
probability for a random variable X :

I Simlulate x1, . . . , xn from X .

I Order them by size and fiind the 5’th and 95’th empirical percentile.

I In R, use, e.g., quantile(..).
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Example: Our old friend the Beta-Binomial conjugacy

I 6 successes in 19 trials observed. Probability of success p has a flat
prior on [0, 1]. What is the probability of 4 or more successes in 7
new trials?

I y : number of successes in first trials. yn: number of successes in
new trials. Stochastic model:

π(y , yn, p) = π(y | p)π(yn | p)π(p) = Binomial(y ; 19, p)·Binomial(yn; 7, p)

I The prior for p can be expressed as Beta(1, 1) and because of
conjugacy the posterior for p then becomes Beta(7, 14).

I Three alternative ways to compute with R the answer to the
question above:

I Use simulation from the posterior for p.
I Use conjugacy to to compute the posterior predictive for yn given y .
I Use discretization.
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Simulation of random variables

I As discussed above, we would like to obtain an (approximate)
sample θ1, . . . , θN from the posterior π(θ | x). How do we do it?

I θ may be high dimensional, and the posteior π(θ | x) may be a
complicated function, maybe known only up to a constant if it is
computed using π(θ | x) ∝θ π(x | θ)π(θ).

I In this course we will mainly simulate with Markov chain Monte
Carlo (MCMC) in such cases.

I But first, we go through some simpler simulation methods:
I Some basic simulation methods
I Rejection sampling
I Slice sampling (in later lecture)
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Simulation from a uniform distribution

I Simulation from Uniform[0, 1] is the basis of all computer based
simulation.

I What does it mean that x1, . . . , xn ∼ Uniform[0, 1] is ”random”? A
possible interpretation: We have no way to predict the coming
numbers; the best guess for their distribution is Uniform[0, 1].

I The computer uses a deterministic function applied to a seed
(”pseudo-random”). The seed can be set (in R with
set.seed(...)) or is taken from the computer clock.

I It should be in practice impossible to apply any kind of visualiation
or compute any kind of statistic which has properties other than
those predicted when the sequence x1, . . . , xn is iid Uniform[0, 1].
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Simulating from discrete distributions

I If X is a random variable on a finite set of real numbers, the
cumulative distribution can be computed in a vector. X can be
simulated by comparing a uniform random variable U to the
numbers in this vector. Example: Binomial distribution.

I If X is a random variable on a countable set of real numbers, one
can use a list of the probabilities of the most probable outcomes,
and expand this list as needed, if extreme values are simulated in a
uniform distribution. Example: The Poisson distribution.

4 / 9



The inverse transform

I Let X be a random variable with invertible cumulative distribution
function F (x). If U ∼ Uniform[0, 1], then F−1(U) is a random
sample from X.

I Note:

Pr(F−1(U) ≤ α) = Pr(F (F−1(U)) ≤ F (α)) = Pr(U ≤ F (α)) = F (α)

I Example: The exponential distribution Exp(λ) has density
π(X ) = λ exp(−xλ) and cumulative distribution

F (x) = 1− exp(−λx)

F (x) = u gives F−1(u) = −1/λ log(1− u). As 1− u is also uniform,
we can simulate with

−1/λlog(u)
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The inverse transform, cont.

I Example: Logistic distribution. Best defined by defining its
cumulative distribution (for standard logistic distribution):

F (x) = 1/(1 + exp(−x))

Easy to invert. The distribution can be adjusted with changing the
mean and the scale.

I Example: Cauchy distribution. Density:

π(x) = 1/(π(1 + x2)).

The cumulative distribution is

F (x) = 1/2 + 1/π arctan(x)

Easy to invert.

6 / 9



Transforming samples

I Example: One can prove that, if X1, . . . ,Xn is a random sample
from Exp(1) then

β

n∑
i=1

Xi ∼ Gamma(n, β)

I Example: One can prove that, if X1, . . . ,Xn is a random sample
from Exp(1) then ∑a

i=1 Xi∑a+b
i=1 Xi

∼ Beta(a, b).

I Example: One can prove that, if U1,U2 is a random sample from
Uniform[0, 1], then(√

−2 log(U1) cos(2πU2),
√
−2 log(U1) sin(2πU2)

)
is a random sample from the bivariate distribution

Normal

((
0
0

)
,

(
1 0
0 1

))
.
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Transformation of random variables

I Recall from basic probability theory: If f (x) is a density function,
and x = h(y) is a monotone transformation, then the density
function for y is

f (h(y))|h′(y)|
I If we apply the INVERSE of h on a variable with known density, we

get the density of the resulting variable using the formula above.

I Example application: The non-informative prior for the precision τ
of a Normal distribution is the improper distribution with ”density”
π(τ) ∝ 1/τ . We have that τ = h(σ2) = 1/σ2. With h(x) = 1/x we
get that h′(x) = −1/x2. Thus the corresponding non-informative
prior for the variance σ2 of a normal distribution is given as

π(σ2) ∝ 1

1/σ2

∣∣∣∣− 1

(σ2)2

∣∣∣∣ =
1

σ2
.
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Transformation of multivariate random variables

I If x is a vector, if f (x) is a multivariate density function, and if
x = h(y) is a bijective differentiable transformation, then the
multivariate density function for y is

f (h(y))|J(y)|

where |J(y)| is the determinant of the Jacobian matrix for the vector
function h(y).

I One application of this is in the proof of the formula used above to
sample from the bivariate normal distribution.
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Rejection sampling

I Sometimes we cannot easily simulate from a density f (x), (the
”target density”) but we can simulate from an ”instrumental”
density g(x) that approximates f (x).

I If we can find a constant M such that f (x)/g(x) ≤ M for all x (and
if f and g have the same support), we can use rejection sampling to
sample from f :

I Sample X using g(x).
I Draw u uniformly on [0, 1].
I If u ·M · g(x) ≤ f (x) accept x as a sample, otherwise reject x and

start again.
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Rejection sampling, cont.

I NOTE: Applicable in any dimension.

I The acceptance rate is 1/M (when both f and g are actual
densities), so we want to use a small M.

I NOTE: We may in fact do this with f (x) and g(x) equal to the
densities up to a constant, still a valid method!

I NOTE: When g(x) integrates to 1, the integral of f (x) can be
approximated as the acceptance rate multiplied by M.

I Example: Random variables with log-concave densities can be
simulated with this method.
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Simulating from the multivariate normal

I Recall that x ∼ Normalk(µ,Σ) if

π(x) =
1

|2πΣ|1/2
exp

(
−1

2
(x − µ)tΣ−1(x − µ)

)
I NOTE: If x1, . . . , xk are i.i.d Normal(0, 1) then

x = (x1, . . . , xn)t ∼ Normalk(0, I ).

I If x ∼ Normalk(0, I ) then Ax ∼ Normal(0,AAt).

I THUS: To simulate from Normal(µ,Σ):
I Simulate k independent standard normal random variables into a

vector x .
I Compute the (lower triangular) Choleski decomposition S of Σ: We

then have that Σ = SS t .
I Compute Sx + µ: It is multivariate normal, and has the right

expectation and covariance matrix.
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Simulating from a marginal distribution

I Generally: If you have a sample (x1, y1), (x2, y2), . . . , (xn, yn) from a
joint distribution of X and Y , then x1, x2, . . . , xn is a sample from
the marginal distribution of X .

I Simple application: If τ ∼ Gamma(k/2, 1/2) and
x | τ ∼ Normal(0, 1/τ), then the marginal distribution of x is a
Student t-distribution with k degrees of freedom. To simulate:

I Draw τ from Gamma(k/2, 1/2).
I Then draw x from Normal(0, 1/τ).

I Much more generally: To simulate for example from the predictive
distribution for xNEW in a Bayesian model, simulate from the joint
distribution with density π(xNEW , θ | x), where x is the data and θ is
the parameters. Then take the coordinates of the sample pertaining
to xNEW .
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