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The Metropolis-Hastings algorithm

Given a probability density f that we want to simulate from. Construct a
proposal function q(y | x) which for every x gives a probability density
for a proposed new value y . The algorithm starts with a choice of an
initial value x (0) for x , and then simulates x (t) given x (t−1). Specifically,
given x (t),

I Simulate a new value y according to q(y | x (t)).

I Compute the acceptance probability

ρ(x (t), y) = min

(
f (y)q(x (t) | y)

f (x (t))q(y | x (t))
, 1

)
.

I Set

x (t+1) =

{
y with probability ρ(x (t), y)
x (t) with probability 1− ρ(x (t), y)
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Toy example: Simulate from Beta(17, 13) distribution

I We first try a random-walk normal proposal function.

I Note the trace plot: The plot of the sequence of values
x0, x1, x2, . . . xN .

I Note the acceptance rate: The actual rate at which we are setting
x (t+1) equal to the value y proposed by the proposal function rather
than setting x (t+1) = x (t).
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Symmetric proposal functions

Random walk Metropolis-Hastings

I For example, we use

q(y | x) = g(y − x),where g(−x) = g(x) for all x .

for some density function g : The proposal becomes symmetric
around x .

I This means that q(y | x) = q(x | y) and the acceptance probability
becomes

min

(
f (y)

f (x)
, 1

)
where f is the target density.
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Independent proposal functions

I A simple special case is when q(y | x) does not depend on x ; i.e.
proposals are independently generated from q(y).

I The generated values are however not independent: When the
proposed value is not accepted, the new value in the chan is equal to
the old.

I Note that, if the ratio f (x)/q(x) is unbounded, the chain can
become stuck in such point where this ratio is too high. Then the
convergence can be very bad.
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Apply to Beta(17, 13) toy example

I Try out a Uniform(0, 1) proposal function.

I Try out a Normal(0.57, 0.008) which has (approximately) same
expectation and variance.

I For independent proposals, the proposal density should be as similar
as possible to the target density.

I However, in thousands of dimensions, this may not be easy to
achieve....
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Bivariate example with random walk proposal

I As a toy example, we want to simulate from a density that is 0.5 on
the squares [1, 2]× [1, 2] and [3, 4]× [3, 4] and zero everywhere else.

I As a first try, we use a proposal function (x , y) 7→ (x + u1, y + u2)
where u1, u2 ∼ Uniform(−0.1, 0.1).

I NOTE: The resulting Markov chain is not ergodic! So proposal
function does not work.

I Second try: (x , y) 7→ (x , y) + ε, where ε ∼ Normal(0,Σ) for some
covariance matrix Σ.

I The scaling of the size of the jumps can be very trickiy to get right,
to produce good convergence of the Markov chain.
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Example: A bimodal density

I A major difficulty for Metropolis Hastings may be to simulate from
multimodal densities.

I As an example we explore simulating from the mixed density

π(p) = 0.5 · Beta(p; 2, 20) + 0.5 · Beta(p; 20, 2)

I A possibility in such cases is to mix proposing short jumps with
occationally proposing large jumps, of a size and direction that is
tailored to the target density. (We hope to return to this point).
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Example: Braking distance of cars

We are given data which, for i = 1, . . . , 50 cars (in the 1920s) lists their
speed xi (in mph) and braking distance yi . From this, we would like to
predict the braking distance at speed 21 mph.

I First, decide on the type of predictions you need answered, for
example: “If a car has speed 21 mph, what is the probability the
breaking distance will be above 80 feet?”

I Next step: Explore the data and the context, and decide on a
reasonable model.

I We come up with the following model:

yi = θ1 + θ2 · xi + θ3 · x2i + εi

where εi ∼ Normal(0, θ24).

I For simplicity, we use a flat (improper) prior on the parameters
θ = (θ1, θ2, θ3, θ4).
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Example: Braking distance of cars, cont.

I The posterior becomes proportional to the likelihood:

f (θ) =
50∏
i=1

Normal(yi ; θ1 + θ2 · xi + θ3 · x2i , θ24)

I We simulate using a Random Walk Metropolis Hastings MCMC.

I Note that, together with simulation of the parameters, we also
simulate the breaking distance at speed 21 at these parameters, as
this is what we want to predict. We can then use these values, with
Monte Carlo integration, to answer or original question.
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Advantages with Metropolis Hastings

I Great flexibility: It will (in principle) work for any (posterior) density
where the density function can be computed up to a constant.

I Great flexibility in the choice of proposal function q(x | y).

I The algorithm is quite simple and can be easily programmed in
many cases.
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Some problems with Metropolis Hastings

I (Small issue): You need to make sure your proposal function makes
the Markov chain ergodic.

I (Large issue): Even if the Markov chain converges, it may converge
too slowly for practical use.

I (Large issue): Even if very many proposal functions work in theory,
it may be quite difficult to find ones that lead to reasonably fast
convergence.

I (Large issue): It is almost always impossible to prove results about
convergence, and it is quite often difficult to ascertain how well a
chain has converged.

I This means that the accuracy of results is often unknown.
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Outputs to study convergence

As we generally cannot estimate the degree of convergence, we need to
at least make sure we detect clear signs of non-convergence. For example
using:

I Trace plots.

I Acceptance rates.

I Varying the starting point.
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Checking convergence

I An attempt on a systematic test for convergence is based on the
following:

I Start k independent chains at k independent starting points.
I Generate the Markov chains in parallell.
I If the chains have converged, the variance between the chains should

correspond to the variance within the chains.

I Formal tests have been developed using this idea.

I An (old, but useful) R package directed towards analyzing
convergence from MCMC output: coda.
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Burn-in

I Values in the last part of the generated Markov chain will be closer
in distribution to the target distribution than those in the first part.

I To improve the accuracy of the Monte Carlo integration, we throw
away the first part, the “burn-in”.

I The size of the burn-in can be detected from plots, or from
experience in similar simulations.
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Thinning

I The Markov chain sequence is a dependent sequence, not a random
sample (even if each single value has a distribution close to the
target distribution).

I The amount of autocorrelation can be studied in plots, e.g. with the
R function acf.

I The amount of autocorrelation can then be reduced by using, e.g.,
only each 10th or 50th value in the chain.

I Only a good idea if you need an approximate random sample. For
Monte Carlo integration, do not do thinning.
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