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The Laplace approximation

I For many models, the posterior π(θ | data) for the parameter will
have a shape that is close to a normal distribution. (A reason for
this is the Central Limit Theorem).

I So, sometimes using some (multivariate) normal approximation for
the true posterior distribution is a good enough approximation.

I If we use the normal distribution that has the same mode as the
actual posterior and the same second derivatives (the first derivatives
are zero at the mode), we call it the Laplace approximation.

I The Laplace approximation can be found for example by numerical
differentiation of the logged posterior density, which needs to be
known only up to a constant. See the R function laplace in the R
package LearnBayes.
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The Laplace multivariate normal approximation

It is sometimes useful to consider the following approximation, when we
have a density written

π(θ) = C · exp(h(θ))

for some known function h and unknown constant C . If θ̂ is the mode of
the density, the second-degree Taylor approximation gives

h(θ) ≈ h(θ̂) +
1

2
(θ − θ̂)tH(θ̂)(θ − θ̂)

where H(θ) is the Hessian matrix of second derivatives. We get

π(θ) ≈ C · exp(h(θ̂)) exp

(
−1

2
(θ − θ̂)t((−H(θ̂))−1)−1(θ − θ̂)

)
.

This means that π(θ) might be approximated by a multivariate normal
distribution with expectation θ̂ and covariance matrix −H(θ̂)−1. If we
integrate both sides with respect to θ we get

C ≈ 1

exp(h(θ̂))|2π(−H(θ̂))−1|1/2
.
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A return to the “cars” example

I Remember examample from Lecture 6: Speeds and braking
distances for 50 cars are given. Predict the braking distance for a car
with speed 21 mph.

I We decided on a model and on using Metropolis Hastings random
walk for simulation. Some more decisions to make:

I Generating the starting point for the Markov chain.
I What step lengths should be used in the random walk?
I How many steps should be simulated?
I Should we remove a burn-in? How long?

I Some tools for making such decisions:
I How to find good starting points and reasonable step lengths (more

discussion now).
I Trace plots (discussed last time).
I Acceptance rates (discussed last time).
I Autocorrelation (more discussion now).
I Using multiple starting points and parallell chains (more discussion

now).
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Simulating from conditional densities

I Assume you have defined a density as proportional to some
complicated function of your parameters, for example

π(θ1, θ2, θ3) ∝θ1,θ2,θ3 θ
θ2
1 exp

(
−θ1(θ3 − θ2)4

)
sin2(θ2 + θ3)

What can you say about conditional densities, such as π(θ1 | θ2, θ3)?

I As π(θ1 | θ2, θ3) = π(θ1, θ2, θ3)/π(θ2, θ3) ∝θ1 π(θ1, θ2, θ3), we get
that we can use exactly the same formula, just fixing the values of
the parameters we condition on:

π(θ1 | θ2, θ3) ∝θ1 θ
θ2
1 exp

(
−θ1(θ3 − θ2)4

)
sin2(θ2 + θ3)

I The remaining function, regarded as a function of (in our case) just
θ1 may be a simpler density, maybe even recognizable as a standard
density.

I In our case we see that

θ1 | θ2, θ3 ∼ Gamma
(
θ2 + 1, (θ3 − θ2)4

)
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Gibbs sampling

I In many multivariate models, it may be difficult to simulate directly
from the posterior π(x1, x2, . . . , xn), but easy to simulate from each
of the conditional distributions π(xj | x1, . . . , xj−1, xj+1, . . . , xn) for
j = 1, . . . , n.

I Idea for simulation method: Iterate between the different j ’s,
simulating each time from the conditional distribution given
previously simulated values for the other coordinates.

I We formalize this as a Metropolis Hastings algorithm iterating
between n different proposal functions: For each j = 1, . . . , n, fix all
xi with i 6= j and for the j’th variable simulate x∗j using
π(xj | x1, . . . , xj−1, xj+1, . . . , xn).

3 / 5



Gibbs sampling, continued

I The acceptance probability in the MH algorithm is computed with

π(x∗)q(x | x∗)

π(x)q(x∗ | x)

=
π(x1, . . . , x

∗
j , . . . , xn)π(xj | x1, . . . , xj−1, xj+1, . . . , xn)

π(x1, . . . , xj , . . . , , xn)π(x∗j | x1, . . . , xj−1, xj+1, . . . , xn)

=
π(x1, . . . , xj−1, xj+1, . . . , xn)

π(x1, . . . , xj−1, xj+1, . . . , xn)
= 1

So accept always!

I This algorithm is called Gibbs sampling.

I For many models it is easy to implement and program.

I However, the convergence may be too slow unless the density is nice
and unimodal.
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Gibbs sampling: Examples

I Example: Simulate from a bivariate normal distribution. The
conditional distributions are normal, formulas are given in a previous
lecture. See R code.

I Example: Data y1, y2, . . . , yn are from a Normal(µ, τ−1) distribution,
with independent priors µ ∼ Normal(0, 1) and τ ∼ Gamma(3, 4).

I When τ is fixed we get

µ | τ, data ∼ Normal

(
nyτ

nτ + 1
,

1

nτ + 1

)
.

I When µ is fixed we get

τ | µ, data ∼ Gamma

(
3 +

n

2
, 4 +

1

2

n∑
i=1

(yi − µ)2
)
.

I When τ is fixed, the formula above is a result of the formula for the
posterior in the Normal-Normal conjugacy with fixed precision.

I When µ is fixed, the formula above is a result of the formula for the
posterior in the Normal-Gamma conjugacy with fixed expectation.
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Hierarchiclal models

I Sometimes, observed data have dependencies that can best be
described using a hierarchy.

I Example: Test results for students may depend on the class they are
in, the school they attend, and the country they live in.

I A statistical model for the data should then contain a random
variable for each “source of infuence”; they would depend on each
other in a hierarchy, which can be drawn as an upside-down tree, or
more generally as a network.

I When making computations, the tree structure can be very useful,
for example when using Gibbs sampling.
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A hierarchical example

Data x1, . . . , x8 and y1, . . . , y6 are organized into groups, and we want to
predict a value z1 in a third group. We assume a model

x1, . . . , x8 ∼ Normal(µ1, τ
−1
1 )

y1, . . . , y6 ∼ Normal(µ2, τ
−1
1 )

z1 ∼ Normal(µ3, τ
−1
1 )

µ1, µ2, µ3 ∼ Normal(10, τ−1
0 )

τ0 ∼ Gamma(1, 4)

τ1 ∼ Gamma(7, 3)

I We can make predictions for z1 given data x1, . . . , x8 and y1, . . . , y6
by simulating with Gibbs sampling from the model where the data is
fixed and the remaining variables µ1, µ2, µ3, τ0, τ1, z1 are simulated.

I Note: The exact form for the conditional distributions of each of
these variables can be found using conjugacy.
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Conditional distributions for the example

The conditional distributions become (prove yourself!)

µ1 | x1, . . . , x8, τ1, τ0 ∼ Normal

(
10τ0 + 8xτ1
τ0 + 8τ1

,
1

τ0 + 8τ1

)
µ2 | y1, . . . , y6, τ1, τ0 ∼ Normal

(
10τ0 + 6yτ1
τ0 + 6τ1

,
1

τ0 + 6τ1

)
µ3 | z1, τ1, τ0 ∼ Normal

(
10τ0 + z1τ1
τ0 + τ1

,
1

τ0 + τ1

)
τ0 | µ1, µ2, µ3 ∼ Gamma

(
1 +

3

2
, 4 +

1

2

3∑
i=1

(µi − 10)2

)

τ1 | µ1, µ2, µ3, x1 . . . x8, y1 . . . y6, z1 ∼ Gamma

(
7 +

15

2
, 3 +

1

2

8∑
i=1

(xi − µ1)2

+
1

2

6∑
i=1

(yi − µ2)2 +
1

2
(z1 − µ3)2

)
z1 | µ3, τ1 ∼ Normal(µ3, τ

−1
1 )
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Hierarchical models

I In most hierarchical models, there are conditional distributions that
do not have nice analytic forms.

I Using the posterior density over all the variables and removing
factors that do not involve the variable we want to simulate, we still
get a function proportional to its conditional density.

I We may update this variable using another type of Metropolis
Hastings proposal (like random walk).

I Note: It may often be better to work with the logged posterior
density: Then one may remove additive terms not involving the
variable one wants to simulate over.
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The slice sampler

I Idea: Do Gibbs sampling from ”the area under the density curve”.

I More formally, given density fx(x), simulate from the joint density

f (x , u) = I (0 < u < fx(x))

I Works even if the density fx is known only up to a constant.

I The challenge is to simulate x uniformly on {x : u < fx(x)}. This is
most easily done if for example fx is a decreasing function, so that it
is invertible.

I Example: Simulate from the density π(x) = 1
2 exp

(
−
√
x
)
. We

iterate between the following steps:
I Given an x value, simulate u ∼ Uniform

(
0, 1

2
exp

(
−
√
x
))
.

I Given a u value simulate x ∼ Uniform
(
0, (log(2u))2

)
: Note that

u = 1
2
exp

(
−
√
x
)
if and only if x = (log(2u))2 and that π(x) is

decreasing as a function of x .
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Generalization to more dimensions

I The theory can easily be extended to more dimensions: When we
want to simulate from the density

f (x) =
n∏

i=1

gi (x)

we can define the joint density

h(x , u1, . . . , un) =
n∏

i=1

I (0 < ui < gi (x))

I We see that the marginal density for x is f (x).
I We simulate from the joint density using Gibbs sampling. This is

very easy for the variables u1, . . . , un.
I The conditional distribution of x given u1, . . . , un is the uniform

distribution on the set

∩ni=1{x : ui < gi (x)}.

If it is easy to compute this set, slice sampling works well. One
example: If all the gi (x) functions are decreasing and invertible.
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Example: The Challenger disaster

I The goal is to compute the probability that a space shuttle “o-ring”
fails at a specific temperature. (An o-ring failing because of cold
weather was the cause of the Challenger space shuttle disaster).

I Data (x1, y1), . . . , (xn, yn) where xi denotes the temperature (in
Farenheit) and yi is 1 if there is a failure, 0 otherwise.

I We use a logistic regression model:

yi ∼ Bernoulli(p(xi )) p(xi ) =
exp(a + bxi )

1 + exp(a + bxi )
.

I The posterior becomes (using flat priors on a and b)

π(a, b | data) ∝
n∏

i=1

(
exp(a + bxi )

1 + exp(a + bxi )

)yi ( 1

1 + exp(a + bxi )

)1−yi

=
n∏

i=1

exp(a + bxi )
yi

1 + exp(a + bxi )
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Example continued

I Simulate from posterior for parameters (a, b) using slice sampling:

I For i = 1, . . . , n, simulate ui ∼ Uniform
[
0, exp(a+bxi )

yi

1+exp(a+bxi )

]
.

I Simulate (a, b) uniformly on set satisfying, for all i , ui <
exp(a+bxi )

yi

1+exp(a+bxi )
.

I Corresponds to a + bxi > log(ui/(1− ui )) for i with yi = 1, and
a + bxi < log((1− ui )/ui ) for i with yi = 0.

I To simulate (a, b) uniformly on this set, we first simulate a with

a ∼ Uniform

[
max
yi=1

(
log

ui
1− ui

− bxi

)
,minyi=0

(
log

1− ui
ui

− bxi

)]
I Then for b, we need to be more careful, simulating b uniformly in

the interval of numbers
I Greater than

(
log ui

1−ui
− a
)
/xi for i with yi = 1 and xi > 0.

I Smaller than
(
log ui

1−ui
− a
)
/xi for i with yi = 1 and xi < 0.

I Smaller than
(
log 1−ui

ui
− a
)
/xi for i with yi = 0 and xi > 0.

I Greater than
(
log 1−ui

ui
− a
)
/xi for i with yi = 0 and xi < 0.
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Example continued

I This is actually Example 7.11 in RC, but the book contains some
errors:

I Confusion beween (a, b) and (α, β)
I Second and fourth formulas on page 220 are wrong.
I No need to use a prior for a and b to get this to work; use centering

instead.

I Note that a and b are highly correlated in the posterior if we
implement the code directly. Much improved convergence and
accuracy is obtained by centering the data: Subtracting the average
value from the temperature values, performing the analysis, and
then adding back the average value.
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