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Missing data / augmented data

I Assume some data values are censored: You don’t know them
exactly, only that they are (for example) above some threshold. How
to deal with this?

I Example application: Survival analysis. You want to know how long
people live after some event. But some people are still alive at the
end of the study (or they died from other causes).

I We want to learn about density f (· | θ) from sample where x1, . . . , xk
are observed values and c1, . . . , cn are observations that the
corresponding xi is greater than some ai . The likelihood becomes

π(x1, . . . , xk , c1, . . . , cn | θ) =
k∏

i=1

f (xi | θ)
n∏

i=1

(1− F (ai | θ))

where F (· | θ) is the cumulative density.
I You may simulate from the posterior for θ using for example random

walk MH.
I ALTERNATIVELY: You may add to the model variables representing

the censored values, and simulate these together with the unknown
θ. This may often be a simpler and better solution! See R example.
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Example: Augmented data

I Example (7.7. in RC): In a genetics problem, one wants to know how
close two genes are on the chromosome, measured by a parameter θ.
Given n individuals, the number of individuals x1, x2, x3, x4 in each of
4 categories will be multinomially distributed accoring to

(x1, x2, x3, x4) | θ ∼ Multinomial

(
n,

1

2
+
θ

4
,

1

4
(1− θ),

1

4
(1− θ),

θ

4

)
Given a prior on θ, how do you simulate from the posterior?

I The likelihood for θ makes necessary approximate or numerical
simulation:

π(x1, . . . , x4 | θ) ∝θ

(
1

2
+
θ

4

)x1 (1

4
(1− θ)

)x2 (1

4
(1− θ)

)x3 (θ
4

)x4

.

I We extend the data (x1, x2, x3, x4) with a latent variable z , so that

(z , x1−z , x2, x3, x4) | θ ∼ Multinomial

(
n;

1

2
,
θ

4
,

1

4
(1− θ),

1

4
(1− θ),

θ

4

)
I The likelihood becomes

π(z , x1, . . . , x4 | θ) ∝θ θ
x1−z+x4(1− θ)x2+x3 .
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Example continued

I Note that, with the augmented data (z , x1, x2, x3, x4), the likelihood
has the Beta family of densities as conjugate priors! Assume, for
example, θ ∼ Beta(α, β).

I You can now use Gibbs sampling to sample from the distribution
π(z , θ | x1, . . . , x4):

I θ | z , x1, x2, x3, x4 ∼ Beta(α+ x1 − z + x4, β + x2 + x3).

I z | θ, x1, x2, x3, x4 ∼ Binomial
(
x1,

1
2

1
2
+ θ

4

)
.

I Exercise: Derive the Binomal distribution for z above.
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Handling missing data

I In many classical statistical methods, missing data may present a
problem.

I The standard Bayesian answer in such cases: Add to the model
random variables representing the unobserved values, and simulate
them together with parameters and other variables of interest.

I This solves the problem in theory, but may of course sometimes be
difficult in practice.
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Using the target density in the proposal

I We have looked at several ideas for constructing good proposal
densities. Somehow, they take into account the properties of the
target density.

I Can one construct general methods that “automatically” learns
about the target density and makes good proposals based on that?

I Several methods exist that do this; they have varying degrees of
success with good convergence.

I We will look at one quite popular and clever method: Hamiltonian
Monte Carlo.
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Hamiltonian Monte Carlo: Motivation

We assume given a posterior density up to a constant:
π(q) ∝θ exp (−U(q)) for vectors q = (q1, . . . , qd).

I Idea: Look at U(q) as some kind of “potential energy” for a particle
at position q.

I Then: Simulate not only q at each step, but also p = (p1, . . . , pd)
representing a “momentum” for the particle. Move particle!

I In fact we will simulate from the joint distribution

π(p, q) ∝p,q exp (−U(q)) · exp

(
−1

2

d∑
i=1

p2i
mi

)
where m1, . . . ,md are positive weights, so that p and q are
independent, and p is normally distributed.

I Proposals will propose points (p, q) based on their “total energy”

H(p, q) = U(q) +
1

2

d∑
i=1

p2i
mi

so that points with lower potential energy (i.e., higher probability in
the target density) will be proposed more often.
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Hamiltonian Monte Carlo: Simulation

We would like to simulate from the density

π(p, q) ∝p,q exp (−H(p, q)) = exp (−U(q)) · exp

(
−1

2

d∑
i=1

p2i
mi

)

I We will define in later overheads a transformation Ts sending the set
of pairs (p, q) to itself, satisfying

I H(Ts(p, q)) = H(p, q).
I Ts preserves volumes.
I Ts is symmetric: Ts : (p, q) 7→ (p∗, q∗) implies Ts(p

∗, q∗) = (p, q).
(Fixed 20/09/24)

I When the Markov chain is at (p, q) a proposal (p∗, q∗) is generated
as follows:

1. Simulate a p0 from the marginal normal distribution for p.
2. Set (p∗, q∗) = Ts(p0, q).

I We show below that the acceptance probability will be one.

I As the marginal distribution for the generated q’s is the right one,
we can in the end throw away the generated p’s.
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Why is the acceptance probability 1?

I A possible way to see this is to split the M.H. updates into two parts.

I In the first part p is replaced with a new p simulated from the
marginal. The acceptance probability is clearly 1.

I In the second deterministic step, the transformation Ts is applied.
As:

I It sends points (p, q) on points (p∗, q∗) with the same density:
π(p, q) = π(p∗, q∗).

I The transformation is volume preserving.
I The transformation is symmetric.

it follows that the transformed density is unchanged, and the
acceptance rate is 1.
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Hamiltonian dynamics

Given a function H(p, q).

I A particle that has “position” q and “momentum” p at time t is
said to follow Hamiltonian dynamics if, for i = 1, . . . , d ,

dqi
dt

=
∂H

∂pi
and

dpi
dt

= −∂H
∂qi

.

I Assume for example H(p, q) = U(q) + 1
2mpTp. Then the first

equation above says that the velocity of the particle is given by its
momentum divided by its mass, and the second equation says that
the change in the momentum is given by the negative change in its
potential energy U(q).

I After a specific time s, a particle with position q and momentum p
will have position q∗ and momentum p∗. This defines a mapping
sending the set of all pairs (p, q) to itself. Ts is this mapping
followed by changing the sign of p∗. (Fixed 20/09/24)

I We need to show that Ts has the required properties.
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Outline of proofs

I We have H(Ts(p, q)) = H(p, q) because

dH

dt
=

d∑
i=1

(
dqi
dt

∂H

∂qi
+

dpi
dt

∂H

∂pi

)
=

d∑
i=1

(
∂H

∂pi

∂H

∂qi
− ∂H

∂qi

∂H

∂pi

)
= 0

and because H(−p, q) = H(p, q). (Fixed 20/09/24)

I We show below that the divergence of the vector field defining Ts is
zero. It then follows from theorems in analysis that Ts preserves
volumes:

d∑
i=1

(
∂

∂qi

dqi
dt

+
∂

∂pi

dpi
dt

)
=

d∑
i=1

(
∂

∂qi

∂H

∂pi
− ∂

∂pi

∂H

∂qi

)

=
d∑

i=1

(
∂2H

∂qi∂pi
− ∂2H

∂pi
∂qi

)
= 0.
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Leapfrog algorithm: A numerical approximation of Ts

I The second part of our proposal function requires us to compute
(p∗, q∗) = Ts(p0, q), i.e., the position q∗ and momentum −p∗ after
time s of a particle following Hamiltonian dynamics and starting
with position q and momentum p0 at time zero.

I This requires solving differential equations, which we do with the
Leapfrog method.

I The Leapfrog method actually preserves volume exactly, although it
only approximately preserves the total energy H(p, q).

I We will not look more on the theory here, but rather show an
example in R. For more information see for example Neal (2011)
“MCMC Using Hamiltonian Dynamics”.
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Review of most important MCMC concepts so far

I The general Metropolis Hastings algorithm

I Types of proposals: Random walk, symmetric, independent, . . .

I Detecting non-convergence; improving the approximations using
burn-in, thinning, . . .

I Laplace approximation

I Gibbs sampling

I Slice sampling

I Handling missing data / using augmented data

I Hamiltonian Monte Carlo

I We will return to some simulation examples, with some related
concepts (e.g., transformations), towards the end of the course.
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Summary on MCMC so far

I Metropolis Hastings is an extremely versatile algorithm for
approximate simulation from a density.

I It requires knowing the density only up to a constant.
I The main drawbacks are that it converge may be slow, and that we

generally don’t know how slow it is.
I Remember: You may combine different proposal functions in one

algorithm, as long as each represents a valid Metropolis Hastings
step.

I It seems difficult to find universal “black box” implementations of
Metropolis Hastings that always work perfectly: Instead, users need
to understand the method and check that it works in their case.

I Several black box (-ish) implementations exist: A popular one is
Jags (“Just Another Gibbs Sampler”) for hierarchical models.

I Some tips about coding Metropolis Hastings from my colleague
Umberto (who will lecture later in this course):
https://umbertopicchini.wordpress.com/2017/12/18/tips-for-
coding-a-metropolis-hastings-sampler/

I Lots of work is still going on developing ideas related to MCMC.
One simple idea, tempered MCMC, is briefly discussed below.
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Tempered MCMC

I Problem: The MCMC too easily gets stuck, and then does not reach
the areas of high posterior density.

I Idea: Start with a period of “improved searching” before
approaching the acutal MCMC formulas.

I The posterior exp (h(x)) is replaced with exp
(

h(x)
T

)
for some

positive “temperature” T : For large T this “evens out” the
posterior.

I Making T monotonically sink towards 1 gives an MCMC chain that
can jump more easily in the start while simulating from the correct
posterior in the end.

I Making T monotonically sink towards 0 gives an MCMC chain that
finds a maximum! If T sinks sufficiently slowly, one can prove it
finds the global optimum with probability 1. Simulated annealing.
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