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Graphical representations of conditional independencies

I In complex models with many variables, it is crucial to model and
keep track of how variables depend on each other.

I Idea: Represent dependencies in a graph.
I Helpful for visualization.
I May use graph theory in connection with computations.

I We will look at two examples of graphical models:
I Bayesian networks: Represent the probability density as a product of

conditional densities:

π(x , y , z , v ,w) = π(x | y , z) · π(y | z) · π(z | v ,w) · π(v) · π(w)

I Markov random fields: Represent the probability density as a product
of factors:

π(x , y , z , v ,w) = C · f1(x , y , z) · f2(y , z) · f3(z , v ,w) · f4(v) · f5(w)
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Bayesian networks

I Any joint density can be written as a product over conditional
densities:

π(x1, . . . , xn) = π(x1)π(x2 | x1)π(x3 | x1, x2) . . . π(xn | x1, . . . , xn−1)

I Given a specific model, we might be able to drop the conditioning
on some of the variables in some factors. The representation then
conveys the structure of the model.

I Re-ordering the variables will often give a different representation!

I The graph with an arrow x → y for each of the conditionings
π(y | . . . x . . . ) in the representation above is the Bayesian Network
representation. x is “parent”, y is “child”.

I Note that, following the arrows, you can never get a cycle. Thus the
graph is a directed acyclic graph (DAG).

I Conversely, given any DAG and conditional densities for each child
given its parents, the product of these gives a joint probability
density.
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Bayesian networks for visualization

I To the right: An
example of a specific
graphical network.

I Hierarchical models are,
by definition, specified
as a series of conditional
distributions. The graph
represents essential
model information.

I Visualizations may use
“plates” to represent
repeated components.

I Note: Get a sample
from the unconditional
joint density by
“propagating”
simulation through
network.
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Conditional independence

I If x and y become independent when we fix the value of z we say
that x and y are conditionally independent given z . We write
x
∐

y | z .

I Equivalent formulations:
I π(x , y | z) = π(x | z)π(y | z)
I π(x | y , z) = π(x | z)
I π(y | x , z) = π(y | z)

I We use the same definitions and notation when X , Y and Z are
disjoint groups of variables.

I Example: When the data x1, x2, x3 is iid given the parameter θ, we
get for example {x1, x2}

∐
x3 | θ.
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Reading off conditional independencies from a Bayesian
network

I Some conditional independence statements can be “read off” the
DAG of a Bayesian network.

I Note: Conditioning on children generally creates dependencies
between their parents.

I Note: A “v-structure” is a part of a network consisting of a child
with two parents.

I Is there a general way to prove that two sets of variables are
conditionally independent given a third set based only on the
Bayesian network graph?

6 / 8



d-separation

I A “trail” in a DAG is an undirected path in the graph.

I Assume X , Y , Z are sets of variables. An “active trail” from X to Y
given Z is one where for every v-structure xi−1 → xi ← xi+1 in the
trail xi or a decendant is in Z , and no other node in the trail is in Z .

I We say X and Y are d-separated given Z if there is no active trail
between any x ∈ X and y ∈ Y given Z .

I Theorem: If X and Y are d-separated given Z in a Bayesian network
representation of a stochastic model, then X

∐
Y | Z .

I Theorem: If X and Y are not d-separated given Z in a DAG, then
there exists a stochastic model where X and Y are not conditionally
independent given Z that has the DAG as a Bayesian network.

I See Koller & Friedman: “Probabilistic Graphical Models” for more
details.
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A way to check d-separation

I Note: The dependency between X and Y given Z is not changed if
you remove from a network a child that is not i X , Y , or Z and has
no children on its own.

I Doing this repeatedly will lead to a network where all nodes that do
not have children are either in X , Y , or Z .

I Note: The dependency between X and Y given Z is not changed if
you remove from the network the links from nodes in Z to their
children.

I After you have done the two changes above, you can check whether
X and Y are d-separated given Z simply by checking if there is an
(undirected) path in the network from a node of X to a node of Y .

8 / 8



MSA101/MVE187 2020 Lecture 10.2
Markov networks

Petter Mostad

Chalmers University

September 26, 2020

1 / 6



Markov networks

I For many models, the probability (density) function may be written
as a product of positive factors where each involves only a subset of
the variables. Example:

π(x , y , z , v ,w) = C · f1(x , y , z) · f2(y , z) · f3(z , v ,w) · f4(v) · f5(w)

I Note: The fi functions are not necessarily densities (i.e., do not
necessarily integrate to 1).

I Assume the representation is maximally reduced, i.e., for any pair of
variables x , y occuring in a factor, the factor cannot be written as a
product of two factors where the first does not contain x and the
second does not contain y .

I The corresponding Markov network contains an undirected edge
between x and y for all nodes x and y occurring together in a factor.

I A Bayesian network may generally be converted into a Markov
network using a process called moralization.
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Conditional independence in Markov networks

I For a variable x , its Markov blanket Z is the set of variables directly
connected to x in the Markov network representation.

I We then have x
∐

Y | Z for any set Y of variables not containing x
or Z .

I We define in the same way the Markov blanket of a set of variables
X ; the same conclusion about conditional independence holds.

I A way to specify a stochastic model on a set of variables is to
construct a graph connecting the variables in some way and specify
the conditional distribution of each variable given values of the
variables it is connected to.

I This is different from a Bayesian Network in that we might specify
dependencies that go in opposite directions!

I This does not necessarily result in a proper distribution!
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Simulation in Markov networks using Gibbs sampling

I With a Markov network representation of a posterior, we can set up
a Gibbs sampling from the posterior by iteratively simulating from
the conditional distribution of each node given its Markov blanket.

I Explicitly: Write down the joint density of all variables, and for each
variable θi in sequence:

I Regard all other variables as constants, throw away all factors not
depending on θi .

I Interpret the remaining function of θi as a standard density, or use it
in some more advanced simulation method.

I Note: You need to check that the joint density is proper.

I We may simulate from a posterior represented as a Bayesian network
by converting it to a Markov network (using moralization) and then
simulate as above.

I Widely used programs like BUGS (WinBugs, OpenBugs), Jags (Just
Another Gibbs Sampler), and Stan offer ”black box”
implementations of Gibbs sampling on wide classes of Bayesian
Networks.
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Gaussian Markov random fields (GMRF)

I A density π(x1, . . . , xn) can be considered a GMRF if it can be
written as

π(x1, . . . , xn) = exp (−f (x1, . . . , xn))

where f (x1, . . . , xn) is a quadratic polynomial.

I We can then always re-write the density on x = (x1, . . . , xn) so that

π(x) = exp

(
−1

2
(x − µ)tP(x − µ) + C

)
.

where µ is a vector, P is a symmetric matrix, and C is a constant.

I The density is proper if and only if P is positive definite. In this case
we can re-write the density as

π(x) =
1

|2πP−1|
exp

(
−1

2
(x − µ)tP(x − µ)

)
,

so that x ∼ Normal(µ,P−1).

I In many cases it may be useful to consider the Markov network for
the GMRF.
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GMRF and precision matrices

I For a GMRF and two variables xi and xj , the following are
equivalent:

1. There is no line between xi and xj in the Markov network.
2. In the term aijxixj in the quadratic polynomial f defining the density,

we have aij = 0.
3. In the precision matrix P, the ij-th entry pij is zero.

I Thus, we can read off the Markov network directly from the
precision matrix: Its non-zero terms correspond to edges in the
Markov network.

I Example: If P is zero everywhere except along the main diagonal
and the diagonals closest to it (i.e., pij = 0 unless |i − j | ≤ 1) then
the Markov network looks like the graph below (with number of
nodes corresponding to number of variables).
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Inference for graphical models (BNs or Markov networks)

I Two types of inference:
I Given a network, and given observed values for some variables, how

can we make predictions for (or simulate from) some remaining
variables using the conditional distribution?

I Given observations for some variables, how do we find a graphical
model for these variables from the data?

I For the first question, we have seen that Gibbs sampling is a good
general (approximative) solution.

I However, for some models, exact solutions (not using Markov chain
approximations) are possible. In particular when variables have a
finite number of possible values.

I Below, we look briefly at exact inference for graphical models. BUT
we mainly save this for the special case of Hidden Markov Models in
the next lecture.

I Learning networks from data is often extremely difficult. Active area
of research.
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Exact posterior inference for graphical models

I We want to fix some variables (called data) and compute the
posterior distribution of some other variables of interest.

I For a Markov network, fixing some variables produces directly
another similar Markov network.

I A Bayesian Network may first be converted to a Markov network,
using moralization.

I Then: A direct way to obtain the marginal distribution for the
variables of interest in a Markov network is variable elimination:

I Integrating (or summing) out variables in factors.
I Multiplying together factors.

I Can lead to expression with an “explosion” in the number of terms
in many cases, but the problem may be contained when variables
have only a finite number of values.

I Any inference algorithm depends on the basic operations above, but
they can be ”scheduled” and organized in smart ways, using e.g. a
”message passing” algorithms. See the “sum-product” algorithm in
Bishop (not core course material).
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