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Hidden Markov Models (HMM)

» Many types of data have a sequential nature: Time data, DNA
data,. ..

» A common approach is to assume a hidden state of nature, changing
like a Markov chain, with observed data depending on the hidden
state.

» The model can be drawn as a Bayesian network:

This is the general structure; there may also be a dependency of y;
on yj—1.

» The y;'s are generally observed, the x;'s are hidden, the direction is
often time.

» Examples: Visual interpretation for self-driving cars. Finding genes
in DNA sequences.

2/4



Toy example

In this lecture we will work with a simple toy example of an HMM:

» The hidden variables xi, ..., xy have possible values 1,..., M, and
transition probabilities in the chain are (initially):

with prob. 1/3:  x;_; + 1 if possible, otherwise x;_1.
x; given x;_1 is ¢ with prob. 1/3: Xi_1.
with prob. 1/3: x;_; — 1 if possible, otherwise x;_;.

» The observed variables y; are Poisson distributed with expectations
given by the x;:
> See the R code for simulated examples where we assume that xp = 1.
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nce for HMMs

We will in this lecture look at three types of inference connected to
HMMs:

» Find the marginal density 7w(x; | y1...,yn) for each i. The
Forward-Backward algorithm.

» Assume the x; have finite sets of possible values. Find the sequence
X1, ..., xy of values such that

7T(X17"'aXN|.y1a"'7.yN)

is maximized. This is the Viterbi algorithm.

» Assume the x; have finite sets of possible values. Assume that the
transition probabilities of the Markov chain are unknown. Find the
values for these maximizing their posterior given observations of
Y1,---,yn. This is the Baum-Welsh algorithm.

» NOTE: The forward-backward algorithm is formulated in terms of an
HMM, but the same ideas can be generalized to a Bayesian network
of any shape, becoming a “message passing” algorithm.
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The Forward-Backward algorithm

Message passing applied to a Hidden Markov Model.

7292

Objective: Compute the marginal posterior distribution of every x; given data
Yo, yr: Use m(xi | yo...,y1) < (¥it1, ..., y7 | x)7w(xi | yo,...,yi) and

1. Forward: For i =0,..., T compute 7(x; | Yo,...,Yi) using
(% | Yo,...,y) oo w(yi | xi)m(xi | yo,...,yi-1)
= 7(yi| Xi)/ﬂ'(xi | xi)m(Xiz1 | yo, ..., yi—1) dxi—1

2. Backward: For i = T —1,...,0 compute 7(yit1,...,y7 | Xi) using

(Vi1 y7 | X)) = /TF(YI'+2, ooy I X)) (i | Xip) (X | %) dxiga
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R example with the Forward-Backward algorithm
GO - >

» The hidden chain xg — -+ — xy is a random walk on the integers
{1,...,M}.
» The (prior) transition probabilities from x; to x;;1 is to increase with

1 (if possible) with probability 1/3, to decrease with 1 (if possible)
with probability 1/3, and otherwise stay put.

> We use the model y; | x; ~ Poisson(x;) and assume the y; are
observed.

» We use the Forward-Backward algorithm to find the marginal
posterior probability for each x;.
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The Viterbi algorithm

We consider an HMM where the x; have a finite state space {1,..., M}:

® O O -
CO— (D= -+

Objective: Compute the vector xg, . .., xT which maximizes the posterior
(X5 s XT | Yoo+, YT), i-€., maximizes w(Xg, ..., X7, Y0, -+, YT)-
» First formulation of an algorithm: Sequentially, for i =0,..., T,
compute and store
> For each j =1,..., M, the sequence Xy, ..., X; maximizing
7T()?o, N ,)?,‘,yo, NN ,y,-) while X; :j.
> For each j =1,..., M, the value of the maximum above.
> Note that

W(XO7 sy Xiy YOy e ayi) = 7T(X07 sy Xic1, Y05 - - 7yi—1)'7T(Xi | Xi—l)ﬂ—(yi | Xi)

Thus the results for stage i with X; = j can be found by finding the
%i—1 in {1,..., M} maximizing

(Ko - Kic1, Y0, - -5 Yie1) - (X = J | Ki—1)
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The Viterbi algorithm

» Thus results for the i'th step in the sequence can be computed by
considering all combinations of values for x; and x;_; together with
results from the i — 1'th step.

» Improved and final formulation of the algorithm: For each i and j,
you only need to store X;_1, not the whole sequence
R0y -+, Ri—1,% = j. THEN: At any point, (X1, ...,%;) can be
reconstructed tracing backwards through stored informatlon.

» Consider our toy example in R.
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The Baum-Welch algorithm

We now consider an HMM where all the x; have a finite state spaces

® ©® ® - ©
CO— (D= - ()

but where some of the parameters of the distributions 7(Xp),

m(X;i | Xi—1), and 7(Y; | X;) are unknown. Objective: Given fixed values
for the y;, find maximum likelihood estimates for the parameters in the
model.

» Note: By adding nodes representing the unknown parameters, and
assuming flat priors, the problem becomes that of computing the
parameters maximizing the posterior, i.e., finding the MAP.

» Idea: Use the EM algorithm, with the values of the x; as the
augmented data.

> The E step of the EM algorithm is computed using (a small
generalization of) the Forward-Backward algorithm.
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The Baum-Welch algorithm: Example

For simplicity we assume each X; can have values 1,..., M. Let
0= (q7 P) = ((q17 R CIM)» (p117 L) PMM))
be the parameters we want to estimate, where
g = Pr(X =)
pk = Pr(Xi=k|Xi1=])

The full loglikelihood given 6 becomes
|°g(7r(X07--~aXT:YO:~--»yT | 8))

= log (ﬂ(xo LO) [ [ (i | xie1,0) ] (i | x,-)>

i=1 i=0

T T
= logm(xo |0) + > logm(xi | xi-1,0) + Y logm(yi | xi)
i=1 i=0
T

M M M
= CH+> Ixo=J)logqi+ > > > I(xi1=j)l(xi = k) log pj
=

i=1 j=1 k=1
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The Baum-Welch algorithm: Example continued

> In the E step, we would like to compute the expectation of the full
loglikelihood under the distribution 7(xg, ..., xT | yo,...,yT,0°)
for some set of parameters §°9.

> Thus we need to compute the expectations E [/(xg = j)] and
E[/(xi—1 = j)I(x; = k)] under this distribution.

» Fixing 6°', we can use the Forward-Backward algorithm to compute
the densities 7(x; | yo,.-.,¥:) and w(yi+1,...,y7 | x;). Further we
have that

(X, Xiv1 | Yo, -5 ¥T)
o¢ T(Yig1s -5 y7 | Xis Xip1)T(Xi, Xiv1 | Yo, .-, ¥i)
X 7"()/:'+27 oyt Xi+1)7f(}/i+1 | Xi+1)7T(Xi+1 | Xi)7T(Xi | o, - a.yi)

making it possible to compute the joint posterior for x; and x;41
from these densities.
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The Baum-Welch algorithm: Example continued

The algorithm can now be summed up as
» Choose starting parameters 9.

» Run the Forward-Backward algorithm on the Markov model with
parameters 6° to compute the numbers E [/(xg = j)] and
E[l(xi—1 = j)I(x; = k)].

» Find the # maximizing the expected loglikelihood

T M M
ZE[/(X0 =llogqi+> > Y E[l(xi-1 = j)I(xi = k)] log pjx
i=1 j=1 k=1
In fact, we get
ST E[ (i1 = j)I(xi = K)]
Sy S E (61 = )1 (% = K)]

» Set 0°“ = ((41,---,8m), (P11, -- -, Pum)) and iterate until
convergence.

G =E[l(xo=Jj)] and p =
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