MSA101/MVE187 2020 Lecture 11.1 Hidden Markov Models

Petter Mostad
Chalmers University

September 30, 2020

Hidden Markov Models (HMM)

- Many types of data have a sequential nature: Time data, DNA data,...
- A common approach is to assume a hidden state of nature, changing like a Markov chain, with observed data depending on the hidden state.
- The model can be drawn as a Bayesian network:

This is the general structure; there may also be a dependency of y_{i} on y_{i-1}.

- The y_{i} 's are generally observed, the x_{i} 's are hidden, the direction is often time.
- Examples: Visual interpretation for self-driving cars. Finding genes in DNA sequences.

Toy example

In this lecture we will work with a simple toy example of an HMM:

- The hidden variables x_{1}, \ldots, x_{N} have possible values $1, \ldots, M$, and transition probabilities in the chain are (initially):
x_{i} given x_{i-1} is $\left\{\begin{array}{ccc}\text { with prob. } 1 / 3: & x_{i-1}+1 \text { if possible, otherwise } x_{i-1} \\ \text { with prob. } 1 / 3: & \\ \text { with prob. } 1 / 3: & x_{i-1}-1 \text { if possible, otherwise } x_{i-1} .\end{array}\right.$
- The observed variables y_{i} are Poisson distributed with expectations given by the x_{i} :
- See the R code for simulated examples where we assume that $x_{0}=1$.

Inference for HMMs

We will in this lecture look at three types of inference connected to HMMs:

- Find the marginal density $\pi\left(x_{i} \mid y_{1} \ldots, y_{N}\right)$ for each i. The Forward-Backward algorithm.
- Assume the x_{i} have finite sets of possible values. Find the sequence x_{1}, \ldots, x_{N} of values such that

$$
\pi\left(x_{1}, \ldots, x_{N} \mid y_{1}, \ldots, y_{N}\right)
$$

is maximized. This is the Viterbi algorithm.

- Assume the x_{i} have finite sets of possible values. Assume that the transition probabilities of the Markov chain are unknown. Find the values for these maximizing their posterior given observations of y_{1}, \ldots, y_{N}. This is the Baum-Welsh algorithm.
- NOTE: The forward-backward algorithm is formulated in terms of an HMM, but the same ideas can be generalized to a Bayesian network of any shape, becoming a "message passing" algorithm.

MSA101/MVE187 2020 Lecture 11.2 The Forward-Backward algorithm

Petter Mostad

Chalmers University

September 30, 2020

The Forward-Backward algorithm

Message passing applied to a Hidden Markov Model.

Objective: Compute the marginal posterior distribution of every x_{i} given data y_{0}, \ldots, y_{T} : Use $\pi\left(x_{i} \mid y_{0} \ldots, y_{T}\right) \propto \pi\left(y_{i+1}, \ldots, y_{T} \mid x_{i}\right) \pi\left(x_{i} \mid y_{0}, \ldots, y_{i}\right)$ and

1. Forward: For $i=0, \ldots, T$ compute $\pi\left(x_{i} \mid y_{0}, \ldots, y_{i}\right)$ using

$$
\begin{aligned}
\pi\left(x_{i} \mid y_{0}, \ldots, y_{i}\right) & \propto \pi\left(y_{i} \mid x_{i}\right) \pi\left(x_{i} \mid y_{0}, \ldots, y_{i-1}\right) \\
& =\pi\left(y_{i} \mid x_{i}\right) \int \pi\left(x_{i} \mid x_{i-1}\right) \pi\left(x_{i-1} \mid y_{0}, \ldots, y_{i-1}\right) d x_{i-1}
\end{aligned}
$$

2. Backward: For $i=T-1, \ldots, 0$ compute $\pi\left(y_{i+1}, \ldots, y_{T} \mid x_{i}\right)$ using

$$
\pi\left(y_{i+1}, \ldots, y_{T} \mid x_{i}\right)=\int \pi\left(y_{i+2}, \ldots, y_{T} \mid x_{i+1}\right) \pi\left(y_{i+1} \mid x_{i+1}\right) \pi\left(x_{i+1} \mid x_{i}\right) d x_{i+1}
$$

R example with the Forward-Backward algorithm

- The hidden chain $x_{0} \rightarrow \cdots \rightarrow x_{N}$ is a random walk on the integers $\{1, \ldots, M\}$.
- The (prior) transition probabilities from x_{i} to x_{i+1} is to increase with 1 (if possible) with probability $1 / 3$, to decrease with 1 (if possible) with probability $1 / 3$, and otherwise stay put.
- We use the model $y_{i} \mid x_{i} \sim \operatorname{Poisson}\left(x_{i}\right)$ and assume the y_{i} are observed.
- We use the Forward-Backward algorithm to find the marginal posterior probability for each x_{i}.

MSA101/MVE187 2020 Lecture 11.3 The Viterbi algorithm

Petter Mostad

Chalmers University

September 30, 2020

The Viterbi algorithm

We consider an HMM where the x_{i} have a finite state space $\{1, \ldots, M\}$:

Objective: Compute the vector x_{0}, \ldots, x_{T} which maximizes the posterior $\pi\left(x_{0}, \ldots, x_{T} \mid y_{0}, \ldots, y_{T}\right)$, i.e., maximizes $\pi\left(x_{0}, \ldots, x_{T}, y_{0}, \ldots, y_{T}\right)$.

- First formulation of an algorithm: Sequentially, for $i=0, \ldots, T$, compute and store
- For each $j=1, \ldots, M$, the sequence $\hat{x}_{0}, \ldots, \hat{x}_{i}$ maximizing $\pi\left(\hat{x}_{0}, \ldots, \hat{x}_{i}, y_{0}, \ldots, y_{i}\right)$ while $\hat{x}_{i}=j$.
- For each $j=1, \ldots, M$, the value of the maximum above.
- Note that

$$
\pi\left(x_{0}, \ldots, x_{i}, y_{0}, \ldots, y_{i}\right)=\pi\left(x_{0}, \ldots, x_{i-1}, y_{0}, \ldots, y_{i-1}\right) \cdot \pi\left(x_{i} \mid x_{i-1}\right) \pi\left(y_{i} \mid x_{i}\right)
$$

Thus the results for stage i with $\hat{x}_{i}=j$ can be found by finding the \hat{x}_{i-1} in $\{1, \ldots, M\}$ maximizing

$$
\pi\left(\hat{x}_{0}, \ldots, \hat{x}_{i-1}, y_{0}, \ldots, y_{i-1}\right) \cdot \pi\left(x_{i}=j \mid \hat{x}_{i-1}\right)
$$

The Viterbi algorithm

- Thus results for the i 'th step in the sequence can be computed by considering all combinations of values for x_{i} and x_{i-1} together with results from the $i-1$ 'th step.
- Improved and final formulation of the algorithm: For each i and j, you only need to store \hat{x}_{i-1}, not the whole sequence $\hat{x}_{0}, \ldots, \hat{x}_{i-1}, \hat{x}_{i}=j$. THEN: At any point, $\left(\hat{x}_{1}, \ldots, \hat{x}_{i}\right)$ can be reconstructed tracing backwards through stored information.
- Consider our toy example in R.

MSA101/MVE187 2020 Lecture 11.4 The Baum-Welsh algorithm

Petter Mostad

Chalmers University

September 30, 2020

The Baum-Welch algorithm

We now consider an HMM where all the x_{i} have a finite state spaces

but where some of the parameters of the distributions $\pi\left(X_{0}\right)$, $\pi\left(X_{i} \mid X_{i-1}\right)$, and $\pi\left(Y_{i} \mid X_{i}\right)$ are unknown. Objective: Given fixed values for the y_{i}, find maximum likelihood estimates for the parameters in the model.

- Note: By adding nodes representing the unknown parameters, and assuming flat priors, the problem becomes that of computing the parameters maximizing the posterior, i.e., finding the MAP.
- Idea: Use the EM algorithm, with the values of the x_{i} as the augmented data.
- The E step of the EM algorithm is computed using (a small generalization of) the Forward-Backward algorithm.

The Baum-Welch algorithm: Example

For simplicity we assume each X_{i} can have values $1, \ldots, M$. Let

$$
\theta=(q, p)=\left(\left(q_{1}, \ldots, q_{M}\right),\left(p_{11}, \ldots, p_{M M}\right)\right)
$$

be the parameters we want to estimate, where

$$
\begin{aligned}
q_{j} & =\operatorname{Pr}\left(X_{0}=j\right) \\
p_{j k} & =\operatorname{Pr}\left(X_{i}=k \mid X_{i-1}=j\right)
\end{aligned}
$$

The full loglikelihood given θ becomes

$$
\begin{aligned}
& \log \left(\pi\left(x_{0}, \ldots, x_{T}, y_{0}, \ldots, y_{T} \mid \theta\right)\right) \\
= & \log \left(\pi\left(x_{0} \mid \theta\right) \prod_{i=1}^{T} \pi\left(x_{i} \mid x_{i-1}, \theta\right) \prod_{i=0}^{T} \pi\left(y_{i} \mid x_{i}\right)\right) \\
= & \log \pi\left(x_{0} \mid \theta\right)+\sum_{i=1}^{T} \log \pi\left(x_{i} \mid x_{i-1}, \theta\right)+\sum_{i=0}^{T} \log \pi\left(y_{i} \mid x_{i}\right) \\
= & C+\sum_{j=1}^{M} I\left(x_{0}=j\right) \log q_{j}+\sum_{i=1}^{T} \sum_{j=1}^{M} \sum_{k=1}^{M} I\left(x_{i-1}=j\right) I\left(x_{i}=k\right) \log p_{j k}
\end{aligned}
$$

The Baum-Welch algorithm: Example continued

- In the E step, we would like to compute the expectation of the full \log likelihood under the distribution $\pi\left(x_{0}, \ldots, x_{T} \mid y_{0}, \ldots, y_{T}, \theta^{\text {old }}\right)$ for some set of parameters $\theta^{\text {old }}$.
- Thus we need to compute the expectations $\mathrm{E}\left[I\left(x_{0}=j\right)\right]$ and $\mathrm{E}\left[I\left(x_{i-1}=j\right) I\left(x_{i}=k\right)\right]$ under this distribution.
- Fixing $\theta^{\text {old }}$, we can use the Forward-Backward algorithm to compute the densities $\pi\left(x_{i} \mid y_{0}, \ldots, y_{i}\right)$ and $\pi\left(y_{i+1}, \ldots, y_{T} \mid x_{i}\right)$. Further we have that

$$
\begin{aligned}
& \pi\left(x_{i}, x_{i+1} \mid y_{0}, \ldots, y_{T}\right) \\
\propto & \pi\left(y_{i+1}, \ldots, y_{T} \mid x_{i}, x_{i+1}\right) \pi\left(x_{i}, x_{i+1} \mid y_{0}, \ldots, y_{i}\right) \\
\propto & \pi\left(y_{i+2}, \ldots, y_{T} \mid x_{i+1}\right) \pi\left(y_{i+1} \mid x_{i+1}\right) \pi\left(x_{i+1} \mid x_{i}\right) \pi\left(x_{i} \mid y_{0}, \ldots, y_{i}\right)
\end{aligned}
$$

making it possible to compute the joint posterior for x_{i} and x_{i+1} from these densities.

The Baum-Welch algorithm: Example continued

The algorithm can now be summed up as

- Choose starting parameters $\theta^{\text {old }}$.
- Run the Forward-Backward algorithm on the Markov model with parameters $\theta^{\text {old }}$ to compute the numbers $\mathrm{E}\left[I\left(x_{0}=j\right)\right]$ and $\mathrm{E}\left[I\left(x_{i-1}=j\right) I\left(x_{i}=k\right)\right]$.
- Find the θ maximizing the expected loglikelihood

$$
\sum_{j=1}^{M} \mathrm{E}\left[I\left(x_{0}=j\right)\right] \log q_{j}+\sum_{i=1}^{T} \sum_{j=1}^{M} \sum_{k=1}^{M} \mathrm{E}\left[I\left(x_{i-1}=j\right) I\left(x_{i}=k\right)\right] \log p_{j k}
$$

In fact, we get

$$
\hat{q}_{j}=\mathrm{E}\left[I\left(x_{0}=j\right)\right] \text { and } \hat{p}_{j k}=\frac{\sum_{i=1}^{T} \mathrm{E}\left[I\left(x_{i-1}=j\right) I\left(x_{i}=k\right)\right]}{\sum_{k=1}^{M} \sum_{i=1}^{T} \mathrm{E}\left[I\left(x_{i-1}=j\right) I\left(x_{i}=k\right)\right]}
$$

- Set $\theta^{\text {old }}=\left(\left(\hat{q}_{1}, \ldots, \hat{q}_{M}\right),\left(\hat{p}_{11}, \ldots, \hat{p}_{M M}\right)\right)$ and iterate until convergence.

