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Hidden Markov Models (HMM)

I Many types of data have a sequential nature: Time data, DNA
data,. . .

I A common approach is to assume a hidden state of nature, changing
like a Markov chain, with observed data depending on the hidden
state.

I The model can be drawn as a Bayesian network:

This is the general structure; there may also be a dependency of yi
on yi−1.

I The yi ’s are generally observed, the xi ’s are hidden, the direction is
often time.

I Examples: Visual interpretation for self-driving cars. Finding genes
in DNA sequences.
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Toy example

In this lecture we will work with a simple toy example of an HMM:

I The hidden variables x1, . . . , xN have possible values 1, . . . ,M, and
transition probabilities in the chain are (initially):

xi given xi−1 is

with prob. 1/3: xi−1 + 1 if possible, otherwise xi−1.
with prob. 1/3: xi−1.
with prob. 1/3: xi−1 − 1 if possible, otherwise xi−1.

I The observed variables yi are Poisson distributed with expectations
given by the xi :

I See the R code for simulated examples where we assume that x0 = 1.

3 / 4



Inference for HMMs

We will in this lecture look at three types of inference connected to
HMMs:

I Find the marginal density π(xi | y1 . . . , yN) for each i . The
Forward-Backward algorithm.

I Assume the xi have finite sets of possible values. Find the sequence
x1, . . . , xN of values such that

π(x1, . . . , xN | y1, . . . , yN)

is maximized. This is the Viterbi algorithm.

I Assume the xi have finite sets of possible values. Assume that the
transition probabilities of the Markov chain are unknown. Find the
values for these maximizing their posterior given observations of
y1, . . . , yN . This is the Baum-Welsh algorithm.

I NOTE: The forward-backward algorithm is formulated in terms of an
HMM, but the same ideas can be generalized to a Bayesian network
of any shape, becoming a “message passing” algorithm.
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The Forward-Backward algorithm

Message passing applied to a Hidden Markov Model.

Objective: Compute the marginal posterior distribution of every xi given data
y0, . . . , yT : Use π(xi | y0 . . . , yT ) ∝ π(yi+1, . . . , yT | xi )π(xi | y0, . . . , yi ) and
1. Forward: For i = 0, . . . ,T compute π(xi | y0, . . . , yi ) using

π(xi | y0, . . . , yi ) ∝ π(yi | xi )π(xi | y0, . . . , yi−1)

= π(yi | xi )
∫
π(xi | xi−1)π(xi−1 | y0, . . . , yi−1) dxi−1

2. Backward: For i = T − 1, . . . , 0 compute π(yi+1, . . . , yT | xi ) using

π(yi+1, . . . , yT | xi ) =
∫
π(yi+2, . . . , yT | xi+1)π(yi+1 | xi+1)π(xi+1 | xi ) dxi+1
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R example with the Forward-Backward algorithm

I The hidden chain x0 → · · · → xN is a random walk on the integers
{1, . . . ,M}.

I The (prior) transition probabilities from xi to xi+1 is to increase with
1 (if possible) with probability 1/3, to decrease with 1 (if possible)
with probability 1/3, and otherwise stay put.

I We use the model yi | xi ∼ Poisson(xi ) and assume the yi are
observed.

I We use the Forward-Backward algorithm to find the marginal
posterior probability for each xi .
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The Viterbi algorithm

We consider an HMM where the xi have a finite state space {1, . . . ,M}:

Objective: Compute the vector x0, . . . , xT which maximizes the posterior
π(x0, . . . , xT | y0, . . . , yT ), i.e., maximizes π(x0, . . . , xT , y0, . . . , yT ).

I First formulation of an algorithm: Sequentially, for i = 0, . . . ,T ,
compute and store

I For each j = 1, . . . ,M, the sequence x̂0, . . . , x̂i maximizing
π(x̂0, . . . , x̂i , y0, . . . , yi ) while x̂i = j .

I For each j = 1, . . . ,M, the value of the maximum above.
I Note that

π(x0, . . . , xi , y0, . . . , yi ) = π(x0, . . . , xi−1, y0, . . . , yi−1)·π(xi | xi−1)π(yi | xi )
Thus the results for stage i with x̂i = j can be found by finding the
x̂i−1 in {1, . . . ,M} maximizing

π(x̂0, . . . , x̂i−1, y0, . . . , yi−1) · π(xi = j | x̂i−1)

2 / 3



The Viterbi algorithm

I Thus results for the i ’th step in the sequence can be computed by
considering all combinations of values for xi and xi−1 together with
results from the i − 1’th step.

I Improved and final formulation of the algorithm: For each i and j ,
you only need to store x̂i−1, not the whole sequence
x̂0, . . . , x̂i−1, x̂i = j . THEN: At any point, (x̂1, . . . , x̂i ) can be
reconstructed tracing backwards through stored information.

I Consider our toy example in R.
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The Baum-Welch algorithm

We now consider an HMM where all the xi have a finite state spaces

but where some of the parameters of the distributions π(X0),
π(Xi | Xi−1), and π(Yi | Xi ) are unknown. Objective: Given fixed values
for the yi , find maximum likelihood estimates for the parameters in the
model.

I Note: By adding nodes representing the unknown parameters, and
assuming flat priors, the problem becomes that of computing the
parameters maximizing the posterior, i.e., finding the MAP.

I Idea: Use the EM algorithm, with the values of the xi as the
augmented data.

I The E step of the EM algorithm is computed using (a small
generalization of) the Forward-Backward algorithm.
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The Baum-Welch algorithm: Example

For simplicity we assume each Xi can have values 1, . . . ,M. Let

θ = (q, p) = ((q1, . . . , qM), (p11, . . . , pMM))

be the parameters we want to estimate, where

qj = Pr(X0 = j)

pjk = Pr(Xi = k | Xi−1 = j)

The full loglikelihood given θ becomes

log (π(x0, . . . , xT , y0, . . . , yT | θ))

= log

(
π(x0 | θ)

T∏
i=1

π(xi | xi−1, θ)
T∏
i=0

π(yi | xi )

)

= log π(x0 | θ) +
T∑
i=1

log π(xi | xi−1, θ) +
T∑
i=0

log π(yi | xi )

= C +
M∑
j=1

I (x0 = j) log qj +
T∑
i=1

M∑
j=1

M∑
k=1

I (xi−1 = j)I (xi = k) log pjk
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The Baum-Welch algorithm: Example continued

I In the E step, we would like to compute the expectation of the full
loglikelihood under the distribution π(x0, . . . , xT | y0, . . . , yT , θold)
for some set of parameters θold .

I Thus we need to compute the expectations E [I (x0 = j)] and
E [I (xi−1 = j)I (xi = k)] under this distribution.

I Fixing θold , we can use the Forward-Backward algorithm to compute
the densities π(xi | y0, . . . , yi ) and π(yi+1, . . . , yT | xi ). Further we
have that

π(xi , xi+1 | y0, . . . , yT )

∝ π(yi+1, . . . , yT | xi , xi+1)π(xi , xi+1 | y0, . . . , yi )
∝ π(yi+2, . . . , yT | xi+1)π(yi+1 | xi+1)π(xi+1 | xi )π(xi | y0, . . . , yi )

making it possible to compute the joint posterior for xi and xi+1

from these densities.
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The Baum-Welch algorithm: Example continued

The algorithm can now be summed up as

I Choose starting parameters θold .

I Run the Forward-Backward algorithm on the Markov model with
parameters θold to compute the numbers E [I (x0 = j)] and
E [I (xi−1 = j)I (xi = k)].

I Find the θ maximizing the expected loglikelihood

M∑
j=1

E [I (x0 = j)] log qj +
T∑
i=1

M∑
j=1

M∑
k=1

E [I (xi−1 = j)I (xi = k)] log pjk

In fact, we get

q̂j = E [I (x0 = j)] and p̂jk =

∑T
i=1 E [I (xi−1 = j)I (xi = k)]∑M

k=1

∑T
i=1 E [I (xi−1 = j)I (xi = k)]

I Set θold = ((q̂1, . . . , q̂M), (p̂11, . . . , p̂MM)) and iterate until
convergence.
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