MSA101/MVE187 2020 Lecture 11.1 Hidden Markov Models

Petter Mostad

Chalmers University

Hidden Markov Models (HMM)

- Many types of data have a sequential nature: Time data, DNA data,...
- A common approach is to assume a *hidden* state of nature, changing like a Markov chain, with *observed* data depending on the hidden state.
- > The model can be drawn as a Bayesian network:

This is the general structure; there may also be a dependency of y_i on y_{i-1} .

- The y_i's are generally observed, the x_i's are hidden, the direction is often time.
- Examples: Visual interpretation for self-driving cars. Finding genes in DNA sequences.

In this lecture we will work with a simple toy example of an HMM:

► The hidden variables x₁,..., x_N have possible values 1,..., M, and transition probabilities in the chain are (initially):

$$x_i \text{ given } x_{i-1} \text{ is } \begin{cases} \text{with prob. } 1/3: \quad x_{i-1} + 1 \text{ if possible, otherwise } x_{i-1}. \\ \text{with prob. } 1/3: \quad x_{i-1} - 1 \text{ if possible, otherwise } x_{i-1}. \\ \text{with prob. } 1/3: \quad x_{i-1} - 1 \text{ if possible, otherwise } x_{i-1}. \end{cases}$$

- The observed variables y_i are Poisson distributed with expectations given by the x_i:
- See the R code for simulated examples where we assume that $x_0 = 1$.

We will in this lecture look at three types of inference connected to HMMs:

- ► Find the marginal density π(x_i | y₁..., y_N) for each *i*. The Forward-Backward algorithm.
- Assume the x_i have finite sets of possible values. Find the sequence x_1, \ldots, x_N of values such that

$$\pi(x_1,\ldots,x_N\mid y_1,\ldots,y_N)$$

is maximized. This is the Viterbi algorithm.

- ► Assume the x_i have finite sets of possible values. Assume that the transition probabilities of the Markov chain are unknown. Find the values for these maximizing their posterior given observations of y₁,..., y_N. This is the Baum-Welsh algorithm.
- NOTE: The forward-backward algorithm is formulated in terms of an HMM, but the same ideas can be generalized to a Bayesian network of any shape, becoming a "message passing" algorithm.

MSA101/MVE187 2020 Lecture 11.2 The Forward-Backward algorithm

Petter Mostad

Chalmers University

The Forward-Backward algorithm

Message passing applied to a Hidden Markov Model.

Objective: Compute the marginal posterior distribution of every x_i given data y_0, \ldots, y_T : Use $\pi(x_i \mid y_0 \ldots, y_T) \propto \pi(y_{i+1}, \ldots, y_T \mid x_i)\pi(x_i \mid y_0, \ldots, y_i)$ and 1. Forward: For $i = 0, \ldots, T$ compute $\pi(x_i \mid y_0, \ldots, y_i)$ using

$$\begin{array}{ll} \pi(x_i \mid y_0, \ldots, y_i) & \propto & \pi(y_i \mid x_i) \pi(x_i \mid y_0, \ldots, y_{i-1}) \\ & = & \pi(y_i \mid x_i) \int \pi(x_i \mid x_{i-1}) \pi(x_{i-1} \mid y_0, \ldots, y_{i-1}) \, dx_{i-1} \end{array}$$

2. Backward: For i = T - 1, ..., 0 compute $\pi(y_{i+1}, ..., y_T \mid x_i)$ using

$$\pi(y_{i+1},\ldots,y_T \mid x_i) = \int \pi(y_{i+2},\ldots,y_T \mid x_{i+1}) \pi(y_{i+1} \mid x_{i+1}) \pi(x_{i+1} \mid x_i) \, dx_{i+1}$$

R example with the Forward-Backward algorithm

- ▶ The hidden chain $x_0 \rightarrow \cdots \rightarrow x_N$ is a random walk on the integers $\{1, \ldots, M\}$.
- ► The (prior) transition probabilities from x_i to x_{i+1} is to increase with 1 (if possible) with probability 1/3, to decrease with 1 (if possible) with probability 1/3, and otherwise stay put.
- ▶ We use the model y_i | x_i ~ Poisson(x_i) and assume the y_i are observed.
- We use the Forward-Backward algorithm to find the marginal posterior probability for each x_i.

MSA101/MVE187 2020 Lecture 11.3 The Viterbi algorithm

Petter Mostad

Chalmers University

The Viterbi algorithm

We consider an HMM where the x_i have a finite state space $\{1, \ldots, M\}$:

Objective: Compute the vector x_0, \ldots, x_T which maximizes the posterior $\pi(x_0, \ldots, x_T \mid y_0, \ldots, y_T)$, i.e., maximizes $\pi(x_0, \ldots, x_T, y_0, \ldots, y_T)$.

- First formulation of an algorithm: Sequentially, for i = 0,..., T, compute and store
 - For each j = 1, ..., M, the sequence $\hat{x}_0, ..., \hat{x}_i$ maximizing $\pi(\hat{x}_0, ..., \hat{x}_i, y_0, ..., y_i)$ while $\hat{x}_i = j$.
 - For each j = 1, ..., M, the value of the maximum above.

Note that

$$\pi(x_0, \ldots, x_i, y_0, \ldots, y_i) = \pi(x_0, \ldots, x_{i-1}, y_0, \ldots, y_{i-1}) \cdot \pi(x_i \mid x_{i-1}) \pi(y_i \mid x_i)$$

Thus the results for stage *i* with $\hat{x}_i = j$ can be found by finding the \hat{x}_{i-1} in $\{1, \ldots, M\}$ maximizing

$$\pi(\hat{x}_0,\ldots,\hat{x}_{i-1},y_0,\ldots,y_{i-1})\cdot\pi(x_i=j\mid\hat{x}_{i-1})$$

- ► Thus results for the *i*'th step in the sequence can be computed by considering all combinations of values for x_i and x_{i-1} together with results from the *i* − 1'th step.
- ► Improved and final formulation of the algorithm: For each *i* and *j*, you only need to store *x̂_{i-1}*, not the whole sequence *x̂*₀,..., *x̂_{i-1}*, *x̂_i* = *j*. THEN: At any point, (*x̂*₁,..., *x̂_i*) can be reconstructed tracing backwards through stored information.
- Consider our toy example in R.

MSA101/MVE187 2020 Lecture 11.4 The Baum-Welsh algorithm

Petter Mostad

Chalmers University

The Baum-Welch algorithm

We now consider an HMM where all the x_i have a finite state spaces

but where some of the parameters of the distributions $\pi(X_0)$, $\pi(X_i | X_{i-1})$, and $\pi(Y_i | X_i)$ are unknown. Objective: Given fixed values for the y_i , find maximum likelihood estimates for the parameters in the model.

- Note: By adding nodes representing the unknown parameters, and assuming flat priors, the problem becomes that of computing the parameters maximizing the posterior, i.e., finding the MAP.
- Idea: Use the EM algorithm, with the values of the x_i as the augmented data.
- The E step of the EM algorithm is computed using (a small generalization of) the Forward-Backward algorithm.

The Baum-Welch algorithm: Example

For simplicity we assume each X_i can have values $1, \ldots, M$. Let

$$\theta = (q,p) = ((q_1,\ldots,q_M),(p_{11},\ldots,p_{MM}))$$

be the parameters we want to estimate, where

$$q_j = \Pr(X_0 = j)$$

 $p_{jk} = \Pr(X_i = k \mid X_{i-1} = j)$

The full loglikelihood given θ becomes

$$\log (\pi(x_0, ..., x_T, y_0, ..., y_T | \theta))$$

$$= \log \left(\pi(x_0 | \theta) \prod_{i=1}^T \pi(x_i | x_{i-1}, \theta) \prod_{i=0}^T \pi(y_i | x_i) \right)$$

$$= \log \pi(x_0 | \theta) + \sum_{i=1}^T \log \pi(x_i | x_{i-1}, \theta) + \sum_{i=0}^T \log \pi(y_i | x_i)$$

$$= C + \sum_{j=1}^M I(x_0 = j) \log q_j + \sum_{i=1}^T \sum_{j=1}^M \sum_{k=1}^M I(x_{i-1} = j) I(x_i = k) \log p_{jk}$$

The Baum-Welch algorithm: Example continued

- ▶ In the E step, we would like to compute the expectation of the full loglikelihood under the distribution $\pi(x_0, \ldots, x_T \mid y_0, \ldots, y_T, \theta^{old})$ for some set of parameters θ^{old} .
- ► Thus we need to compute the expectations $E[I(x_0 = j)]$ and $E[I(x_{i-1} = j)I(x_i = k)]$ under this distribution.
- Fixing θ^{old} , we can use the Forward-Backward algorithm to compute the densities $\pi(x_i \mid y_0, \ldots, y_i)$ and $\pi(y_{i+1}, \ldots, y_T \mid x_i)$. Further we have that

$$\begin{aligned} &\pi(x_i, x_{i+1} \mid y_0, \dots, y_T) \\ &\propto & \pi(y_{i+1}, \dots, y_T \mid x_i, x_{i+1}) \pi(x_i, x_{i+1} \mid y_0, \dots, y_i) \\ &\propto & \pi(y_{i+2}, \dots, y_T \mid x_{i+1}) \pi(y_{i+1} \mid x_{i+1}) \pi(x_{i+1} \mid x_i) \pi(x_i \mid y_0, \dots, y_i) \end{aligned}$$

making it possible to compute the joint posterior for x_i and x_{i+1} from these densities.

The Baum-Welch algorithm: Example continued

The algorithm can now be summed up as

- Choose starting parameters θ^{old} .
- ▶ Run the Forward-Backward algorithm on the Markov model with parameters θ^{old} to compute the numbers $E[I(x_0 = j)]$ and $E[I(x_{i-1} = j)I(x_i = k)]$.
- Find the θ maximizing the expected loglikelihood

$$\sum_{j=1}^{M} E[I(x_0 = j)] \log q_j + \sum_{i=1}^{T} \sum_{j=1}^{M} \sum_{k=1}^{M} E[I(x_{i-1} = j)I(x_i = k)] \log p_{jk}$$

In fact, we get

$$\hat{q}_j = \mathsf{E}\left[I(x_0 = j)\right]$$
 and $\hat{p}_{jk} = \frac{\sum_{i=1}^T \mathsf{E}\left[I(x_{i-1} = j)I(x_i = k)\right]}{\sum_{k=1}^M \sum_{i=1}^T \mathsf{E}\left[I(x_{i-1} = j)I(x_i = k)\right]}$

• Set $\theta^{old} = ((\hat{q}_1, \dots, \hat{q}_M), (\hat{p}_{11}, \dots, \hat{p}_{MM}))$ and iterate until convergence.