MSA101/MVE187 2020 Lecture 12.1 Variational Bayes: Theory

Petter Mostad

Chalmers University

October 4, 2020

An extension of the KL notation

▶ The Kullback Leibler divergence from a density q(x) to a density p(x) is defined as

$$\mathsf{KL}[q||p] = -\int q(x)\log\frac{p(x)}{q(x)}\,dx = \int q(x)\log\frac{q(x)}{p(x)}\,dx.$$

▶ By abuse of notation we extend the definition to cases where p is only proportional to a density. Then, if $p_1(x) = p_2(x)/C$ we get

$$\mathsf{KL}[q||p_1] = \log C + \mathsf{KL}[q||p_2].$$

- ▶ If p(x) is a density and p(x) = u(x)/C, we get $KL[q||u] \ge -\log C$, with the minimal value occurring when u(x) is proportional to q(x).
- **Example:** For a posterior $\pi(\theta \mid data)$ we have

$$\pi(\theta \mid \mathsf{data}) = \frac{\pi(\mathsf{data}, \theta)}{\pi(\mathsf{data})}$$

and thus $\mathsf{KL}[q||\pi(\cdot\mid\mathsf{data})] = \log\pi(\mathsf{data}) + \mathsf{KL}[q||\pi(\mathsf{data},\cdot)].$

Approximations using Variational Bayes

- ▶ Idea: Finding an approximation to the posterior $\pi(\theta \mid \text{data})$ in some family of densities Q that does not necessarily contain the posterior.
- ▶ More specifically find the $q \in \mathcal{Q}$ minimizing the Kullback Leibler divergence from q to the posterior.
- Writing

$$\mathsf{KL}[q||\pi(\cdot\mid\mathsf{data})] = \log\pi(\mathsf{data}) + \mathsf{KL}[q||\pi(\mathsf{data},\cdot)]$$

we instead find the \hat{q} minimizing $\mathsf{KL}[q||\pi(\mathsf{data},\cdot)]$.

- As $\log \pi(\text{data}) \ge -\text{KL}[q||\pi(\text{data},\cdot)]$ the value $-\text{KL}[\hat{q}||\pi(\text{data},\cdot)]$ is called the *evidence lower bound*, or ELBO.
- Usually one uses the notation

$$\mathcal{L}(q) = - \mathsf{KL}[q || \pi(\mathsf{data}, \cdot)] = \int q(heta) \log rac{\pi(\mathsf{data}, heta)}{q(heta)} \, d heta.$$

$q \in \mathcal{Q}$ factorizing over subspaces for θ

- ▶ Assume \mathcal{Q} consists of densities on the form $q(\theta \mid \eta)$ where $\eta \in \Omega$ for some set Ω .
- Assume there is a split $\theta = (\theta_1, \dots, \theta_n)$ of θ into (groups of) parameters and a corresponding split $\eta = (\eta_1, \dots, \eta_n)$ so that we can write for any $\eta \in \Omega$

$$q(\theta \mid \eta) = \prod_{i=1}^n q_i(\theta_i \mid \eta_i).$$

- Note for example for the entropy of a variable with density $q(\theta \mid \eta)$: $-\int q(\theta \mid \eta) \log q(\theta \mid \eta) d\theta = -\sum_{i=1}^{n} \int q_i(\theta_i \mid \eta_i) \log q_i(\theta_i \mid \eta_i) d\theta_i$.
- ▶ We get

$$egin{aligned} \mathcal{L}(q) &= \int q(heta \mid \eta) \log rac{\pi(\mathsf{data}, heta)}{q(heta \mid \eta)} \, d heta \ &= \int q(heta \mid \eta) \log \pi(\mathsf{data}, heta) \, d heta - \int q(heta \mid \eta) \log q(heta \mid \eta) \, d heta \ &= \int \prod_{i=1}^n q_i(heta_i \mid \eta_i) \log \pi(\mathsf{data}, heta) \, d heta - \sum_{i=1}^n \int q_i(heta_i \mid \eta_i) \log q_i(heta_i \mid \eta_i) \, d heta_i \end{aligned}$$

Optimizing one q_i at a time

- Assume we fix all q_j with $j \neq i$ and want to find the q_i maximizing $\mathcal{L}(q)$ under this restriction.
- ▶ Using the expression for $\mathcal{L}(q)$ above we find we must maximize

$$\begin{split} & \int q_i(\theta_i \mid \eta_i) \, \mathsf{E}_{j \neq i} \left[\log \pi(\mathsf{data}, \theta) \right] \, d\theta_i - \int q_i(\theta_i \mid \eta_i) \log q_i(\theta_i \mid \eta_i) \, d\theta_i \\ = & - \, \mathsf{KL} \left[q_i || \exp \left(\mathsf{E}_{j \neq i} [\log \pi(\mathsf{data}, \cdot)] \right) \right] \end{split}$$

where we take the expectation over all $q_j(\theta_j \mid \eta_j)$ for $j \neq i$.

▶ If it exists, use the η_i so that

$$q_i(\theta_i \mid \eta_i) \propto_{\theta_i} \exp\left(\mathsf{E}_{j \neq i} \left[\log \pi(\mathsf{data}, \theta)\right]\right)$$

otherwise use an η_i minimizing

$$\mathsf{KL}\left[q_i||\exp\left(\mathsf{E}_{j\neq i}[\log\pi(\mathsf{data},\cdot)]\right)\right].$$

Mean field variational Bayes approximation

► Sometimes, the set of equations

$$q_i(\theta_i \mid \eta_i) \propto_{\theta_i} \exp\left(\mathsf{E}_{j\neq i} \left[\log \pi(\mathsf{data}, \theta)\right]\right]\right)$$

can be solved simultaneously for i = 1, ..., n.

- More commonly we set up an iterative algorithm where, for all $i=1,\ldots,n$, we optimize each q_i given fixed values for q_j with $j\neq i$, and then make repeated cycles of these updates. This creates an algorithm that converges to an $\eta\in\Omega$ giving rise to a local maximum for $\mathcal{L}(q)$.
- ▶ This is the *mean field* variational Bayes approximation of the posterior.

What if we minimize $KL[\pi(\text{data }|\cdot)||q]$ instead of $KL[q||\pi(\text{data }|\cdot)]$?

We have

$$\begin{aligned} \mathsf{KL}[\pi(\cdot\mid\mathsf{data})||q] &= -\int \pi(\theta\mid\mathsf{data})\log\frac{q(\theta)}{\pi(\theta\mid\mathsf{data})}\,d\theta \\ &= \int \pi(\theta\mid\mathsf{data})\log\pi(\theta\mid\mathsf{data})\,d\theta - \int \pi(\theta\mid\mathsf{data})\log q(\theta)\,d\theta \end{aligned}$$

so we only need to find the q maximizing the last term.

▶ If we assume that $q(\theta) = q(\theta \mid \eta) = \prod_{i=1}^n q_i(\theta_i \mid \eta_i)$ we get that

$$\begin{split} \int \pi(\theta \mid \mathsf{data}) \log q(\theta \mid \eta) \, d\theta &=& \sum_{i=1}^n \int \pi(\theta \mid \mathsf{data}) \log q_i(\theta_i \mid \eta_i) \, d\theta \\ &=& \sum_{i=1}^n \int \pi(\theta_i \mid \mathsf{data}) \log q_i(\theta_i \mid \eta_i) \, d\theta_i. \end{split}$$

So we optimize by setting $q_i(\theta_i \mid \eta_i)$ equal to the marginal posterior $\pi(\theta_i \mid \text{data})$ for each i (or choose η_i to minimize the KL divergence).

Less useful approximations in practice.

MSA101/MVE187 2020 Lecture 12.2 Variational Bayes: An example

Petter Mostad

Chalmers University

October 4, 2020

Variational Bayes: Toy example

Consider the following example:

$$y_1, \dots, y_n \sim \mathsf{Normal}(\mu, \tau^{-1})$$
 $\pi(\mu) \propto 1$
 $\pi(\tau) \propto 1/\tau$

Using conjugacy, we get that the exact posterior is given by

$$au \mid y_1, \dots, y_n \sim \operatorname{\mathsf{Gamma}}\left(\frac{n-1}{2}, \frac{n-1}{2}s^2\right)$$
 $\mu \mid au, y_1, \dots, y_n \sim \operatorname{\mathsf{Normal}}\left(\overline{y}, (n au)^{-1}\right)$

where s^2 is the sample variance.

As an illustration, we find the Variational Bayes approximate posterior. Note:

$$\pi(y_1, \dots, y_n, \mu, \tau) \propto \frac{1}{\tau} \prod_{i=1}^n \frac{1}{\sqrt{2\pi/\tau}} \exp\left(-\frac{\tau}{2}(y_i - \mu)^2\right)$$
$$\log \pi(y_1, \dots, y_n, \mu, \tau) = C + \left(\frac{n}{2} - 1\right) \log \tau - \frac{\tau}{2}(n - 1)s^2 - \frac{n\tau}{2}(\overline{y} - \mu)^2$$

Variational Bayes: Toy example continued

- We use as approximation for the posterior the family of densities $q(\mu, \tau) = q_1(\mu)q_2(\tau)$, so that we assume μ and τ are independent, but we do not make additional restrictions on q_1 and q_2 .
- We get

$$\begin{split} &\exp\left(\mathsf{E}_{\mu}\left[\log\pi(\mathsf{data},\mu,\tau)\right]\right]\right) \\ \propto_{\tau} &\exp\left(\left(\frac{n}{2}-1\right)\log\tau - \frac{\tau}{2}(n-1)s^2 - \frac{n\tau}{2}\,\mathsf{E}_{\mu}\left[(\overline{y}-\mu)^2\right]\right) \end{split}$$

From this we see that

$$q_2(au) = \mathsf{Gamma}\left(au; rac{n}{2}, rac{1}{2}(n-1)s^2 + rac{n}{2}\,\mathsf{E}_{\mu}\left[(\overline{y}-\mu)^2
ight]
ight)$$

▶ We get

$$\exp\left(\mathsf{E}_{\tau}\left[\log\pi(\mathsf{data},\mu,\tau)\right]\right]\right) \propto_{\mu} \exp\left(-\frac{n}{2}\,\mathsf{E}_{\tau}[\tau](\overline{y}-\mu)^2\right)$$

▶ From this we see that

$$q_1(\mu) = \mathsf{Normal}\left(\mu; \overline{y}, (n \,\mathsf{E}_{\tau}[\tau])^{-1}\right).$$

Variational Bayes: Toy example continued

▶ Taking expectations using these two densities leads to

$$\begin{array}{rcl} \mathsf{E}_{\tau}[\tau] & = & \frac{n/2}{(n-1)s^2/2 + n/2 \cdot \mathsf{E}_{\mu} \left[(\overline{y} - \mu)^2 \right]} \\ \mathsf{E}_{\mu} \left[(\overline{y} - \mu)^2 \right] & = & \left(n \, \mathsf{E}_{\tau}[\tau] \right)^{-1} \end{array}$$

▶ This is two equations with two unknowns; solving gives

$$E_{\tau}[\tau] = \frac{1}{s^2}$$

$$E_{\mu}[(\overline{y} - \mu)^2] = \frac{s^2}{n}$$

The final solution is

$$\begin{array}{lcl} q_2(\tau) & = & \mathsf{Gamma}\left(\tau;\frac{n}{2},\frac{n}{2}s^2\right) \\ q_1(\mu) & = & \mathsf{Normal}\left(\mu;\overline{y},\frac{s^2}{n}\right) \end{array}$$