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An extension of the KL notation

» The Kullback Leibler divergence from a density g(x) to a density
p(x) is defined as

KL[ql|p] = */q(x) log Zg; dx = /q(x) log ZE);; dx.

> By abuse of notation we extend the definition to cases where p is
only proportional to a density. Then, if p1(x) = po(x)/C we get

KL[ql|p1] = log C + KL[q||p2]-

> If p(x) is a density and p(x) = u(x)/C, we get KL[qg]||u] > —log C,
with the minimal value occuring when u(x) is proportional to g(x).

» Example: For a posterior (6 | data) we have

m(data, 6)

(0 | data) = “r(data)

and thus KL[g||7(- | data)] = log w(data) + KL[g||w(data, -)].
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Approximations using Variational Bayes

» Idea: Finding an approximation to the posterior 7(6 | data) in some
family of densities Q that does not necessarily contain the posterior.

» More specifically find the g € Q minimizing the Kullback Leibler
divergence from g to the posterior.

» Writing
KL[g||7(- | data)] = log w(data) + KL[q||r(data, -)]

we instead find the § minimizing KL[g||7(data, -)].
> As logm(data) > — KL[g||n(data, -)] the value — KL[§]||7w(data, -)] is
called the evidence lower bound, or ELBO.

» Usually one uses the notation

m(data, 6)

q() o0

£(q) = — KL[q||n(data, )] = / 4(0) log
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q € Q factorizing over subspaces for 6

> Assume Q consists of densities on the form q(6 | ) where n € Q for

some set .
> Assume there is a split 8 = (0y,...,0,) of 8 into (groups of)
parameters and a corresponding split n = (11, ...,7,) so that we

can write for any n € Q
q(0|n) = Hqi(ei | 7i)-
i=1

» Note for example for the entropy of a variable with density (6 | n):
— [ a(0 | n)loga(6 | n) d6 = =3, [ ai(6; | ni)log qi(0; | ny) db;.

> We get
E(q)=/q(9|n) logw

/ 4(0 | n) log 7(data, ) d6 — / a(6 | n)log q(6 | ) d6

— [ T a0: | mytogn(data.0)do — > [ a6 | m)logai(6s | )8
i=1 i=1
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Optimizing one g; at a time

> Assume we fix all g; with j # i and want to find the g; maximizing
L(q) under this restriction.

» Using the expression for £(q) above we find we must maximize
/qi(9i | ni) Ejzi [log w(data, )] do; — /qi(9i | ni)log qi(0; | mi) dO;

= —KL[qi||exp (Ejzi[log 7(data, -)])]

where we take the expectation over all q;(6; | n;) for j # i.
> If it exists, use the 7); so that

qi(0i | mi) <o, exp (Ejzi [log m(data, 0)])

otherwise use an 7; minimizing

KL [qi]| exp (E; 4 [log w(data, )])].
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Mean field variational Bayes approximation

» Sometimes, the set of equations

qi(0i [ i) o<o; exp (Eji [log m(data, )]])

can be solved simultaneously for i =1,...,n.

» More commonly we set up an iterative algorithm where, for all
i=1,...,n, we optimize each g; given fixed values for g; with j # i,
and then make repeated cycles of these updates. This creates an
algorithm that converges to an n €  giving rise to a local maximum
for L(q).

» This is the mean field variational Bayes approximation of the
posterior.
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What if we minimize KL[r(data | -)||q] instead of

KL[g||m(data | -)]?

» We have

KLr(-| data)|a] = — [ 7(0] data)log —2C0) o

= /77(0 | data) log 7(6 | data) d6 — /7‘(’(0 | data) log q(0) d6

so we only need to find the g maximizing the last term.
> If we assume that q(0) = q(6 | ) = T[], qi(6; | 1) we get that

/7r(9|data)|ogq(9|77)d9 - Z/w(9|data)logq;(9;|17,-)d9

= Z/ﬂ(ﬂ; | data) log q;(0; | n;) dO;.
i=1

So we optimize by setting ¢;(6; | ;) equal to the marginal posterior
m(0; | data) for each i (or choose 7; to minimize the KL divergence).
» Less useful approximations in practice.
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Variational Bayes: Toy example

» Consider the following example:

Vi, ooy Vo o~ Normal(,u,Tfl)

m(p) o 1
w(r) o« 1/t

> Using conjugacy, we get that the exact posterior is given by

-1 -1
TVt~ Gamma(L n 52)

2 72
wl T y,....¥a ~ Normal ()7, (m—)fl)

where s? is the sample variance.

» As an illustration, we find the Variational Bayes approximate posterior.
Note:

Tr(ylw"vym/j‘vT) S H

\/W xp (—5 (v — 1))
logm(y1y .-y Yny ity 7) = C+(5—1)|og7—%(n—1)s2—%(y—u)2
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Variational Bayes: Toy example continued

» We use as approximation for the posterior the family of densities
q(p, 7) = q1(1)g2(7), so that we assume p and 7 are independent,
but we do not make additional restrictions on g; and g».

> We get

exp (E, [log (data, i1, 7)]])
X, exp ((g — 1) log T — g(n —1)s* — an E. [y — y)z])

» From this we see that

q2(7) = Gamma <7’; ,%(" —1)s* + g Eu [(v - “)2})

NS

> We get

n _
exp (E, [log m(data, . 7)]]) o, exp (—3 E-[1](7 — 1)?)
» From this we see that

a1(n) = Normal (11;7, (nE,[r]) ") .
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Variational Bayes: Toy example continued

» Taking expectations using these two densities leads to

n/2
E [T —
A O P R TP R (2
— -1
E. [(y - N)z] = (nE:[7])
» This is two equations with two unknowns; solving gives
1
ET[T] = 57
2
_ s
E (0 -n?] = =
n
» The final solution is
_ .hono
g(t) = Gamma (7', 35S )

s |9

)

qi(n) = Normal <u; Y,
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